Simscape ${ }^{\text {TM }}$ Power Systems ${ }^{\text {TM }}$

 Reference (Simscape ${ }^{\text {TM }}$ Components)
MATLAB:\&SIMULINK ${ }^{\circ}$

How to Contact MathWorks

Latest news:
www.mathworks.com
Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral
Technical support: www.mathworks.com/support/contact_us
Phone:
508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
Simscape ${ }^{\text {TM }}$ Power Systems ${ }^{\text {TM }}$ Reference (Simscape ${ }^{\text {TM }}$ Components)
© COPYRIGHT 2013-2018 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www. mathworks.com/patents for more information.

Revision History

September 2013 Online only
March 2014 Online only

October 2014 Online only
March 2015 Online only
September 2015 Online only
March 2016 Online only

September 2016 Online only
March 2017 Online only
September 2017 Online only March 2018 Online only

New for Version 6.0 (Release 2013b)
Revised for Version 6.1 (Release 2014a)
(Renamed from SimPowerSystems ${ }^{\text {TM }}$ Reference (Third Generation))
Revised for Version 6.2 (Release 2014b)
Revised for Version 6.3 (Release 2015a)
Revised for Version 6.4 (Release 2015b)
Revised for Version 6.5 (Release 2016a)
(Renamed from SimPowerSystems ${ }^{T M}$ Reference
(Simscape ${ }^{\text {TM }}$ Components))
Revised for Version 6.6 (Release 2016b)
Revised for Version 6.7 (Release 2017a)
Revised for Version 6.8 (Release 2017b)
Revised for Version 6.9 (Release 2018a)

Blocks - Alphabetical List

1

Functions - Alphabetical List
2

> Abbreviations and Naming Conventions in Simscape Components Libraries

Parameter Dependencies

A

Parameter Dependencies A-2
Parameter Dependency Tables A-2

Blocks - Alphabetical List

AC Cable

Model three-phase AC power cabling
Library: Simscape / Power Systems / Simscape Components / Passive Devices

Description

The AC Cable block represents a three-phase AC power cable with a conducting sheath surrounding each phase. The figure shows a single-phase conductor inside a conducting sheath. The inner cylinder represents the main conductor for the phase, and the outer cylinder represents the conducting sheath.

The block has two variants:

- Composite three-phase variant (default) --- Contains three-phase connection ports for the sheaths and phases and a single-phase connection port for each electrical reference node.
- Expanded three-phase variant --- Contains single-phase connection ports for each sheath, phase, and electrical reference node.

The AC Cable block includes inductances and mutual inductances between each phase, sheath, and return path. Therefore, you can connect an ideal electrical reference block to both return ports, $\mathbf{g 1}$ and $\mathbf{g 2}$, while maintaining loss modeling in the Earth- or neutralreturn line.

To facilitate simulation convergence when you connect the AC Cable block to a source block, include source impedance using one of these methods:

- Configure the source block to include impedance.
- Insert a block that models impedance between the source block and the AC Cable block.

To model unbonded sheaths, connect the unbonded sheaths to an Open Circuit block. The figure shows a model of single-point bonding using the composite three-phase variant of the block.

Open Circuit

For high performance modeling, in terms of simulation speed, use a single AC Cable block. To improve model fidelity in terms of frequency behavior, connect several AC Cable blocks in series. For series-connected blocks, the sheaths and main conductors act as coupled transmission lines with perfect transposition of the phases. The number of AC Cable blocks that you use to model a particular physical length of cable must be less than the number of transpositions in the physical system that you are modeling. Types of continuous multi-segment cables that you can model include:

- Unbonded continuous cables

- Single-point bonded continuous cables

- Double-point bonded continuous cables

You can also model cross-bonded cables using the AC Cable block.

This three pi-segment cable model implements cross-bonding using expanded three-phase ports and single-phase connection lines. The sheath in the model is two-point bonded.

This model of blocks with composite three-phase-ports uses Phase Permute blocks to implement cross bonding. The sheath in the model is unbonded.

For an example that allows you to choose the number of segments and type of bonding, see "AC Cable with Bonded Sheaths".

AC Cable Model

The AC Cable block uses the concept of partial inductances to calculate the inductance values. These values include the partial self-inductance of each phase, sheath, and return path and the partial mutual inductances between each:

- Phase and each other phase
- Phase and the sheath of that phase
- Phase and the sheath of neighboring phases
- Phase and the return
- Sheath and each neighboring sheath
- Sheath and the return

For three equivalent phases, the matrix that defines the resistance relationships for the vector [phase A; sheath A; phase B; sheath B; phase C; sheath C] is

$$
\begin{aligned}
& R=\left[\begin{array}{cccccc}
R_{a}+R_{g} & R_{g} & R_{g} & R_{g} & R_{g} & R_{g} \\
R_{g} & R_{s}+R_{g} & R_{g} & R_{g} & R_{g} & R_{g} \\
R_{g} & R_{g} & R_{a}+R_{g} & R_{g} & R_{g} & R_{g} \\
R_{g} & R_{g} & R_{g} & R_{s}+R_{g} & R_{g} & R_{g} \\
R_{g} & R_{g} & R_{g} & R_{g} & R_{a}+R_{g} & R_{g} \\
R_{g} & R_{g} & R_{g} & R_{g} & R_{g} & R_{s}+R_{g}
\end{array}\right] \\
& R_{a}=R_{a}^{\prime} l \\
& R_{g}=R_{\text {return }}^{\prime} l,
\end{aligned}
$$

for which $R^{\prime}{ }_{\text {return }}$ depends on the return parameterization method such that:

- For a return parameterization based on distance and resistance $R_{\text {return }}^{\prime}=R_{g}^{\prime}$.
- For a return parameterization based on frequency and Earth resistivity

$$
R_{\text {return }}^{\prime}=\pi^{2} 10^{-7} f
$$

and

$$
R_{s}=R_{s}^{\prime} l,
$$

where:

- R is the resistance matrix.
- R_{a} is the resistance of a particular phase.
- R_{s} is the resistance of a particular sheath.
- R_{g} is the resistance of the Earth- or neutral-return.
- $R_{a}{ }_{a}$ is the resistance per unit length for the phase.
- l is the cable length.
- $R^{\prime}{ }_{s}$ is the resistance per unit length for the sheath.
- $R_{\text {return }}^{\prime}$ is the resistance per unit length of the return. The value of $R^{\prime}{ }_{\text {return }}$ varies depending on the return parameterization method.
- $R_{g}{ }_{g}$ is the resistance per unit length for the Earth- or neutral return.
- f is the frequency that the block uses to calculate Earth-return parameters if you parameterize the block using the frequency and Earth resistivity method.

The block uses standard expressions to calculate the capacitances between:

- Concentric or adjacent cylinders
- Each phase and its own sheath
- Each sheath and the return

The matrix that defines these capacitance relationships is

$$
C=\left[\begin{array}{cccccc}
C_{a s_{a}} & -C_{a s_{a}} & 0 & 0 & 0 & 0 \\
-C_{a s_{a}} & C_{a s_{a}}+C_{s_{a} g} & 0 & 0 & 0 & 0 \\
0 & 0 & C_{a s_{a}} & -C_{a s_{a}} & 0 & 0 \\
0 & 0 & -C_{a s_{a}} & C_{a s_{a}}+C_{s_{a} g} & 0 & 0 \\
0 & 0 & 0 & 0 & C_{a s_{a}} & -C_{a s_{a}} \\
0 & 0 & 0 & 0 & -C_{a s_{a}} & C_{a s_{a}}+C_{s_{a} g}
\end{array}\right]
$$

$$
\begin{aligned}
& C_{a s_{a}}=\frac{2 \pi \varepsilon_{\mathrm{r}} \varepsilon_{0} l}{\ln \left(\frac{r_{s}}{r_{a}}\right)} \\
& r_{a}=G M R \cdot e^{\frac{1}{4}} \\
& C_{s_{a} g}=\frac{\pi \varepsilon_{\text {env }} \varepsilon_{0} l}{\ln \left(\frac{D_{\text {return }}}{r_{s}}\right)},
\end{aligned}
$$

for which $D_{\text {return }}$ depends on the return parameterization method such that:

- For a return parameterization based on distance and resistance $D_{\text {return }}=D_{\mathrm{e}}$.
- For a return parameterization based on frequency and Earth resistivity

$$
D_{\text {return }}=1650 \sqrt{\frac{\rho}{2 \pi f}} .
$$

where:

- C is the capacitance matrix.
- $C_{a s_{a}}$ is the capacitance between each phase and the sheath of that phase.
- $C_{s_{a} g}$ is the capacitance between each sheath and return.
- ϵ_{r} is the permittivity of the dielectric.
- ϵ_{0} is the permittivity of free space.
- r_{s} is the radius of the sheath.
- r_{a} is the effective radius of the conductor. For a single-strand conductor, r_{a} is the radius of the strand.
- GMR is the geometric mean radius of the conductor. For a single-strand conductor, $G M R=r_{\text {strand }} e^{-\frac{1}{4}}$, where $r_{\text {strand }}$ is the radius of the strand.
- $\epsilon_{e n v}$ is the permittivity of the material between the sheathed lines and the return path.
- $D_{\text {return }}$ is the effective distance to the return. The value of $D_{\text {return }}$ varies if you use the distance/return parameterization method.
- D_{e} is the effective distance to the Earth- or neutral-return.
- ρ is the effective Earth resistivity for an Earth-return.
- f is the frequency that is used to determine the return path properties.

The block uses the concept of partial inductances to calculate inductance values. These values include the partial self-inductance of each phase, sheath, and return path and the partial mutual inductances between each:

- Phase and each other phase
- Phase and the sheath of that phase
- Phase and the sheath of neighboring phases
- Phase and the return
- Sheath and each neighboring sheath
- Sheath and the return

The equations that define these inductance relationships are:

$$
\begin{aligned}
& L=\left[\begin{array}{cccccc}
D_{a} & \delta & A & \alpha & A & \alpha \\
\delta & D_{s} & \alpha & S & \alpha & S \\
A & \alpha & D_{a} & \delta & A & \alpha \\
\alpha & S & \delta & D_{s} & \alpha & S \\
A & \alpha & A & \alpha & D_{a} & \delta \\
\alpha & S & \alpha & S & \delta & D_{s}
\end{array}\right] \\
& D_{a}=L_{a}+L_{g}-2 M_{a g} \\
& L_{a}=2 \times 10^{-7} l\left[\ln \left(\frac{2 l}{r_{a}}\right)-\frac{3}{4}\right] \\
& L_{g}=2 \times 10^{-7} l\left[\ln \left(\frac{2 l}{\sqrt{r_{a} r_{s}}}\right)-\frac{3}{4}\right] \\
& M_{a g}=M_{s g}=2 \times 10^{-7} l\left[\ln \left(\frac{2 l}{D_{\text {return }}}\right)-1\right]
\end{aligned}
$$

$$
\begin{aligned}
& D_{s}=L_{s}+L_{g}-2 M_{s g} \\
& L_{s}=M_{a s_{a}}=2 \times 10^{-7} l\left[\ln \left(\frac{2 l}{r_{s}}\right)-\frac{3}{4}\right] \\
& \delta=L_{g}+M_{a s_{a}}-M_{a g}-M_{s g} \\
& \alpha=L_{g}+M_{a s_{b}}-M_{a g}-M_{s g} \\
& M_{a s_{b}}=M_{s_{a} s_{b}}=M_{a b}=2 \times 10^{-7} l\left[\ln \left(\frac{2 l}{d_{a b}}\right)-1\right],
\end{aligned}
$$

for which $d_{a b}$ depends on the line formation parameterization method, such that:

- For a trefoil line formation parameterization $d_{a b}=D_{a b}$.
- For a flat line formation parameterization $d_{a b}=D_{a b} \sqrt[3]{2}$.

$$
\begin{aligned}
& A=L_{g}+M_{a b}-2 M_{a g} \\
& S=L_{g}+M_{s_{a} s_{b}}-2 M_{s g},
\end{aligned}
$$

where:

- L is the inductance matrix.
- D_{a} is the self-inductance of a single phase through its entire path and return.
- L_{a} is the partial self-inductance of each phase.
- L_{g} is the partial self-inductance of the Earth- or neutral-return.
- $M_{a g}$ is the partial mutual inductance between each phase and the Earth- or neutralreturn.
- $M_{s g}$ is the partial mutual inductance between each sheath and the Earth- or neutralreturn.
- The factor, 2×10^{-7} is equal to $\mu_{0} / 2 \pi$, because permeability of free space, μ_{0}, is equal to 1.257×10^{-6} or $4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$.
- D_{s} is the self-inductance of a single sheath through its entire path and return.
- L_{s} is the partial self-inductance of each sheath.
- $M_{a s_{a}}$ is the partial mutual inductance between each phase and the sheath of that phase.
- δ is the effective mutual inductance between a phase and the sheath of that phase.
- α is the effective mutual inductance between a phase and a neighboring sheath.
- $M_{a s_{b}}$ is the partial mutual inductance between each phase and the sheath of each neighboring phase.
- $M_{s_{a} S_{b}}$ is the partial mutual inductance between sheaths of different phases.
- $M_{a b}$ is the partial mutual inductance between each phase and each other phase.
- $d_{a b}$ is the effective distance between adjacent phases. The value of $d_{a b}$ varies depending on the line parameterization method.
- $D_{a b}$ is the center-to-center distance between adjacent phases.
- A is the effective mutual inductance between phases.
- S is the effective mutual inductance between sheaths.

A modal transformation that is related to the Clarke transform simplifies the equivalent circuit. The six-by-six transformation, T, is

$$
T=\frac{1}{\sqrt{3}}\left[\begin{array}{cccccc}
1 & 0 & \sqrt{2} & 0 & 0 & 0 \\
0 & 1 & 0 & \sqrt{2} & 0 & 0 \\
1 & 0 & -\frac{1}{\sqrt{2}} & 0 & \sqrt{\frac{3}{2}} & 0 \\
0 & 1 & 0 & -\frac{1}{\sqrt{2}} & 0 & \sqrt{\frac{3}{2}} \\
1 & 0 & -\frac{1}{\sqrt{2}} & 0 & -\sqrt{\frac{3}{2}} & 0 \\
0 & 1 & 0 & -\frac{1}{\sqrt{2}} & 0 & -\sqrt{\frac{3}{2}}
\end{array}\right] .
$$

As $T^{\dagger}=T^{-1}$, applying the T transform yields the modal resistance matrix, R_{m}, the modal capacitance matrix, C_{m}, and the modal inductance matrix, L_{m}.

The transformed matrices are:

$$
\begin{aligned}
& R_{m}=T^{\dagger} R T=\left[\begin{array}{cccccc}
R_{a}+3 R_{g} & 3 R_{g} & 0 & 0 & 0 & 0 \\
3 R_{g} & R_{s}+3 R_{g} & 0 & 0 & 0 & 0 \\
0 & 0 & R_{a} & 0 & 0 & 0 \\
0 & 0 & 0 & R_{s} & 0 & 0 \\
0 & 0 & 0 & 0 & R_{a} & 0 \\
0 & 0 & 0 & 0 & 0 & R_{s}
\end{array}\right] \\
& C_{m}=T^{\dagger} C T=\left[\begin{array}{cccccc}
C_{a s_{a}} & -C_{a s_{a}} & 0 & 0 & 0 & 0 \\
-C_{a s_{a}} & C_{a s_{a}}+C_{s_{a} g} & 0 & 0 & 0 & 0 \\
0 & 0 & C_{a s_{a}} & -C_{a s_{a}} & 0 & 0 \\
0 & 0 & -C_{a s_{a}} & C_{a s_{a}}+C_{s_{a} g} & 0 & 0 \\
0 & 0 & 0 & 0 & C_{a s_{a}} & -C_{a s_{a}} \\
0 & 0 & 0 & 0 & -C_{a s_{a}} & C_{a s_{a}}+C_{s_{a} g}
\end{array}\right]=C \\
& L_{m}=T^{\dagger} L T=\left[\begin{array}{cccccc}
D_{a}+2 A & \delta+2 \alpha & 0 & 0 & 0 & 0 \\
\delta+2 \alpha & D_{s}+2 A & 0 & 0 & 0 & 0 \\
0 & 0 & D_{a}-A & \delta-\alpha & 0 & 0 \\
0 & 0 & \delta-\alpha & D_{s}-S & 0 & 0 \\
0 & 0 & 0 & 0 & D_{a}-A & \delta-\alpha \\
0 & 0 & 0 & 0 & \delta-\alpha & D_{s}-S
\end{array}\right] .
\end{aligned}
$$

The transformation changes each six-by-six matrix into three uncoupled two-by-two matrices. The capacitance matrix is invariant under this transformation. The power is invariant in the transformed and untransformed domains because T is unitary.

Assumptions and Limitations

- For resistance calculations, the phases are equivalent.
- Relative to the phase-to-sheath capacitance and the sheath-return capacitances all other capacitances, are negligible due to the shielding provided by the conducting sheaths.

Ports

Conserving

~S1 - Sheath

electrical
Expandable three-phase port associated with sheath 1.

~N1 - Phase

electrical
Expandable three-phase port associated with a, b, and c phases 1 .

g1 - Ground

electrical
Electrical conserving port associated with ground 1.

~S2 - Sheath

electrical
Expandable three-phase port associated with sheath 2.

~N2 - Phase
 electrical

Expandable three-phase port associated with a, b, and c phases 2 .

g2 - Ground

electrical
Electrical conserving port associated with ground 2.

Parameters

Cable length - Length

120 km (default)
Length of the cable.

Geometric mean radius of conductor - Radius 5 mm (default)

Geometric mean radius of the conductor, which is a function of the number and type of individual strands in the conductor of the AC cable.

Sheath radius - Radius

10 mm (default)
Average radius of the sheath. To ensure that the sheath radius is greater than the physical radius of a single-stranded conductor with a particular GMR, the sheath radius must be

greater than

$$
G M R * e^{\frac{1}{4}}
$$

Line-line spacing (center-to-center) - Distance
25 mm (default)
Distance between the line centers.

Line formation - Line configuration
 Trefoil (default)|Flat

Cable line formation.
Conductor resistance per length - Resistance
1 Ohm/km (default)
Resistance per length of a conductor.

Sheath resistance per length - Resistance

10 hm/km (default)
Resistance per length of a sheath.

Insulation relative permittivity - Permittivity
2.4 (default)

Relative permittivity of the insulation.

Relative permittivity between lines and return path - Relative permittivity

1 (default)
Relative permittivity of the circuit.

Return parameterization - Model

Use frequency and Earth resistivity (default)|Use distance and resistance

Parameterization method.

Dependencies

Enabling either option enables other parameters.

Frequency for Earth-return impedance - Frequency 60 Hz (default)

Frequency at which the Earth-return impedance is calculated.

Dependencies

Selecting Use frequency and Earth resistivity for the Return parameterization parameter enables this parameter.

Earth resistivity - Resistance

100 m*Ohm (default)
Earth-return resistivity.

Dependencies

Selecting Use frequency and Earth resistivity for the Return parameterization parameter enables this parameter.

```
Effective distance to return path - Return path distance
1 km (default)
```

Effective distance between the phases and the return path.

Dependencies

Selecting Use distance and resistance for the Return parameterization parameter enables this parameter.

Return path resistance per length - Return path unit resistance 0.1 hmm/km (default)

Resistance per length of the return path.
Dependencies
Selecting Use distance and resistance for the Return parameterization parameter enables this parameter.

See Also

Phase Permute

Introduced in R2017b

ASM Current Controller

Discrete-time PI-based asynchronous machine current control Library: Simscape / Power Systems / Simscape Components / Control / ASM Control

Description

The ASM Current Controller implements discrete-time proportional-integral (PI) based asynchronous machine (ASM) current control in the rotor $d-q$ reference frame. You typically use the ASM Current Controller in a series of blocks that make up a control structure. For example, to convert the dq0 reference frame output voltage to voltage in an abc reference frame, connect the ASM Current Controller to an Inverse Clarke Transform in the control structure.

Equations

The block uses the backward Euler discretization method.
Two PI current controllers that are implemented in the rotor reference frame produce the reference voltage vector:

$$
v_{d}^{r e f}=\left(K_{p_{-} i d}+K_{i_{-} i d} \frac{T_{s} z}{z-1}\right)\left(i_{d}^{r e f}-i_{d}\right)+v_{d_{-} F F},
$$

and

$$
v_{q}^{r e f}=\left(K_{p_{-} i q}+K_{i_{-} i q} \frac{T_{s} z}{z-1}\right)\left(i_{q}^{r e f}-i_{q}\right)+v_{q_{-} F F},
$$

where

- $v_{d}^{r e f}$, and $v_{q}^{r e f}$ are the d-axis and q-axis reference voltages, respectively.
$i_{d}^{\text {- }}{ }^{r e f}$, and ${ }^{i_{q}^{r e f}}$ are the d-axis and q-axis reference currents, respectively.
- i_{d} and ${ }^{i_{q}}$ are the d-axis and q-axis currents, respectively.
- $\quad K_{p i d}$, and $K_{p i q}$ are the proportional gains for the d-axis and q-axis controllers, respectively.
- $\quad K_{i _i d}$ and $K_{i _i q}$ are the integral gains for the d-axis and q-axis controllers, respectively.
- $v_{d F F}$, and $v_{q F F}$ are the feedforward voltages for the d-axis and q-axis, respectively. The feedforward voltages are obtained from the machine mathematical equations and provided as inputs.
- T_{s}, is the sample time of the discrete controller.

Voltage Saturation

Saturation is imposed when the stator voltage vector exceeds the voltage phase limit $V_{\text {ph_max: }}$

$$
\sqrt{v_{d}^{2}+v_{q}^{2}} \leq V_{p h_{-} \max },
$$

where v_{d}, and v_{q} are the d-axis and q-axis voltages, respectively.
In the case of axis prioritization, the voltages v_{1} and v_{2} are introduced, where:

- For d-axis prioritization $-v_{1}=v_{d}$ and $v_{2}=v_{q}$.
- For q-axis prioritization $-v_{1}=v_{q}$ and $v_{2}=v_{d}$.

The constrained (saturated) voltages $\nu_{1}^{\text {sat }}$ and $v_{2}^{\text {sat }}$ are obtained as:

$$
v_{1}^{s a t}=\min \left(\max \left(v_{1}^{u n s a t},-V_{p h_{-} \max }\right), V_{p h _\max }\right)
$$

and

$$
v_{2}^{\text {sat }}=\min \left(\max \left(v_{2}^{\text {unsat }},-V_{2 _\max }\right), V_{2 _\max }\right),
$$

where:

- $v_{1}^{\text {unsat }}$ and $\nu_{2}^{\text {unsat }}$ are the unconstrained (unsaturated) voltages.
- $v_{2 _\max }$ is the maximum value of v_{2} that does not exceed the voltage phase limit. The
equation that define $v_{2 _\max }$ is $v_{2_{-} \max }=\sqrt{\left(V_{p h_{-} \max }\right)^{2}-\left(v_{1}^{s a t}\right)^{2}}$.
In the case of $d-q$ equivalence, the direct and quadrature axes have the same priority, and the constrained voltages are:

$$
v_{d}^{s a t}=\min \left(\max \left(v_{d}^{u n s a t},-V_{d_{-} \max }\right), V_{d_{-} \max }\right)
$$

and

$$
v_{q}^{\text {sat }}=\min \left(\max \left(v_{q}^{\text {unsat }},-V_{q_{-} \max }\right), V_{q_{-} \max }\right),
$$

where:

$$
V_{d_{-} \max }=\frac{V_{p h_{-} \max }\left|v_{d}^{\text {unsat }}\right|}{\sqrt{\left(v_{d}^{\text {unsat }}\right)^{2}+\left(v_{q}^{\text {unsat }}\right)^{2}}}
$$

and

$$
V_{q_{-} \max }=\frac{V_{p_{-} \max }\left|v_{q}^{\text {unsat }}\right|}{\sqrt{\left(v_{d}^{\text {unsat }}\right)^{2}+\left(v_{q}^{\text {unsat }}\right)^{2}}} .
$$

Integral Anti-Windup

An anti-windup mechanism is employed to avoid the saturation of the integrator output. In such a situation, the integrator gains become:

$$
K_{i_{-} i d}+K_{a w_{-} i d}\left(v_{d}^{\text {sat }}-v_{d}^{u n s a t}\right)
$$

and

$$
K_{i_{-} i q}+K_{a w_{-} i q}\left(v_{q}^{\text {sat }}-v_{q}^{u n s a t}\right),
$$

where $K_{a w i d}, K_{a w ~ i q}$, and $K_{a w ~ i f}$ are the anti-windup gains for the d-axis, q-axis, and field controllers, respectively.

Assumptions and Limitations

- The plant model for the direct and quadrature axes can be approximated with a firstorder system.

Ports

Input

idqRef - Reference currents

vector
Desired d - and q-axis currents for control of the asynchronous motor, in A.
Data Types: single|double

idq - Measured currents

vector
Actual d - and q-axis currents of the controlled asynchronous motor, in A.
Data Types: single|double

vdqFF - Feedforward voltages

vector
Feedforward pre-control voltages, in V.
Data Types: single| double

VphMax - Maximum phase voltage scalar

Maximum allowable voltage in each phase, in V.

Data Types: single | double

Reset - External reset

scalar
External reset signal (rising edge) for integrators.
Data Types: Boolean

Output

vdqRef - Reference voltages
vector
Desired d - and q-axis voltages for control of the asynchronous motor, in V.
Data Types: single | double

Parameters

Control Parameters

D-axis current proportional gain - d-axis proportional gain 1 (default)

Proportional gain for direct-axis current control.

D-axis current integral gain - d-axis integral gain

 100 (default)Integral gain for direct-axis current control.

D-axis current anti-windup gain - d-axis anti-windup gain

 1 (default)Anti-windup gain for direct-axis current control.

Q-axis current proportional gain - q-axis proportional gain 1 (default)

Proportional gain for quadrature-axis current control.

Q-axis current integral gain - q-axis integral gain 100 (default)

Integral gain for quadrature-axis current control.
Q-axis current anti-windup gain - q-axis anti-windup gain 1 (default)

Anti-windup gain for quadrature-axis current control.

Sample time (-1 for inherited) - Block sample time -1 (default) | positive scalar

Time, in s, between consecutive block executions. During execution, the block produces outputs and, if appropriate, updates its internal state. For more information, see "What Is Sample Time?" (Simulink) and "Specify Sample Time" (Simulink).

If this block is inside a triggered subsystem, inherit the sample time by setting this parameter to -1. If this block is in a continuous variable-step model, specify the sample time explicitly using a positive scalar.

Axis prioritization - Axis prioritization for voltage limiter

 Q-axis (default)|D-axis|D-Q equivalencePrioritize or maintain the ratio between the d - and q-axes when the block limits voltage.

Enable pre-control voltage - Pre-control voltage

on (default) | off
Enable or disable pre-control voltage.

See Also

Blocks

ASM Current Controller | ASM Direct Torque Control | ASM Field-Oriented Control | ASM Flux Observer | ASM Scalar Control

Introduced in R2017b

ASM Direct Torque Control

Asynchronous machine direct torque control

Library: Simscape / Power Systems / Simscape Components / Control / ASM Control

Description

The ASM Direct Torque Control implements an asynchronous machine (ASM) direct torque control (DTC) structure. The figure shows the equivalent circuit for the ASM DTC.

Equations

To estimate the torque and flux, the block discretizes the machine voltage equations in the stationary $\alpha \beta$ reference frame using the backward Euler method. The discrete-time equations for stator fluxes in the $\alpha \beta$ frame are:

$$
\psi_{\alpha}=\left(v_{\alpha}-i_{\alpha} R_{s}\right) \frac{T_{s} z}{z-1}
$$

and

$$
\psi_{\beta}=\left(v_{\beta}-i_{\beta} R_{s}\right) \frac{T_{s} z}{z-1}
$$

where:

- v_{α} is α-axis voltage.
- i_{α} is α-axis current.
- R_{s} is the stator resistance.
- Ψ_{α} is the α-axis stator flux.
- v_{β} is β-axis voltage.
- i_{β} is β-axis current.
- Ψ_{β} is the β-axis stator flux.

The block calculates the torque and flux as:

$$
T=\frac{3 p}{2}\left(\psi_{\alpha} i_{\beta}-\psi_{\beta} i_{\alpha}\right)
$$

and

$$
\psi_{s}=\sqrt{\psi_{\alpha}^{2}+\psi_{\beta}^{2}}
$$

where:

- $\quad p$ is the number of pole pairs.
- Ψ_{s} is the stator flux.

To detect flux and torque estimation errors, the block uses hysteresis comparators. The figure shows hysteresis comparators and the associated switching sectors.

The table shows the optimum switching for an inverter high-side system.

$\mathbf{c}_{\boldsymbol{\psi},} \mathbf{c}_{\boldsymbol{T}} \mathbf{S}(\boldsymbol{\theta})$		S_{0}	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}
$\mathrm{C}_{\Psi}=1$	$c_{T}=1$	1, 1, 0	0, 1, 0	0, 1, 1	0, 0, 1	1, 0, 1	1, 0, 0
	$C_{T}=0$	1, 1, 1	0, 0, 0	1, 1, 1	0, 0, 0	1, 1, 1	0, 0, 0
	$C_{T}=-1$	1, 0, 1	1, 0, 0	1, 1, 0	0, 1, 0	0, 1, 1	0, 0, 1
$\mathrm{C}_{\Psi}=0$	$C_{T}=1$	0, 1, 0	0, 1, 1	0, 0, 1	1, 0, 1	1, 0, 0	1, 1, 0
	$C_{T}=0$	0, 0, 0	1, 1, 1	0, 0, 0	1, 1, 1	0, 0, 0	1, 1, 1
	$C_{T}=-1$	0, 0, 1	1, 0, 1	1, 0, 0	1, 1, 0	0, 1, 0	0, 1, 1

Assumptions and Limitations

- The power inverter dead times are not considered. For hardware implementation, add the dead time externally.

Ports

Input

FluxRef - Flux

scalar
Reference stator flux.
Data Types: single | double

TqRef - Torque

scalar
Reference torque.
Data Types: single | double

vabc - Voltage

vector
Stator phase voltages.
Data Types: single | double

iabc - Current
 vector

Stator phase currents.
Data Types: single | double

Output

G - Gate pulses

vector | 0 or 1
Inverter gate pulses. The block does not consider any dead time.
Data Types: single | double

Parameters

Stator resistance (Ohm) - Resistance 0.25 (default) | positive scalar

Resistance of the machine stator.

Number of pole pairs - Pole number

1 (default) | positive integer

Number of machine pole pairs.

Flux hysteresis bandwidth (Wb) - Flux
 0.02 (default) | positive scalar

Total bandwidth distributed symmetrically around the flux set point.

Torque hysteresis bandwidth ($\mathrm{N} * \mathrm{~m}$) - Torque

10 (default) | positive scalar
Total bandwidth distributed symmetrically around the set point.

Sample time (-1 for inherited) - Block sample time - 1 (default) | positive scalar

Time, in s, between consecutive block executions. During execution, the block produces outputs and, if appropriate, updates its internal state. For more information, see "What Is Sample Time?" (Simulink) and "Specify Sample Time" (Simulink).

If this block is inside a triggered subsystem, inherit the sample time by setting this parameter to -1. If this block is in a continuous variable-step model, specify the sample time explicitly using a positive scalar.

References

[1] Takahashi, I., and T. Noguchi. "A New Quick-Response and High-Efficiency Control Strategy of an Induction Motor." IEEE Transactions on Industry Applications. Vol. IA-22, Number 5, 1986, pp. 820-827.

See Also

Blocks
ASM Current Controller \| ASM Field-Oriented Control \| ASM Flux Observer | ASM Scalar Control

Introduced in R2017b

ASM Direct Torque Control with Space Vector Modulator

Asynchronous machine direct torque control structure with space vector modulator Library: Simscape / Power Systems / Simscape Components / Control / ASM Control

Description

The ASM Direct Torque Control with Space Modulator implements an asynchronous machine (ASM) direct torque control structure (DTC) with space vector modulator (SVM). Use this block to generate the gate pulses for an inverter controlling an ASM. This diagram shows the architecture of the block.

In the diagram:

- You provide the reference torque, T^{*}, and flux, ψ^{*}.
- The Flux and Torque Estimator estimates the actual torque, T, and flux, ψ from the measured phase currents, $i_{a b c}$, and voltages, $v_{a b c}$.
- Two PI controllers determine the reference d and q voltages, v_{d} and v_{q}, from the flux and torque errors, respectively.
- The SVM generates the gates pulses, $G_{i j}$, required to control an inverter driving the asynchronous machine. Subscript i corresponds to the phase (a, b, or c). Subscript j corresponds to the high, H, or low, L, signal.

Flux and Torque Estimator

To estimate the torque and flux, the block discretizes the machine voltage equations in the stationary $\alpha \beta$ reference frame using the backward Euler method. The discrete-time equations for stator fluxes in the $\alpha \beta$ frame are:

$$
\begin{aligned}
& \psi_{\alpha}=\left(v_{\alpha}-i_{\alpha} R_{s}\right) \frac{T_{s} z}{z-1} \\
& \psi_{\beta}=\left(v_{\beta}-i_{\beta} R_{s}\right) \frac{T_{s} z}{z-1}
\end{aligned}
$$

Where:

- v_{α} and v_{β} are the α - and β-axis voltages, respectively.
- i_{α} and i_{β} are the α - and β-axis currents, respectively.
- Ψ_{α} and Ψ_{β} are the α - and β-axis stator fluxes, respectively.
- R_{s} is the stator resistance.

The block calculates the torque and total stator flux as:

$$
\begin{aligned}
& T=\frac{3 p}{2}\left(\psi_{\alpha} i_{\beta}-\psi_{\beta} i_{\alpha}\right) \\
& \psi_{s}=\sqrt{\psi_{\alpha}^{2}+\psi_{\beta}^{2}}
\end{aligned}
$$

Where:

- $\quad p$ is the number of pole pairs.
- Ψ_{s} is the total stator flux.

Space Vector Modulator

The SVM converts the desired voltages into gate pulses, which you use to control an inverter. This figure shows possible switching states of a three-phase inverter.

The hexagon represents the space vector diagram. Each of the six vertices represents a possible switching state ($G_{A H}, G_{B H}, G_{C H}$) of the three-phase inverter. Each low gate takes the opposite state as its corresponding high gate. The inverter diagram illustrates the current state.

The rotating vector in the space vector diagram corresponds to the complex reference voltage vector, which rotates at the desired electrical frequency of the machine. In reality, the switching frequency is much faster than this electrical frequency. As a result, the inverter switches continually between the two states enclosing its current region Ri, and the zero state corresponding to $(0,0,0)$, to generate the desired voltages.

To learn about the implementation of this method, see the PWM Generator (Three-phase, Two-level) block.

Ports

Input

FluxRef - Flux

scalar
Reference stator flux.
Data Types: single | double

TqRef - Torque
 scalar

Reference torque.
Data Types: single | double
vabc - Voltage
vector
Stator phase voltages.
Data Types: single | double

iabc - Current

 vectorStator phase currents.
Data Types: single | double

Vdc - DC-link voltage signal

scalar
DC-link voltage for the converter.
Data Types: single | double

Reset - Controller reset
 scalar

Reset for the PI controller integrators.

Data Types: single | double

Output

G - Gate pulses

vector | 0 or 1
Inverter gate pulses. The block does not consider any dead time.
Data Types: single | double

ModWave - Modulation wave

vector

Modulation wave you deploy to the hardware if you are generating code for a platform with PWM-capable hardware. Otherwise, this data is only for your reference.

Parameters

General

Stator resistance (Ohm) - Resistance

0.25 (default) | positive scalar

Resistance of the machine stator.

Number of pole pairs - Pole number
 1 (default) | positive integer

Number of machine pole pairs.

Inverter dc-link voltage threshold (V) - Voltage
 300 (default) | positive scalar

Voltage threshold to activate the power inverter.

Fundamental sample time (s) - SVM sample time
 5e-6 (default) | positive scalar less than the control sample time

Sample time for the space vector modulator. Fundamental sample time must be less than the control sample time.

Control sample time (s) - PI sample time
 5e-5 (default) | positive scalar greater than the fundamental sample time

Sample time for PI controllers. Control sample time must be greater than the fundamental sample time.

Switching frequency (Hz) - Switching rate 1000 (default) | positive scalar

Specify the rate at which you want the switches in the power converter to switch.

Control Parameters

Flux controller proportional gain - Flux PI proportional gain 150 (default) | positive scalar

Proportional gain for the flux controller.

```
Flux controller integral gain - Flux PI integral gain
3000 (default) | positive scalar
```

Integral gain for the flux controller.
Flux controller anti-windup gain - Flux PI anti-windup gain 1 (default) | positive scalar

Anti-windup gain for the flux controller.

Torque controller proportional gain - Torque PI proportional gain 1 (default) | positive scalar

Proportional gain for the torque controller.

Torque controller integral gain - Torque PI integral gain 50 (default) | positive scalar

Integral gain for the torque controller.
Torque controller anti-windup gain - Torque PI anti-windup gain 1 (default) | positive scalar

Anti-windup gain for the torque controller.

Axis prioritization - Axis prioritization for voltage limiter

 Q-axis (default)|D-axis|D-Q equivalencePrioritize or maintain ratio between d - and q-axes when the block limits voltage.

References

[1] Buja, G. S., and M. P Kazmierkowski. "Direct Torque Control of PWM Inverter-Fed AC Motors-A Survey." IEEE Transactions on Industrial Electronics 51, no. 4, (2004): 744-757.

See Also

PWM Generator (Three-phase, Two-level) | ASM Direct Torque Control

Introduced in R2018a

ASM Field-Oriented Control

Asynchronous machine field-oriented control

Library: Simscape / Power Systems / Simscape Components / Control / ASM Control

Description

The ASM Field-Oriented Controller block implements an asynchronous machine (ASM) field-oriented control (FOC) structure using the per-unit system. To decouple the torque and flux, FOC uses the rotor $d-q$ reference frame. The figure shows the control structure.

In the diagram:

- ω_{r} is the measured angular velocity.
- $\omega_{\text {ref }}$ is the reference angular velocity.
- i_{d} and i_{q} are the d - and q-axis stator currents.
- i_{a}, i_{b}, and i_{c} are the a-, b - and c-phase stator winding currents.
- $i_{m r_{-} e f}$ is the reference magnetizing current.
- $i_{m r}$ is the magnetizing current.
- v_{d} and v_{q} are the d - and q-axis stator voltages.
- v_{a}, v_{b}, and v_{c} are the a-, b - and c-phase stator winding voltages.
- θ_{e} is the rotor electrical angle.
- $G_{A H}, G_{A L}, G_{B H}, G_{B L}, G_{C H}$, and $G_{C L}$ are the a-, b - and c-phase high (H) and low(L) gate pulses.

Assumptions and Limitations

- The machine parameters are known.
- The implementation uses the per-unit system.
- The control structure implementation uses a single sample rate.

Ports

Input

imRef - Current

scalar
Magnetizing reference current in the per-unit system.
Data Types: single| double

wrRef - Velocity

scalar
Rotor reference velocity in per-unit system.
Data Types: single| double

iabc - Current
 vector

Measured phase currents in the per-unit system.
Data Types: single | double
wr - Velocity
scalar
Measured angular velocity in per-unit system.
Data Types: single | double

Vdc - Voltage

scalar
Measured dc-link voltage, in V.
Data Types: single | double

Output

G - Gate pulses

vector | 0 or 1
Inverter gate pulses. The block does not consider any dead time.
Data Types: single | double

Visualization - Visualization signals
 vector

Bus containing signals for visualization.
Data Types: single | double | bus

Parameters

General

Rated voltage, rms line-to-line (V) - Voltage
550 (default)
Nominal voltage.
Rated electrical frequency (Hz) - Frequency
60 (default)
Nominal electrical frequency.
Rotor resistance, referred to the stator side (pu) - Resistance 0.01 (default)

Rotor, stator-side resistance in the per-unit system.

Rotor leakage inductance, referred to the stator side (pu) Inductance

0.06 (default)

Rotor stator-side leakage inductance, in the pu-unit system.

Magnetizing inductance (pu) - Inductance

2.7 (default)

Magnetizing inductance in the per-unit system.

Time constant for dq currents filters (s) - Time constant 1e-4 (default)

Time constant for filtering the d and q currents.
Inverter dc-link voltage threshold (V) - Voltage 500 (default)

Voltage threshold to activate the power inverter.

Fundamental sample time (s) - Time

5e-6 (default) | positive scalar less than the control sample time

Fundamental sample time must be less than the control sample time.

Control sample time (s) - Time

5e-5 (default) | positive scalar greater than the fundamental sample time
Control sample time must be greater than the fundamental sample time.

Outer Loop

Magnetizing current controller proportional gain - Gain 10 (default)

Proportional gain for the magnetizing current controller.

```
Magnetizing current controller integral gain - Gain
1000 (default)
```

Integral gain for the magnetizing current controller.
Magnetizing current controller integral anti-windup gain - Gain 1000 (default)

Integral anti-windup gain for the magnetizing current controller.

Speed controller proportional gain - Gain 10 (default)

Proportional gain for the speed controller.

```
Speed controller integral gain - Gain
1000 (default)
```

Integral gain for the speed controller.

Speed controller integral anti-windup gain - Gain

 1000 (default)Integral anti-windup gain for the speed controller.
Maximum d-axis current [pu] - Current 2 (default)

Maximum current for the d-axis.

Maximum q-axis current [pu] - Current 2 (default)

Maximum current for the q-axis.

Inner Loop

Phase-a axis alignment - dq0 reference frame alignment Q-axis (default)|D-axis

Align the a-phase vector of the $a b c$ reference frame to the d - or q-axis of the rotating reference frame.

D-axis current proportional gain - D-axis proportional gain

 1 (default) | positive numberProportional gain of the PI controller used for direct-axis current control.

D-axis current integral gain - D-axis integral gain

 100 (default) | positive numberIntegrator gain of the PI controller used for direct-axis current control.
D-axis current anti-windup gain - D-axis anti-windup gain 1 (default) | positive number

Anti-windup gain of the PI controller used for direct-axis current control.
Q-axis current proportional gain - \mathbf{Q}-axis proportional gain 1 (default) | positive number

Proportional gain of the PI controller used for quadrature-axis current control.
\mathbf{Q}-axis current integral gain $\mathbf{- Q}$-axis integral gain 100 (default) | positive number

Integrator gain of the PI controller used for quadrature-axis current control.
Q-axis current anti-windup gain - \mathbf{Q}-axis anti-windup gain 1 (default) | positive number

Anti-windup gain of the PI controller used for quadrature-axis current control.

Axis prioritization - Axis prioritization for voltage limiter Q-axis (default)|D-axis|D-Q equivalence

Prioritize or maintain ratio between d - and q-axes when block limits voltage.

PWM

PWM method - Pulse width modulation method
SVM: space vector modulation (default)|SPWM: sinusoidal PWM
Specify the waveform technique.

Sampling mode - Wave-sampling method

Natural (default) |Asymmetric|Symmetric
The sampling mode determines whether the block samples the modulation waveform when the waves intersect or when the carrier wave is at one or both of its boundary conditions.

Switching frequency (Hz) - Switching rate
1000 (default) | positive integer
Specify the rate at which you want the switches in the power converter to switch.

See Also

Blocks

ASM Current Controller | ASM Direct Torque Control \| ASM Flux Observer | ASM Scalar Control

Introduced in R2017b

ASM Flux Observer

Asynchronous machine flux observer

Library:
 Simscape / Power Systems / Simscape Components / Control / Observers

Description

The ASM Flux Observer block obtains the synchronous speed, ω_{e}, and electrical angle, θ_{e}, that are required for performing rotor field-oriented control (FOC). The figure shows the equivalent circuit for the observer.

Equations

To determine the synchronous speed and electrical angle, the ASM Flux Observer block uses these relationships:

$$
\begin{aligned}
& \lambda_{d r}^{\prime} e=L_{r}^{\prime} i_{d r}^{e}+L_{M} i_{d s}^{e} \triangleq L_{M} i_{m r} \\
& 0=R_{r}^{\prime} i_{d r}^{e}-\left(\omega_{e}-\omega_{r}\right) \lambda_{q r}^{\prime e}+\frac{d \lambda_{d r}^{\prime}}{d t}
\end{aligned}
$$

and

$$
\dot{i}_{q r}^{e}=-\frac{L_{M}}{L_{r}^{\prime}} i_{q s}^{e}
$$

in these combined forms:

$$
\begin{aligned}
& i_{d r}^{e}=\frac{L_{M}}{L_{r}^{\prime}}\left(i_{m r}-i_{d s}^{e}\right) \\
& \frac{d i_{m r}}{d t}=\frac{R_{r}^{\prime}}{\dot{L_{r}^{\prime}}}\left(i_{d s}^{e}-i_{m r}\right)
\end{aligned}
$$

and

$$
\omega_{e}=\omega_{r}+\frac{R_{r}^{\prime}}{L_{r}^{\prime}} \frac{i_{q s}^{e}}{i_{m r}}
$$

where:

- $\lambda_{d r}^{\prime}{ }^{\prime}$ is the d-axis rotor flux.
- $i_{m r}$ is the magnetizing current.
- $i_{d s}^{e}$ and ${ }^{i_{q s}^{e}}$ are the d-axis and q-axis stator currents.
- $i_{d r}^{e}$ and $i_{q r}^{e}$ are the d-axis and q-axis rotor currents.
- ω_{e} is the synchronous speed.
- ω_{r} is the mechanical rotational speed.
- R_{r}^{\prime} is the rotor resistance, referred to the stator side.
- L_{r}^{\prime} is the rotor leakage inductance, referred to the stator side.
- L_{M} the magnetizing inductance.

Ports

Input

iabc - Current

vector
Measured stator currents in the per-unit system.
Data Types: single | double

wr - Speed

scalar
Measured rotational speed.
Data Types: single | double

Output

idqseF - Current
vector
Filtered d-axis and q-axis stator currents in the synchronous reference frame.
Data Types: single | double

imr - Current

scalar
Magnetizing rotor current.
Data Types: single | double

theta - Electrical angle
 scalar

Rotor electrical angle.

Data Types: single | double

we - Synchronous speed scalar

Rotor synchronous speed.
Data Types: single | double

Parameters

Rated electrical frequency (Hz) - Frequency 60 (default) | positive

Machine rated electrical frequency.

Rotor resistance, referred to the stator side (pu) - Resistance 0.01 (default) | positive

Rotor resistance, referred to the stator side, in the per-unit system.

Rotor leakage inductance, referred to the stator side (pu) Inductance

```
0.06 (default) | positive
```

Rotor leakage inductance, referred to the stator side, in the per-unit system.

Magnetizing inductance (pu) - Inductance

2.7 (default) | positive

Magnetizing inductance in the per-unit system.

Time constant for dq currents filters (s) - Time constant 1e-4 (default) | 0 or positive

Time constant used to low-pass filter the $d-q$ currents.

Sample time (-1 for inherited) - Sampling interval
 - 1 (default) | default value or a positive number

Time interval between samples. If the block is inside a triggered subsystem, inherit the sample time by setting this parameter to -1. If this block is in a continuous variable-step
model, specify the sample time explicitly. For more information, see "What Is Sample Time?" (Simulink) and "Specify Sample Time" (Simulink).

References

[1] Vas, P. Electrical Machines and Drives: A Space-vector Theory Approach. New York: Oxford University Press, 1992.

See Also

Blocks

ASM Current Controller \| ASM Direct Torque Control \| ASM Field-Oriented Control | ASM Scalar Control

Introduced in R2017b

ASM Scalar Control

Asynchronous machine V/f control

Library: Simscape / Power Systems / Simscape Components / Control / ASM Control

Description

The ASM Scalar Control block implements an asynchronous machine (ASM) scalar, that is V/f or V/Hz, control structure. The diagram shows the open-loop V/f control structure that the block implements.

Equations

The ASM Scalar Control block computes the magnitude of the stator voltage based on the reference frequency, f_{s}^{*}, as:

$$
V_{s}^{*}=\left(\frac{V_{n}-V_{\min }}{f_{n}-f_{\min }}\right) f_{s}^{*},
$$

where:

- V_{n} is the rated voltage.
- $V_{\min }$ is the minimum voltage.
- f_{n} is the rated electrical frequency.
- $f_{\text {min }}$ is the minimum frequency.

The voltage components in the stationary reference frame are:

$$
V_{\alpha}=V_{s}^{*} \cos \left(2 \pi f_{s}^{*} t\right)
$$

and

$$
V_{\beta}=V_{s}^{*} \sin \left(2 \pi f_{s}^{*} t\right) .
$$

The block obtains $V_{a b c}$ from V_{α} and V_{β} by using an inverse Clarke transformation.

Ports

Input

fRef - Frequency
 scalar

Reference electrical frequency.

Example: Example

Data Types: single | double

Output

Vabc - Voltage

vector
Reference phase voltages.

Example: Example

Data Types: single | double

Parameters

Rated electrical frequency (Hz) - Frequency

60 (default) | positive scalar
Nominal frequency.

Rated voltage (V) - Voltage

550 (default) | positive and greater than the value of the Minimum voltage (V) parameter

Nominal voltage.

```
Minimum voltage (V) - Voltage
```

10 (default) | zero or positive
Lower bound for the voltage.

Sample time (-1 for inherited) - Block sample time - 1 (default) | positive scalar

Time, in s, between consecutive block executions. During execution, the block produces outputs and, if appropriate, updates its internal state. For more information, see "What Is Sample Time?" (Simulink) and "Specify Sample Time" (Simulink).

If this block is inside a triggered subsystem, inherit the sample time by setting this parameter to -1. If this block is in a continuous variable-step model, specify the sample time explicitly using a positive scalar.

See Also

Blocks

ASM Current Controller | ASM Direct Torque Control | ASM Field-Oriented Control | ASM Flux Observer

Introduced in R2017b

Asynchronous Machine Measurement

Per-unit measurement from asynchronous machine

Library

Machines

Description

The Asynchronous Machine Measurement block outputs a per-unit measurement associated with a connected Asynchronous Machine Squirrel Cage or Asynchronous Machine Wound Rotor block. The input of the Asynchronous Machine Measurement block connects to the pu output port of the asynchronous machine block.

You set the Output parameter to a per-unit measurement associated with the asynchronous machine. Based on the value you select, the Asynchronous Machine Measurement block:

- Directly outputs the value of an element in the input signal vector
- Calculates the per-unit measurement by using values of elements in the input signal vector in mathematical expressions

The Asynchronous Machine Measurement block outputs a per-unit measurement from the asynchronous machine according to the output value expressions in the table. For example, when you set Output to Stator d-axis voltage, the block directly outputs the value of the pu_vds element in the input signal vector. However, when you set Output to Slip, the block calculates the slip value by subtracting the value of the pu_velocity element from 1.

Output Parameter Setting	Output Value Expression
Electrical torque	pu_torque
Rotor velocity	pu_velocity
Stator d-axis voltage	pu_vds
Stator q-axis voltage	pu_vqs
Stator zero-sequence voltage	pu_v0s
Stator d-axis current	pu_ids
Stator q-axis current	pu_iqs
Stator zero-sequence current	pu_i0s
Slip	1-pu_velocity
Apparent power	$\sqrt{p u_{-} P t^{2}+p u_{-} Q t^{2}}$
Real power	$\begin{aligned} & \text { pu_Pt = (pu_vds*pu_ids) + (pu_vqs*pu_iqs) } \\ & +\overline{2} \text { (pu_v0s*pu_i0s) } \end{aligned}$
Reactive power	pu_Qt = (pu_vqs*pu_ids) - (pu_vds*pu_iqs)
Terminal voltage	$\sqrt{p u_{-} v d s^{2}+p u_{-} v q s^{2}}$
Terminal current	$\sqrt{p u_{-} i d s^{2}+p u_{-} i q s^{2}}$
Power factor angle (rad)	power_factor_angle = atan2(pu_Qt, pu_Pt)
Power factor	cos(power_factor_angle)

Parameters

Output

Per-unit measurement from asynchronous machine. The default value is Electrical torque.

Ports

The block has the following ports:

pu

Physical signal vector port associated with per-unit measurements from a connected asynchronous machine. The vector elements are:

- pu_torque
- pu_velocity
- pu_vds
- pu_vqs
- pu_v0s
- pu_ids
- pu_iqs
- pu_i0s

0
Per-unit measurement output port.

See Also

Asynchronous Machine Squirrel Cage (fundamental)
Asynchronous Machine Wound Rotor (fundamental)

Introduced in R2013b

Asynchronous Machine Squirrel Cage (fundamental)

Squirrel-cage-rotor asynchronous machine with fundamental parameterization

Library

Simscape / Power Systems / Simscape Components / Machines / Asynchronous Machine (Squirrel Cage)

Description

The Asynchronous Machine Squirrel Cage (fundamental) block models a squirrel-cagerotor asynchronous machine using fundamental parameters. A squirrel-cage-rotor asynchronous machine is a type of induction machine. All stator connections are accessible on the block. Therefore, you can model soft-start regimes using a switch between wye and delta configurations. If you need access to the rotor windings, use the Asynchronous Machine Wound Rotor (fundamental) or the Asynchronous Machine Wound Rotor (fundamental, SI) block instead.

Connect port ~ 1 to a three-phase circuit. To connect the stator in delta configuration, connect a Phase Permute block between ports ~ 1 and ~ 2. To connect the stator in wye configuration, connect port ~ 2 to a Grounded Neutral or a Floating Neutral block.

Electrical Defining Equations

The asynchronous machine equations are expressed with respect to a synchronous reference frame, defined by

$$
\theta_{e}(t)=\int_{0}^{t} 2 \pi f_{\text {rated }} d t
$$

where $f_{\text {rated }}$ is the value of the Rated electrical frequency parameter.
Park's transformation maps stator equations to a reference frame that is stationary with respect to the rated electrical frequency. Park's transformation is defined by

$$
P_{s}=\frac{2}{3}\left[\begin{array}{ccc}
\cos \theta_{e} & \cos \left(\theta_{e}-\frac{2 \pi}{3}\right) & \cos \left(\theta_{e}+\frac{2 \pi}{3}\right) \\
-\sin \theta_{e} & -\sin \left(\theta_{e}-\frac{2 \pi}{3}\right) & -\sin \left(\theta_{e}+\frac{2 \pi}{3}\right) \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right] \text {, }
$$

where θ_{e} is the electrical angle.
Park's transformation is used to define the per-unit asynchronous machine equations. The stator voltage equations are defined by

$$
\begin{aligned}
& v_{d s}=\frac{1}{\omega_{\text {base }}} \frac{d \psi_{d s}}{d t}-\omega \psi_{q s}+R_{s} i_{d s}, \\
& v_{q s}=\frac{1}{\omega_{\text {base }}} \frac{d \psi_{q s}}{d t}+\omega \psi_{d s}+R_{s} i_{q s},
\end{aligned}
$$

and

$$
v_{0 s}=\frac{1}{\omega_{\text {base }}} \frac{d \psi_{0 s}}{d t}+R_{s} i_{0 s}
$$

where

- $v_{d s}, v_{q s}$, and $v_{0 s}$ are the d-axis, q-axis, and zero-sequence stator voltages, defined by

$$
\left[\begin{array}{l}
v_{d s} \\
v_{q s} \\
v_{0 s}
\end{array}\right]=P_{s}\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right] .
$$

v_{a}, v_{b}, and v_{c} are the stator voltages across ports ~ 1 and ~ 2.

- $\omega_{\text {base }}$ is the per-unit base electrical speed.
- $\psi_{d s}, \psi_{q s}$, and $\psi_{0 s}$ are the d-axis, q-axis, and zero-sequence stator flux linkages.
- R_{s} is the stator resistance.
- $i_{d s}, i_{q s}$, and $i_{0 s}$ are the d-axis, q-axis, and zero-sequence stator currents defined by

$$
\left[\begin{array}{l}
i_{d s} \\
i_{q s} \\
i_{0 s}
\end{array}\right]=P_{s}\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right] .
$$

i_{a}, i_{b}, and i_{c} are the stator currents flowing from port ~ 1 to port ~ 2.
The rotor voltage equations are defined by

$$
v_{d r}=\frac{1}{\omega_{\text {base }}} \frac{d \psi_{d r}}{d t}-\left(\omega-\omega_{r}\right) \psi_{q r}+R_{r d} i_{d r}=0
$$

and

$$
v_{q r}=\frac{1}{\omega_{b a s e}} \frac{d \psi_{q r}}{d t}+\left(\omega-\omega_{r}\right) \psi_{d r}+R_{r d} i_{q r}=0,
$$

where:

- $v_{d r}$ and $v_{q r}$ are the d-axis and q-axis rotor voltages.
- $\psi_{d r}$ and $\psi_{q r}$ are the d-axis and q-axis rotor flux linkages.
- ω is the per-unit synchronous speed. For a synchronous reference frame, the value is 1.
- ω_{r} is the per-unit mechanical rotational speed.
- $R_{r d}$ is the rotor resistance referred to the stator.
- $i_{d r}$ and $i_{q r}$ are the d-axis and q-axis rotor currents.

The stator flux linkage equations are defined by

$$
\begin{aligned}
& \psi_{d s}=L_{s s} i_{d s}+L_{m} i_{d r}, \\
& \psi_{q s}=L_{s s} i_{q s}+L_{m} i_{q r},
\end{aligned}
$$

and

$$
\psi_{0 s}=L_{s s} i_{0 s},
$$

where $L_{s s}$ is the stator self-inductance and L_{m} is the magnetizing inductance.
The rotor flux linkage equations are defined by

$$
\psi_{d r}=L_{r r d} i_{d r}+L_{m} i_{d s}
$$

and

$$
\psi_{q r}=L_{r r d} i_{q r}+L_{m} i_{q s},
$$

where $L_{r r d}$ is the rotor self-inductance referred to the stator.
The rotor torque is defined by

$$
T=\psi_{d s} i_{q s}-\psi_{q s} i_{d s}
$$

The stator self-inductance $L_{s s}$, stator leakage inductance $L_{l s}$, and magnetizing inductance L_{m} are related by

$$
L_{s s}=L_{l s}+L_{m} .
$$

The rotor self-inductance $L_{r r d}$, rotor leakage inductance $L_{l r d}$, and magnetizing inductance L_{m} are related by

$$
L_{r r d}=L_{l r d}+L_{m}
$$

Plotting and Display Options

You can perform plotting and display actions using the Power Systems menu on the block context menu.

Right-click the block and, from the Power Systems menu, select an option:

- Display Base Values displays the machine per-unit base values in the MATLAB® Command Window.
- Plot Torque Speed (SI) plots torque versus speed (both measured in SI units) in a MATLAB figure window using the current machine parameters.
- Plot Torque Speed (pu) plots torque versus speed, both measured in per-unit, in a MATLAB figure window using the current machine parameters.

Variables

Use the Variables settings to specify the priority and initial target values for the block variables before simulation. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape) .

Unlike block parameters, variables do not have conditional visibility. The Variables settings include all the existing block variables. If a variable is not used in the set of equations corresponding to the selected block configuration, the values specified for this variable are ignored.

Ports

The block has the following ports:
R
Mechanical rotational conserving port associated with the machine rotor.
C
Mechanical rotational conserving port associated with the machine case.
~ 1
Expandable three-phase port associated with the stator positive-end connections.
~ 2
Expandable three-phase port associated with the stator negative-end connections.

pu

Physical signal vector port associated with the machine per-unit measurements. The vector elements are:

- pu_torque
- pu_velocity
- pu_vds
- pu_vqs
- pu_v0s
- pu_ids
- pu_iqs
- pu_i0s

Parameters

All default parameter values are based on a machine delta-winding configuration.

- "Main" on page 1-61
- "Impedances" on page 1-62

Main

Rated apparent power

Rated apparent power of the asynchronous machine. The default value is 15 e 3 V *A.

Rated voltage

RMS line-line voltage. The default value is 220 V .

Rated electrical frequency

Nominal electrical frequency corresponding to the rated apparent power. The default value is 60 Hz .

Number of pole pairs

Number of machine pole pairs. The default value is 1 .

Zero sequence

Option to neglect zero-sequence terms. Choices are:

- Include - Include zero-sequence terms. To prioritize model fidelity, use this default setting. Using this option results in an error for simulations that use the Partitioning solver. For more information, see "Increase Simulation Speed Using the Partitioning Solver" (Simscape).
- Exclude - Exclude zero-sequence terms. To prioritize simulation speed for desktop simulation or real-time deployment, select this option.

Impedances

Stator resistance, Rs (pu)

Stator resistance. The default value is 0.0258 .

Stator leakage inductance, Lls (pu)

Stator leakage inductance. The default value is 0.0930 .

Referred rotor resistance, $\mathbf{R r}^{\prime}$ (pu)

Rotor resistance referred to the stator. The default value is 0.0145 .

Referred rotor leakage inductance, Llr' (pu)

Rotor leakage inductance referred to the stator. The default value is 0.0424 .

Magnetizing inductance, Lm (pu)

Magnetizing inductance, that is, the peak value of stator-rotor mutual inductance. The default value is 1.7562 .

Stator zero-sequence inductance, L0 (pu)

Stator zero-sequence inductance. The default value is 0.0930 .

References

[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.
[2] Lyshevski, S. E. Electromechanical Systems, Electric Machines and Applied Mechatronics. Boca Raton, FL: CRC Press, 1999.

See Also

Asynchronous Machine Measurement | Asynchronous Machine Squirrel Cage (fundamental, SI) | Asynchronous Machine Wound Rotor (fundamental, SI) | Asynchronous Machine Wound Rotor (fundamental)
Topics"Expand and Collapse Three-Phase Ports on a Block""Marine Full Electric Propulsion Power System""Three-Phase Asynchronous Direct Online Motor Connected to Hydraulic Pump""Three-Phase Asynchronous Machine Starting""Three-Phase Asynchronous Wind Turbine Generator"
Introduced in R2013b

Asynchronous Machine Squirrel Cage (fundamental, SI)

Squirrel-cage-rotor asynchronous machine with fundamental parameterization in SI units

Library

Simscape / Power Systems / Simscape Components / Machines / Asynchronous Machine (Squirrel Cage)

Description

The Asynchronous Machine Squirrel Cage (fundamental, SI) block models a squirrel-cagerotor asynchronous machine using fundamental parameters expressed in the International System of Units (SI). A squirrel-cage asynchronous machine is a type of induction machine. All stator connections are accessible on the block. Therefore, you can model soft-start regimes using a switch between wye and delta configurations. If you need access to the rotor windings, use the Asynchronous Machine Wound Rotor (fundamental, SI) block or the Asynchronous Machine Wound Rotor (fundamental) block instead.

Connect port ~ 1 to a three-phase circuit. To connect the stator in delta configuration, connect a Phase Permute block between ports ~ 1 and ~ 2. To connect the stator in wye configuration, connect port ~ 2 to a Grounded Neutral or a Floating Neutral block.

Electrical Defining Equations

The Asynchronous Machine Squirrel Cage (fundamental, SI) converts the SI values that you enter in the dialog box to per-unit values for simulation. For information on the
relationship between SI and per-unit machine parameters, see "Per-Unit Conversion for Machine Parameters". For information on per-unit parameterization, see "Per-Unit System of Units".

The asynchronous machine equations are expressed with respect to a synchronous reference frame, defined by

$$
\theta_{e}(t)=\int_{0}^{t} 2 \pi f_{\text {rated }} d t,
$$

where $f_{\text {rated }}$ is the value of the Rated electrical frequency parameter.
Park's transformation maps stator equations to a reference frame that is stationary with respect to the rated electrical frequency. Park's transformation is defined by

$$
P_{s}=\frac{2}{3}\left[\begin{array}{ccc}
\cos \theta_{e} & \cos \left(\theta_{e}-\frac{2 \pi}{3}\right) & \cos \left(\theta_{e}+\frac{2 \pi}{3}\right) \\
-\sin \theta_{e} & -\sin \left(\theta_{e}-\frac{2 \pi}{3}\right) & -\sin \left(\theta_{e}+\frac{2 \pi}{3}\right) \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right],
$$

where θ_{e} is the electrical angle.
Park's transformation is used to define the per-unit asynchronous machine equations. The stator voltage equations are defined by

$$
\begin{aligned}
& v_{d s}=\frac{1}{\omega_{b a s e}} \frac{d \psi_{d s}}{d t}-\omega \psi_{q s}+R_{s} i_{d s}, \\
& v_{q s}=\frac{1}{\omega_{b a s e}} \frac{d \psi_{q s}}{d t}+\omega \psi_{d s}+R_{s} i_{q s},
\end{aligned}
$$

and

$$
v_{0 s}=\frac{1}{\omega_{b a s e}} \frac{d \psi_{0 s}}{d t}+R_{s} i_{0 s}
$$

where:

- $v_{d s}, v_{q s}$, and $v_{0 s}$ are the d-axis, q-axis, and zero-sequence stator voltages, defined by

$$
\left[\begin{array}{l}
v_{d s} \\
v_{q s} \\
v_{0 s}
\end{array}\right]=P_{s}\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right] .
$$

v_{a}, v_{b}, and v_{c} are the stator voltages across ports ~ 1 and ~ 2.

- $\omega_{\text {base }}$ is the per-unit base electrical speed.
- $\psi_{d s}, \psi_{q s}$, and $\psi_{o s}$ are the d-axis, q-axis, and zero-sequence stator flux linkages.
- R_{s} is the stator resistance.
- $i_{d s}, i_{q s}$, and $i_{0 s}$ are the d-axis, q-axis, and zero-sequence stator currents defined by

$$
\left[\begin{array}{l}
i_{d s} \\
i_{q s} \\
i_{0 s}
\end{array}\right]=P_{s}\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right] .
$$

i_{a}, i_{b}, and i_{c} are the stator currents flowing from port ~ 1 to port ~ 2.
The rotor voltage equations are defined by

$$
v_{d r}=\frac{1}{\omega_{\text {base }}} \frac{d \psi_{d r}}{d t}-\left(\omega-\omega_{r}\right) \psi_{q r}+R_{r d} i_{d r}=0
$$

and

$$
v_{q r}=\frac{1}{\omega_{\text {base }}} \frac{d \psi_{q r}}{d t}+\left(\omega-\omega_{r}\right) \psi_{d r}+R_{r d} i_{q r}=0,
$$

where:

- $v_{d r}$ and $v_{q r}$ are the d-axis and q-axis rotor voltages.
- $\psi_{d r}$ and $\psi_{q r}$ are the d-axis and q-axis rotor flux linkages.
- ω is the per-unit synchronous speed. For a synchronous reference frame, the value is 1.
- ω_{r} is the per-unit mechanical rotational speed.
- $R_{r d}$ is the rotor resistance referred to the stator.
- $i_{d r}$ and $i_{q r}$ are the d-axis and q-axis rotor currents.

The stator flux linkage equations are defined by

$$
\begin{aligned}
& \psi_{d s}=L_{s s} i_{d s}+L_{m} i_{d r}, \\
& \psi_{q s}=L_{s s} i_{q s}+L_{m} i_{q r},
\end{aligned}
$$

and

$$
\psi_{0 s}=L_{s s} i_{0 s},
$$

where $L_{s s}$ is the stator self-inductance and L_{m} is the magnetizing inductance.
The rotor flux linkage equations are defined by

$$
\psi_{d r}=L_{r r d} i_{d r}+L_{m} i_{d s}
$$

and

$$
\psi_{q r}=L_{r r d} i_{q r}+L_{m} i_{q s},
$$

where $L_{r r d}$ is the rotor self-inductance referred to the stator.
The rotor torque is defined by

$$
T=\psi_{d s} i_{q s}-\psi_{q s} i_{d s} .
$$

The stator self-inductance $L_{s s}$, stator leakage inductance $L_{l s}$, and magnetizing inductance L_{m} are related by

$$
L_{s s}=L_{l s}+L_{m} .
$$

The rotor self-inductance $L_{r r d}$, rotor leakage inductance $L_{l r d}$, and magnetizing inductance L_{m} are related by

$$
L_{r r d}=L_{l r d}+L_{m} .
$$

Plotting and Display Options

You can perform plotting and display actions using the Power Systems menu on the block context menu.

Right-click the block and, from the Power Systems menu, select an option:

- Display Base Values displays the machine per-unit base values in the MATLAB Command Window.
- Plot Torque Speed (SI) plots torque versus speed (both measured in SI units) in a MATLAB figure window using the current machine parameters.
- Plot Torque Speed (pu) plots torque versus speed, both measured in per-unit, in a MATLAB figure window using the current machine parameters.

Variables

Use the Variables settings to specify the priority and initial target values for the block variables before simulation. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape) .

Unlike block parameters, variables do not have conditional visibility. The Variables settings include all the existing block variables. If a variable is not used in the set of equations corresponding to the selected block configuration, the values specified for this variable are ignored.

Ports

The block has the following ports:

R
Mechanical rotational conserving port associated with the machine rotor.
C
Mechanical rotational conserving port associated with the machine case.
~1
Expandable three-phase port associated with the stator positive-end connections.
~ 2
Expandable three-phase port associated with the stator negative-end connections.
pu
Physical signal vector port associated with the machine per-unit measurements. The vector elements are:

- pu_torque
- pu_velocity
- pu_vds
- pu_vqs
- pu_v0s
- pu_ids
- pu_iqs
- pu_i0s

Parameters

All default parameter values are based on a machine delta-winding configuration.

- "Main" on page 1-69
- "Impedances" on page 1-70

Main

Rated apparent power

Rated apparent power of the asynchronous machine. The default value is 15 e 3 V *A.

Rated voltage

RMS line-line voltage. The default value is 220 V .

Rated electrical frequency

Nominal electrical frequency corresponding to the rated apparent power. The default value is 60 Hz .

Number of pole pairs

Number of machine pole pairs. The default value is 1.

Zero sequence

Option to neglect zero-sequence terms. Choices are:

- Include - Include zero-sequence terms. To prioritize model fidelity, use this default setting. Using this option results in an error for simulations that use the Partitioning solver. For more information, see "Increase Simulation Speed Using the Partitioning Solver" (Simscape).
- Exclude - Exclude zero-sequence terms. To prioritize simulation speed for desktop simulation or real-time deployment, select this option.

Impedances

Stator resistance, Rs

Stator resistance. The default value is 0.250 hm .

Stator leakage reactance, Xls

Stator leakage reactance. The default value is 0.9 hmm.

Referred rotor resistance, $\mathbf{R r}^{\prime}$

Rotor resistance referred to the stator. The default value is 0.140 hm .

Referred rotor leakage reactance, Xlr'

Rotor leakage reactance referred to the stator. The default value is 0.410 hm .

Magnetizing reactance, Xm

Magnetizing reactance The default value is 170 hm .

Stator zero-sequence reactance, $\mathbf{X 0}$

Stator zero-sequence reactance. The default value is 0.90 hm .

References

[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.
[2] Lyshevski, S. E. Electromechanical Systems, Electric Machines and Applied Mechatronics. Boca Raton, FL: CRC Press, 1999.

See Also

Asynchronous Machine Measurement | Asynchronous Machine Squirrel Cage (fundamental) | Asynchronous Machine Wound Rotor (fundamental) | Asynchronous Machine Wound Rotor (fundamental, SI)

Topics

"Expand and Collapse Three-Phase Ports on a Block"
Three-Phase Asynchronous Machine Starting

Introduced in R2015a

Asynchronous Machine Wound Rotor (fundamental)

Wound-rotor asynchronous machine with fundamental parameterization

Library

Simscape / Power Systems / Simscape Components / Machines / Asynchronous Machine (Wound Rotor)

Description

The Asynchronous Machine Wound Rotor (fundamental) block models a wound-rotor asynchronous machine using fundamental parameters. A wound-rotor asynchronous machine is a type of induction machine. All stator and rotor connections are accessible on the block. Therefore, you can model soft-start regimes using a switch between wye and delta configurations or by increasing rotor resistance. If you do not need access to the rotor windings, use the Asynchronous Machine Squirrel Cage (fundamental) block instead.

Connect port ~ 1 to a three-phase circuit. To connect the stator in delta configuration, connect a Phase Permute block between ports ~ 1 and ~ 2. To connect the stator in wye configuration, connect port ~ 2 to a Grounded Neutral or a Floating Neutral block. If you do not need to vary rotor resistance, connect rotor port $\sim 1 r$ to a Floating Neutral block and rotor port $\sim 2 \mathrm{r}$ to a Grounded Neutral block.

The rotor circuit is referred to the stator. Therefore, when you use the block in a circuit, refer any additional circuit parameters to the stator.

Electrical Defining Equations

The asynchronous machine equations are expressed with respect to a synchronous reference frame, defined by

$$
\theta_{e}(t)=\int_{0}^{t} 2 \pi f_{\text {rated }} d t
$$

where $f_{\text {rated }}$ is the value of the Rated electrical frequency parameter.
Park's transformation maps stator equations to a reference frame that is stationary with respect to the rated electrical frequency. Park's transformation is defined by

$$
P_{s}=\frac{2}{3}\left[\begin{array}{ccc}
\cos \theta_{e} & \cos \left(\theta_{e}-\frac{2 \pi}{3}\right) & \cos \left(\theta_{e}+\frac{2 \pi}{3}\right) \\
-\sin \theta_{e} & -\sin \left(\theta_{e}-\frac{2 \pi}{3}\right) & -\sin \left(\theta_{e}+\frac{2 \pi}{3}\right) \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right],
$$

where θ_{e} is the electrical angle.
The rotor equations are mapped to another reference frame, defined by the difference between the electrical angle and the product of rotor angle θ_{r} and number of pole pairs N :

$$
P_{r}=\frac{2}{3}\left[\begin{array}{ccc}
\cos \left(\theta_{e}-N \theta_{r}\right) & \cos \left(\theta_{e}-N \theta_{r}-\frac{2 \pi}{3}\right) & \cos \left(\theta_{e}-N \theta_{r}+\frac{2 \pi}{3}\right) \\
-\sin \left(\theta_{e}-N \theta_{r}\right) & -\sin \left(\theta_{e}-N \theta_{r}-\frac{2 \pi}{3}\right) & -\sin \left(\theta_{e}-N \theta_{r}+\frac{2 \pi}{3}\right) \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right] .
$$

Park's transformation is used to define the per-unit asynchronous machine equations. The stator voltage equations are defined by

$$
v_{d s}=\frac{1}{\omega_{b a s e}} \frac{d \psi_{d s}}{d t}-\omega \psi_{q s}+R_{s} i_{d s}
$$

$$
v_{q s}=\frac{1}{\omega_{\text {base }}} \frac{d \psi_{q s}}{d t}+\omega \psi_{d s}+R_{s} i_{q s}
$$

and

$$
v_{0 s}=\frac{1}{\omega_{b a s e}} \frac{d \psi_{0 s}}{d t}+R_{s} i_{0 s}
$$

where:

- $v_{d s}, v_{q s}$, and $v_{0 s}$ are the d-axis, q-axis, and zero-sequence stator voltages, defined by

$$
\left[\begin{array}{l}
v_{d s} \\
v_{q s} \\
v_{0 s}
\end{array}\right]=P_{s}\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right] .
$$

v_{a}, v_{b}, and v_{c} are the stator voltages across ports ~ 1 and ~ 2.

- $\omega_{\text {base }}$ is the per-unit base electrical speed.
- $\psi_{d s}, \psi_{q s}$, and $\psi_{0 s}$ are the d-axis, q-axis, and zero-sequence stator flux linkages.
- R_{s} is the stator resistance.
- $i_{d s}, i_{q s}$, and $i_{0 s}$ are the d-axis, q-axis, and zero-sequence stator currents, defined by

$$
\left[\begin{array}{l}
i_{d s} \\
i_{q s} \\
i_{0 s}
\end{array}\right]=P_{s}\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right] .
$$

i_{a}, i_{b}, and i_{c} are the stator currents flowing from port ~ 1 to port ~ 2.
The rotor voltage equations are defined by

$$
\begin{aligned}
& v_{d r}=\frac{1}{\omega_{b a s e}} \frac{d \psi_{d r}}{d t}-\left(\omega-\omega_{r}\right) \psi_{q r}+R_{r d} i_{d r} \\
& v_{q r}=\frac{1}{\omega_{b a s e}} \frac{d \psi_{q r}}{d t}+\left(\omega-\omega_{r}\right) \psi_{d r}+R_{r d} i_{q r}
\end{aligned}
$$

and

$$
v_{0 r}=\frac{1}{\omega_{\text {base }}} \frac{d \psi_{0 r}}{d t}+R_{r d} i_{0 s},
$$

where:

- $v_{d r}, v_{q r}$, and $v_{0 r}$ are the d-axis, q-axis, and zero-sequence rotor voltages, defined by

$$
\left[\begin{array}{l}
v_{d r} \\
v_{q r} \\
v_{0 r}
\end{array}\right]=P_{r}\left[\begin{array}{l}
v_{a r} \\
v_{b r} \\
v_{c r}
\end{array}\right] .
$$

$v_{a r}, v_{b r}$, and $v_{c r}$ are the rotor voltages across ports $\sim 1 \mathrm{r}$ and $\sim 2 \mathrm{r}$.

- $\psi_{d r}, \psi_{q r}$, and $\psi_{0 r}$ are the d-axis, q-axis, and zero-sequence rotor flux linkages.
- ω is the per-unit synchronous speed. For a synchronous reference frame, the value is 1.
- ω_{r} is the per-unit mechanical rotational speed.
- $R_{r d}$ is the rotor resistance referred to the stator.
- $i_{d r}, i_{q r}$, and $i_{0 r}$ are the d-axis, q-axis, and zero-sequence rotor currents, defined by

$$
\left[\begin{array}{l}
i_{d r} \\
i_{q r} \\
i_{0 r}
\end{array}\right]=P_{r}\left[\begin{array}{l}
i_{a r} \\
i_{b r} \\
i_{c r}
\end{array}\right] .
$$

$i_{a r}, i_{b r}$, and $i_{c r}$ are the rotor currents flowing from port $\sim 1 \mathrm{r}$ to port $\sim 2 \mathrm{r}$.
The stator flux linkage equations are defined by

$$
\begin{aligned}
& \psi_{d s}=L_{s s} i_{d s}+L_{m} i_{d r}, \\
& \psi_{q s}=L_{s s} i_{q s}+L_{m} i_{q r}
\end{aligned}
$$

and

$$
\psi_{0 s}=L_{s s} i_{0 s},
$$

where $L_{s s}$ is the stator self-inductance and L_{m} is the magnetizing inductance.
The rotor flux linkage equations are defined by

$$
\begin{aligned}
& \psi_{d r}=L_{r r d} i_{d r}+L_{m} i_{d s} \\
& \psi_{q r}=L_{r r d} i_{q r}+L_{m} i_{q s}
\end{aligned}
$$

and

$$
\psi_{0 r}=L_{r r d} i_{0 r},
$$

where $L_{r r d}$ is the rotor self-inductance referred to the stator.
The rotor torque is defined by

$$
T=\psi_{d s} i_{q s}-\psi_{q s} i_{d s}
$$

The stator self-inductance $L_{s s}$, stator leakage inductance $L_{l s}$, and magnetizing inductance L_{m} are related by

$$
L_{s s}=L_{l s}+L_{m} .
$$

The rotor self-inductance $L_{r r d}$, rotor leakage inductance $L_{l r d}$, and magnetizing inductance L_{m} are related by

$$
L_{r r d}=L_{l r d}+L_{m}
$$

Plotting and Display Options

You can perform plotting and display actions using the Power Systems menu on the block context menu.

Right-click the block and, from the Power Systems menu, select an option:

- Display Base Values displays the machine per-unit base values in the MATLAB Command Window.
- Plot Torque Speed (SI) plots torque versus speed (both measured in SI units) in a MATLAB figure window using the current machine parameters.
- Plot Torque Speed (pu) plots torque versus speed, both measured in per-unit, in a MATLAB figure window using the current machine parameters.

Variables

Use the Variables settings to specify the priority and initial target values for the block variables before simulation. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape) .

Unlike block parameters, variables do not have conditional visibility. The Variables settings include all the existing block variables. If a variable is not used in the set of equations corresponding to the selected block configuration, the values specified for this variable are ignored.

Ports

The block has the following ports:

R

Mechanical rotational conserving port associated with the machine rotor.
C
Mechanical rotational conserving port associated with the machine case.
~ 1
Expandable three-phase port associated with the stator positive-end connections. ~ 2

Expandable three-phase port associated with the stator negative-end connections. ~1r

Expandable three-phase port associated with the rotor positive-end connections. ~2r

Expandable three-phase port associated with the rotor negative-end connections. pu

Physical signal vector port associated with the machine per-unit measurements. The vector elements are:

- pu_torque
- pu_velocity
- pu_vds
- pu_vqs
- pu_v0s
- pu_ids
- pu_iqs
- pu_i0s

Parameters

All default parameter values are based on a machine delta-winding configuration.

- "Main" on page 1-78
- "Impedances" on page 1-79

Main

Rated apparent power

Rated apparent power of the asynchronous machine. The default value is 15 e 3 V *A.

Rated voltage

RMS line-line voltage. The default value is 220 V .

Rated electrical frequency

Nominal electrical frequency corresponding to the rated apparent power. The default value is 60 Hz .

Number of pole pairs

Number of machine pole pairs. The default value is 1.

Zero sequence

Option to neglect zero-sequence terms. Choices are:

- Include - Include zero-sequence terms. To prioritize model fidelity, use this default setting. Using this option results in an error for simulations that use the Partitioning solver. For more information, see "Increase Simulation Speed Using the Partitioning Solver" (Simscape).
- Exclude - Exclude zero-sequence terms. To prioritize simulation speed for desktop simulation or real-time deployment, select this option.

Impedances

Stator resistance, Rs (pu)

Stator resistance. The default value is 0.0258 .

Stator leakage inductance, Lls (pu)

Stator leakage inductance. The default value is 0.0930 .

Referred rotor resistance, $\mathbf{R r}^{\prime}$ (pu)

Rotor resistance referred to the stator. The default value is 0.0145 .

Referred rotor leakage inductance, Llr' (pu)

Rotor leakage inductance referred to the stator. The default value is 0.0424 .

Magnetizing inductance, Lm (pu)

Magnetizing inductance, that is, the peak value of stator-rotor mutual inductance. The default value is 1.7562 .

Stator zero-sequence inductance, L0 (pu)

Stator zero-sequence inductance. The default value is 0.0930 .

References

[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.
[2] Lyshevski, S. E. Electromechanical Systems, Electric Machines and Applied Mechatronics. Boca Raton, FL: CRC Press, 1999.

See Also

Asynchronous Machine Measurement | Asynchronous Machine Squirrel Cage (fundamental) | Asynchronous Machine Squirrel Cage (fundamental, SI) | Asynchronous Machine Wound Rotor (fundamental, SI)

Topics

"Expand and Collapse Three-Phase Ports on a Block"
Three-Phase Asynchronous Machine Starting

Introduced in R2013b

Asynchronous Machine Wound Rotor (fundamental, SI)

Wound-rotor asynchronous machine with fundamental parameterization in SI units

Library

Simscape / Power Systems / Simscape Components / Machines / Asynchronous Machine (Wound Rotor)

Description

The Asynchronous Machine Wound Rotor (fundamental, SI) block models a wound-rotor asynchronous machine using fundamental parameters expressed in the International System of Units (SI). A wound-rotor asynchronous machine is a type of induction machine. All stator and rotor connections are accessible on the block. Therefore, you can model soft-start regimes using a switch between wye and delta configurations or by increasing rotor resistance. If you do not need access to the rotor windings, use the Asynchronous Machine Squirrel Cage (fundamental) or Asynchronous Machine Squirrel Cage (fundamental,SI) block instead.

Connect port ~ 1 to a three-phase circuit. To connect the stator in delta configuration, connect a Phase Permute block between ports ~ 1 and ~ 2. To connect the stator in wye configuration, connect port ~ 2 to a Grounded Neutral or a Floating Neutral block. If you do not need to vary rotor resistance, connect rotor port $\sim 1 r$ to a Floating Neutral block and rotor port $\sim 2 \mathrm{r}$ to a Grounded Neutral block.

The rotor circuit is referred to the stator. Therefore, when you use the block in a circuit, refer any additional circuit parameters to the stator.

Electrical Defining Equations

The Asynchronous Machine Wound Rotor (fundamental, SI) converts the SI values that you enter in the dialog box to per-unit values for simulation. For information on the relationship between SI and per-unit machine parameters, see "Per-Unit Conversion for Machine Parameters". For information on per-unit parameterization, see "Per-Unit System of Units".

The asynchronous machine equations are expressed with respect to a synchronous reference frame, defined by

$$
\theta_{e}(t)=\int_{0}^{t} 2 \pi f_{\text {rated }} d t
$$

where $f_{\text {rated }}$ is the value of the Rated electrical frequency parameter.
Park's transformation maps stator equations to a reference frame that is stationary with respect to the rated electrical frequency. Park's transformation is defined by

$$
P_{s}=\frac{2}{3}\left[\begin{array}{ccc}
\cos \theta_{e} & \cos \left(\theta_{e}-\frac{2 \pi}{3}\right) & \cos \left(\theta_{e}+\frac{2 \pi}{3}\right) \\
-\sin \theta_{e} & -\sin \left(\theta_{e}-\frac{2 \pi}{3}\right) & -\sin \left(\theta_{e}+\frac{2 \pi}{3}\right) \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right] \text {, }
$$

where θ_{e} is the electrical angle.
The rotor equations are mapped to another reference frame, defined by the difference between the electrical angle and the product of rotor angle θ_{r} and number of pole pairs N :

$$
P_{r}=\frac{2}{3}\left[\begin{array}{ccc}
\cos \left(\theta_{e}-N \theta_{r}\right) & \cos \left(\theta_{e}-N \theta_{r}-\frac{2 \pi}{3}\right) & \cos \left(\theta_{e}-N \theta_{r}+\frac{2 \pi}{3}\right) \\
-\sin \left(\theta_{e}-N \theta_{r}\right) & -\sin \left(\theta_{e}-N \theta_{r}-\frac{2 \pi}{3}\right) & -\sin \left(\theta_{e}-N \theta_{r}+\frac{2 \pi}{3}\right) \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right] .
$$

Park's transformation is used to define the per-unit asynchronous machine equations. The stator voltage equations are defined by

$$
\begin{aligned}
& v_{d s}=\frac{1}{\omega_{b a s e}} \frac{d \psi_{d s}}{d t}-\omega \psi_{q s}+R_{s} i_{d s}, \\
& v_{q s}=\frac{1}{\omega_{b a s e}} \frac{d \psi_{q s}}{d t}+\omega \psi_{d s}+R_{s} i_{q s},
\end{aligned}
$$

and

$$
v_{0 s}=\frac{1}{\omega_{\text {base }}} \frac{d \psi_{0 s}}{d t}+R_{s} i_{0 s}
$$

where:

- $v_{d s}, v_{q s}$, and $v_{0 s}$ are the d-axis, q-axis, and zero-sequence stator voltages, defined by

$$
\left[\begin{array}{l}
v_{d s} \\
v_{q s} \\
v_{0 s}
\end{array}\right]=P_{s}\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right] .
$$

v_{a}, v_{b}, and v_{c} are the stator voltages across ports ~ 1 and ~ 2.

- $\omega_{\text {base }}$ is the per-unit base electrical speed.
- $\psi_{d s}, \psi_{q s}$, and $\psi_{0 s}$ are the d-axis, q-axis, and zero-sequence stator flux linkages.
- R_{s} is the stator resistance.
- $i_{d s}, i_{q s}$, and $i_{0 s}$ are the d-axis, q-axis, and zero-sequence stator currents, defined by

$$
\left[\begin{array}{l}
i_{d s} \\
i_{q s} \\
i_{0 s}
\end{array}\right]=P_{s}\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right] .
$$

i_{a}, i_{b}, and i_{c} are the stator currents flowing from port ~ 1 to port ~ 2.
The rotor voltage equations are defined by

$$
\begin{aligned}
& v_{d r}=\frac{1}{\omega_{\text {base }}} \frac{d \psi_{d r}}{d t}-\left(\omega-\omega_{r}\right) \psi_{q r}+R_{r d} i_{d r}, \\
& v_{q r}=\frac{1}{\omega_{\text {base }}} \frac{d \psi_{q r}}{d t}+\left(\omega-\omega_{r}\right) \psi_{d r}+R_{r d} i_{q r},
\end{aligned}
$$

and

$$
v_{0 r}=\frac{1}{\omega_{b a s e}} \frac{d \psi_{0 r}}{d t}+R_{r d} i_{0 s},
$$

where:

- $v_{d r}, v_{q r}$, and $v_{0 r}$ are the d-axis, q-axis, and zero-sequence rotor voltages, defined by

$$
\left[\begin{array}{l}
v_{d r} \\
v_{q r} \\
v_{0 r}
\end{array}\right]=P_{r}\left[\begin{array}{l}
v_{a r} \\
v_{b r} \\
v_{c r}
\end{array}\right]
$$

$v_{a r}, v_{b r}$, and $v_{c r}$ are the rotor voltages across ports $\sim 1 \mathrm{r}$ and $\sim 2 \mathrm{r}$.

- $\psi_{d r}, \psi_{q r}$, and $\psi_{0 r}$ are the d-axis, q-axis, and zero-sequence rotor flux linkages.
- ω is the per-unit synchronous speed. For a synchronous reference frame, the value is 1.
- ω_{r} is the per-unit mechanical rotational speed.
- $R_{r d}$ is the rotor resistance referred to the stator.
- $i_{d r}, i_{q r}$, and $i_{0 r}$ are the d-axis, q-axis, and zero-sequence rotor currents, defined by

$$
\left[\begin{array}{l}
i_{d r} \\
i_{q r} \\
i_{0 r}
\end{array}\right]=P_{r}\left[\begin{array}{l}
i_{a r} \\
i_{b r} \\
i_{c r}
\end{array}\right] .
$$

$i_{a r}, i_{b r}$, and $i_{c r}$ are the rotor currents flowing from port $\sim 1 \mathrm{r}$ to port $\sim 2 \mathrm{r}$.
The stator flux linkage equations are defined by

$$
\begin{aligned}
& \psi_{d s}=L_{s s} i_{d s}+L_{m} i_{d r}, \\
& \psi_{q s}=L_{s s} i_{q s}+L_{m} i_{q r},
\end{aligned}
$$

and

$$
\psi_{0 s}=L_{s s} i_{0 s},
$$

where $L_{s s}$ is the stator self-inductance and L_{m} is the magnetizing inductance.
The rotor flux linkage equations are defined by

$$
\begin{aligned}
& \psi_{d r}=L_{r r d} i_{d r}+L_{m} i_{d s} \\
& \psi_{q r}=L_{r r d} i_{q r}+L_{m} i_{q s},
\end{aligned}
$$

and

$$
\psi_{0 r}=L_{r r d} i_{0 r},
$$

where $L_{r r d}$ is the rotor self-inductance referred to the stator.
The rotor torque is defined by

$$
T=\psi_{d s} i_{q s}-\psi_{q s} i_{d s} .
$$

The stator self-inductance $L_{s s}$, stator leakage inductance $L_{l s}$, and magnetizing inductance L_{m} are related by

$$
L_{s s}=L_{l s}+L_{m} .
$$

The rotor self-inductance $L_{r r d}$, rotor leakage inductance $L_{l r d}$, and magnetizing inductance L_{m} are related by

$$
L_{r r d}=L_{l r d}+L_{m}
$$

Plotting and Display Options

You can perform display and plotting actions using the Power Systems menu on the block context menu.

Right-click the block and, from the Power Systems menu, select an option:

- Display Base Values displays the machine per-unit base values in the MATLAB Command Window.
- Plot Torque Speed (SI) plots torque versus speed (both measured in SI units) in a MATLAB figure window using the current machine parameters.
- Plot Torque Speed (pu) plots torque versus speed, both measured in per-unit, in a MATLAB figure window using the current machine parameters.

Variables

Use the Variables settings to specify the priority and initial target values for the block variables before simulation. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape) .

Unlike block parameters, variables do not have conditional visibility. The Variables settings include all the existing block variables. If a variable is not used in the set of equations corresponding to the selected block configuration, the values specified for this variable are ignored.

Ports

The block has the following ports:
R
Mechanical rotational conserving port associated with the machine rotor.
C
Mechanical rotational conserving port associated with the machine case. ~ 1

Expandable three-phase port associated with the stator positive-end connections. ~ 2

Expandable three-phase port associated with the stator negative-end connections.
$\sim 1 r$
Expandable three-phase port associated with the rotor positive-end connections.
~2r
Expandable three-phase port associated with the rotor negative-end connections.
pu
Physical signal vector port associated with the machine per-unit measurements. The vector elements are:

- pu_torque
- pu_velocity
- pu_vds
- pu_vqs
- pu_v0s
- pu_ids
- pu_iqs
- pu_i0s

Parameters

All default parameter values are based on a machine delta-winding configuration.

- "Main" on page 1-87
- "Impedances" on page 1-88

Main

Rated apparent power

Rated apparent power of the asynchronous machine. The default value is 15 e 3 V *A.

Rated voltage

RMS line-line voltage. The default value is 220 V .

Rated electrical frequency

Nominal electrical frequency corresponding to the rated apparent power. The default value is 60 Hz .

Number of pole pairs

Number of machine pole pairs. The default value is 1.

Zero sequence

Option to neglect zero-sequence terms. Choices are:

- Include - Include zero-sequence terms. To prioritize model fidelity, use this default setting. Using this option results in an error for simulations that use the Partitioning solver. For more information, see "Increase Simulation Speed Using the Partitioning Solver" (Simscape).
- Exclude - Exclude zero-sequence terms. To prioritize simulation speed for desktop simulation or real-time deployment, select this option.

Impedances

Stator resistance, Rs

Stator resistance. The default value is 0.250 hm .

Stator leakage reactance, Xls

Stator leakage reactance. The default value is 0.9 hmm.

Referred rotor resistance, $\mathbf{R r}^{\prime}$

Rotor resistance referred to the stator. The default value is 0.140 hm .

Referred rotor leakage reactance, Xlr'

Rotor leakage reactance referred to the stator. The default value is 0.410 hm .

Magnetizing reactance, Xm

Magnetizing reactance The default value is 170 hm .

Stator zero-sequence reactance, $\mathbf{X 0}$

Stator zero-sequence reactance. The default value is 0.90 hm .

References

[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.
[2] Lyshevski, S. E. Electromechanical Systems, Electric Machines and Applied Mechatronics. Boca Raton, FL: CRC Press, 1999.

See Also

Asynchronous Machine Measurement | Asynchronous Machine Squirrel Cage (fundamental) | Asynchronous Machine Squirrel Cage (fundamental, SI) | Asynchronous Machine Wound Rotor (fundamental)

Topics

"Expand and Collapse Three-Phase Ports on a Block"
Three-Phase Asynchronous Machine Starting

Introduced in R2015a

Average-Value Inverter

Convert DC voltage to three-phase AC voltage with fixed power loss

Library

Semiconductors

Description

The Average-Value Inverter block models an average-value, full-wave inverter. It converts DC voltage to three-phase AC voltages and converts three-phase AC power demand to DC power demand. The corresponding DC power demand is equal to the sum of the fixed power loss and the AC power demand.

You can use the Average-Value Inverter block only as a full-wave inverter. It behaves as a DC-voltage-controlled AC voltage source. The ratio you specify determines the ratio between the DC voltage and the AC voltage.

The figure shows the equivalent circuit for the inverter as a full-wave inverter. The Average-Value Inverter block does not yield the harmonics that are typically associated with the detailed representation, however, because it performs an average-value power conversion.

Electrical Defining Equations

The voltages are defined by

$$
\begin{aligned}
& v_{D C}=v_{p}-v_{n}, \\
& v_{r e f}=\frac{v_{p}+v_{n}}{2}, \\
& v_{R M S}=v_{\text {ratio }} v_{D C}, \\
& V_{0}=\frac{\sqrt{2}}{\sqrt{3}} V_{R M S}, \\
& v_{a}=V_{0} \sin (2 \pi f t+\varphi)+v_{r e f}, \\
& v_{b}=V_{0} \sin \left(2 \pi f t+\varphi-120^{\circ}\right)+v_{r e f},
\end{aligned}
$$

and

$$
v_{c}=V_{0} \sin \left(2 \pi f t+\varphi+120^{\circ}\right)+v_{r e f},
$$

where:

- v_{p} and v_{n} are the voltages at the positive and negative terminals of the inverter.
- $v_{D C}$ is the voltage difference between the positive and negative terminals of the inverter.
- $v_{\text {ref }}$ is the DC offset.
- $V_{\text {ratio }}$ is the ratio of rated AC voltage to rated DC voltage for the inverter. See the Ratio of rated AC voltage to rated DC voltage parameter in "Parameters" on page 1-93 for the $V_{\text {ratio }}$ values for common inverter control modes.
- $V_{R M S}$ is the RMS AC line-line voltage.
- V_{0} is the peak phase voltage.
- f is the frequency.
- t is the time.
- φ is the phase shift.
- v_{a}, v_{b}, v_{c} are the respective AC phase voltages.

The power, resistance, and currents are defined by

$$
\begin{aligned}
& P_{A C}=-v_{a} i_{a}-v_{b} i_{b}-v_{c} i_{c}, \\
& R_{D C}=\frac{v_{D C}^{2}}{P_{A C}+P_{\text {fived }}},
\end{aligned}
$$

and

$$
i=\frac{v_{D C}}{R_{D C}}
$$

where:

- i_{a}, i_{b}, and i_{c} are the respective AC phase currents flowing into the inverter.
- $\quad P_{A C}$ is the power output on the AC side. $P_{A C}$ has a minimum limit of 0 W .
- $P_{\text {fixed }}$ is the fixed power loss that you specify on the block.
- $R_{D C}$ is the resistance on the DC side.
- i is the current flowing from the positive to the negative terminals of the inverter.

The inverter starts to create an AC voltage, that is turns on, when the DC supply voltage is above the value that you specify for DC voltage for turn on parameter. It stops inverting, that is turns off, when the DC supply voltage falls below the value that you specify for DC voltage for turn off parameter. When the inverter turns off, the block sets the output AC current to zero.

Parameters

Rated AC frequency

AC frequency, specified in Hz (where Hz is defined as $1 / s$). For example, kHz and MHz are valid units, but rad/s is not. The default value is 60 Hz .

Phase shift

Phase shift in angular units. The default value is 0 deg.

Ratio of rated AC voltage to rated DC voltage

The table shows ratios for common three-phase two-level inverter control modes. The default value is $\sqrt{6} / \pi$.

For 180° and 120° conduction modes, the listed voltages are the fundamental RMS values of line-line voltages. For other methods, the listed voltages are the maximum fundamental RMS values of line-line voltages.

You can control the output voltage of the inverter according to specific requirements. DPWM includes 30° DPWM, 60° DPWM, and 120° DPWM. For details, see references [3] and [4].

Control Method	$\boldsymbol{V}_{\boldsymbol{R} M \boldsymbol{S}}$ (line-line)	Ratio of $\boldsymbol{V}_{\boldsymbol{R M S}}$ (line- line) to $\boldsymbol{V}_{\boldsymbol{D C}}$
180° conduction mode [1]	$\frac{\sqrt{6}}{\pi} V_{D C}$	0.7797

Control Method	$\boldsymbol{V}_{\boldsymbol{R M S}}$ (line-line)	Ratio of $\boldsymbol{V}_{\boldsymbol{R M S}}$ (line- line) to $\boldsymbol{V}_{\boldsymbol{D C}}$
120° conduction mode [1]	$\frac{3}{\sqrt{2} \pi} V_{D C}$	0.6752
Hysteresis current control [2]	$\left(\frac{\sqrt{3}}{\sqrt{2}}\right)\left(\frac{2 V_{D C}}{\pi}\right)$	0.7797
Sinusoidal PWM (SPMW) [2]	$\left(\frac{\sqrt{3}}{\sqrt{2}}\right)\left(\frac{V_{D C}}{2}\right)$	0.6124
Space vector modulation (SVM) [2]	$\left(\frac{\sqrt{3}}{\sqrt{2}}\right)\left(\frac{V_{D C}}{\sqrt{3}}\right)$	0.7071
Discontinuous PWM (DPWM) [3], [4]	$\left(\frac{\sqrt{3}}{\sqrt{2}}\right)\left(\frac{V_{D C}}{\sqrt{3}}\right)$	0.7071
Convert to the original AC voltage of the average-value rectifier	$\left(\frac{\pi}{\sqrt{2}}\right)\left(\frac{V_{D C}}{3}\right)$	0.7405

Fixed power loss

Minimum power drawn on the DC side. The default value is 1 e 3 W .

DC voltage for turn on

When the DC supply voltage rises above this value, the inverter produces an AC output voltage.

DC voltage for turn off

When the DC supply voltage falls below this value, the inverter turns off and the block sets the output AC currents to zero.

Ports

The block has the following ports:

$+$

Electrical conserving port associated with the positive terminal

Electrical conserving port associated with the negative terminal
~
Expandable three-phase port

References

[1] Rashid, M. H. Pulse-Width-Modulation Inverters. Upper Saddle River, NJ: PrenticeHall, 2004, pp. 237-248.
[2] Krause, P. C., O. Wasynczuk, and S. D. Sudhoff. Analysis of Electric Machinery and Drive Systems. Piscataway, NJ: IEEE Press, 2002.
[3] Chung, D. W., J. S. Kim, and S. K. Kul. "Unified voltage modulation technique for realtime three-phase power conversion." IEEE Transactions on Industry Applications. Vol. 34, no. 2, 1998, pp. 374-380.
[4] Hava, A. M., R. J. Kerkman, and T. A. Lipo. "Simple analytical and graphical methods for carrier-based PWM-VSI drives." IEEE Transactions on Power Electronics. Vol. 14, 1999, no. 1, pp. 49-61.

See Also

Average-Value Rectifier | Converter | Rectifier | Three-Level Converter

Topics

"Expand and Collapse Three-Phase Ports on a Block"

Introduced in R2015a

Average-Value Rectifier

Convert three-phase AC voltage to DC voltage with fixed power loss

Library

Semiconductors

Description

The Average-Value Rectifier block models an average-value, full-wave, six-pulse rectifier. It converts instantaneous three-phase AC voltages to DC voltage and DC power demand to three-phase AC power demand. The corresponding AC power demand is equal to the sum of the fixed power loss and the DC power demand.

You can use the Average-Value Rectifier block only as a six-pulse rectifier. You cannot combine two Average-Value Rectifier blocks to represent a twelve-pulse rectifier.

The figure shows the equivalent circuit for the rectifier as a full-wave, six-pulse rectifier. The Average-Value Rectifier block does not yield the harmonics that are typically associated with the detailed representation, however, because it performs an averagevalue power conversion.

Electrical Defining Equations

The voltages are defined by:

$$
\begin{aligned}
& v_{r e f}=\frac{v_{a}+v_{b}+v_{c}}{3} \\
& V_{R M S}=\sqrt{\frac{\left(v_{a}-v_{b}\right)^{2}+\left(v_{b}-v_{c}\right)^{2}+\left(v_{c}-v_{a}\right)^{2}}{3}} \\
& v_{D C}=3 \frac{\sqrt{2}}{\pi} V_{R M S} \\
& v_{p}=v_{r e f}+\frac{v_{D C}}{2}
\end{aligned}
$$

and

$$
v_{n}=v_{r e f}-\frac{v_{D C}}{2}
$$

where:

- v_{a}, v_{b}, v_{c} are the respective AC phase voltages.
- $v_{r e f}$ is the DC offset on the AC side. In a balanced AC power system with no DC bias, $v_{D C}$ is 0 V .
- $V_{R M S}$ is the RMS AC line-line voltage.
- v_{DC} is the voltage difference between the positive and negative terminals of the rectifier.
- $3 \sqrt{2} / \pi$ is the $v_{D C} / V_{R M S}$ ratio for a full-wave, six-pulse rectifier.
- v_{p}, v_{n} are the voltages at the positive and negative terminals of the rectifier.

The resistance, power, and currents are defined by

$$
\begin{aligned}
& R_{\text {fixed }}=\frac{V_{\text {Rated }}^{2}}{P_{\text {fixed }}}, \\
& P_{D C}=-v_{p} i_{p}-v_{n} i_{n}, \\
& R_{A C}=\frac{V_{R M S}^{2}}{P_{D C}+\frac{V_{R M S}^{2}}{R_{\text {fixed }}^{2}}},
\end{aligned}
$$

and

$$
\left[\begin{array}{lll}
i_{a} & i_{b} & i_{c}
\end{array}\right]=\frac{\left[\begin{array}{lll}
v_{a} & v_{b} & v_{c}
\end{array}\right]-v_{r e f}}{R_{A C}}
$$

where:

- $V_{\text {Rated }}$ is the rated AC voltage that you specify on the block mask.
- $P_{\text {fixed }}$ is the fixed power loss that you specify on the block mask.
- $R_{f i x e d}$ is the fixed per-phase series resistance in an equivalent wye-connected load.
- i_{p}, i_{n} are the currents flowing into the positive and negative terminals of the rectifier.
- $P_{D C}$ is the power output on the DC side. $P_{D C}$ has a minimum limit of 0 W .
- $R_{A C}$ is the per-phase series resistance in an equivalent wye-connected load.
- i_{a}, i_{b}, i_{c} are the respective AC phase currents flowing into the rectifier.

Parameters

Rated AC voltage

Rated voltage of the AC system. The default value is 4160 V .

Fixed power loss

Minimum power drawn on the AC side at rated AC voltage. When the instantaneous AC voltage is equal to the value you specify for the Rated AC voltage, the AC power demand equals the value you specify for the Fixed power loss plus DC power demand. The default value is 1 e 3 W .

Ports

The block has the following ports:
~
Expandable three-phase port
$+$
Electrical conserving port associated with the positive terminal

Electrical conserving port associated with the negative terminal

See Also

Average-Value Inverter | Converter | Rectifier | Three-Level Converter

Topics

"Expand and Collapse Three-Phase Ports on a Block"

Introduced in R2014b

Average-Value Voltage Source Converter

Bidirectional AC/DC average-value voltage source converter
Library: $\begin{aligned} & \text { Simscape / Power Systems / Simscape Components / } \\ & \text { Semiconductors }\end{aligned}$

Description

The Average-Value Voltage Source Converter block converts electrical energy from AC to DC voltage or from DC to AC voltage according to an input three-phase modulation wave. The corresponding input power is equal to the sum of the fixed power loss and the output power.

Ports

Input

ModWave - Modulation wave

vector
Physical signal input port associated with the normalized modulation wave.

Conserving

~ - Voltage

electrical
Expandable electrical conserving port associated with voltage. For more information, see three-phase port.

+ - Positive terminal

electrical

Electrical conserving port associated with the positive terminal.

- - Negative terminal
 electrical

Electrical conserving port associated with the negative terminal.

Parameters

Fixed power loss - Power loss

1 W (default)
Fixed power loss on semiconductor components, in W. The input power is equal to the fixed power loss plus output power.

See Also

Voltage Source

Introduced in R2018a

Battery

Simple battery model
Library: Simscape / Power Systems / Simscape Components / Sources

Description

The Battery block represents a simple battery model. The block has four modeling variants, accessible by right-clicking the block in your block diagram and then selecting the appropriate option from the context menu, under Simscape > Block choices:

- Uninstrumented | No thermal port - Basic model that does not output battery charge level or simulate thermal effects. This modeling variant is the default.
- Uninstrumented | Show thermal port - Model with exposed thermal port. This model does not measure internal charge level of the battery.
- Instrumented | No thermal port - Model with exposed charge output port. This model does not simulate thermal effects.
- Instrumented | Show thermal port - Model that lets you measure internal charge level of the battery and simulate thermal effects. Both the thermal port and the charge output port are exposed.

The instrumented variants have an extra physical signal port that outputs the internal state of charge. Use this functionality to change load behavior as a function of state of charge, without the complexity of building a charge state estimator.

The thermal port variants expose a thermal port, which represents the battery thermal mass. When you select this option, provide additional parameters to define battery behavior at a second temperature. For more information, see "Modeling Thermal Effects" on page 1-105.

The battery equivalent circuit is made up of the fundamental battery model, the selfdischarge resistance $R_{S D}$, the charge dynamics model, and the series resistance R_{0}.

Battery Model

If you select Infinite for the Battery charge capacity parameter, the block models the battery as a series resistor and a constant voltage source. If you select Finite for the Battery charge capacity parameter, the block models the battery as a series resistor and a charge-dependent voltage source. In the finite case, the voltage is a function of charge and has the following relationship:

$$
V=V_{0}\left(\frac{\mathrm{SOC}}{1-\beta(1-\mathrm{SOC})}\right)
$$

where:

- SOC (state-of-charge) is the ratio of current charge to rated battery capacity.
- V_{0} is the voltage when the battery is fully charged at no load, as defined by the Nominal voltage parameter.
- $\quad \beta$ is a constant that is calculated so that the battery voltage is $V 1$ when the charge is AH1. Specify the voltage V1 and ampere-hour rating AH1 using the Voltage V1 < Vnom when charge is AH1 and Charge AH1 when no-load volts are V1 parameters, respectively.

The equation defines an approximate relationship between voltage and remaining charge. This approximation replicates the increasing rate of voltage drop at low charge values, and ensures that the battery voltage becomes zero when the charge level is zero. The advantage of this model is that it requires few parameters, which are readily available on most datasheets.

Modeling Battery Fade

For battery models with finite battery charge capacity, you can model battery performance deterioration depending on the number of discharge cycles. This deterioration is referred to as battery fade. To enable battery fade, set the Battery fade parameter to Enabled. This setting exposes additional parameters in the Fade section.

The block implements battery fade by scaling certain battery parameter values that you specify in the Main section, depending on the number of completed discharge cycles. The block uses multipliers $\lambda_{\mathrm{AH}}, \lambda_{\mathrm{R} 0}$, and $\lambda_{\mathrm{V} 1}$ on the Ampere-hour rating, Internal resistance, and Voltage V1 < Vnom when charge is AH1 parameter values, respectively. These multipliers, in turn, depend on the number of discharge cycles:

$$
\begin{aligned}
& \lambda_{A H}=1-k_{1} N^{0.5} \\
& \lambda_{R 0}=1+k_{2} N^{0.5} \\
& \lambda_{V 1}=1-k_{3} N \\
& N=N_{0}+\frac{1}{A H} \int_{0}^{t} \frac{i(t) \cdot H(i(t))}{\lambda_{A H}(t)} d t
\end{aligned}
$$

where:

- λ_{AH} is the multiplier for battery nominal capacity.
- λ_{Ro} is the multiplier for battery series resistance.
- $\lambda_{\mathrm{V} 1}$ is the multiplier for voltage V1.
- N is the number of discharge cycles completed.
- N_{0} is the number of full discharge cycles completed before the start of the simulation.
- $A H$ is the rated battery capacity in ampere-hours.
- $i(t)$ is the instantaneous battery output current.
- $H(i(t))$ is the Heaviside function of the instantaneous battery output current. This function returns 0 if the argument is negative, and 1 if the argument is positive.

The block calculates the coefficients k_{1}, k_{2}, and k_{3} by substituting the parameter values you provide in the Fade section into these battery equations. For example, the default set of block parameters corresponds to the following coefficient values:

- $k_{1}=1 \mathrm{e}-2$
- $k_{2}=1 \mathrm{e}-3$
- $k_{3}=1 \mathrm{e}-3$

You can also define a starting point for a simulation based on the previous chargedischarge history by using the high-priority variable Discharge cycles. For more information, see "Variables" on page 1-107.

Modeling Thermal Effects

For thermal variants of the block, you provide additional parameters to define battery behavior at a second temperature. The extended equations for the voltage when the thermal port is exposed are:

$$
\begin{aligned}
& V=V_{0 T}\left(\frac{\mathrm{SOC}}{1-\beta(1-\mathrm{SOC})}\right) \\
& V_{0 T}=V_{0}\left(1+\lambda_{V}\left(T-T_{1}\right)\right)
\end{aligned}
$$

where:

- $\quad T$ is the battery temperature.
- T_{1} is the nominal measurement temperature.
- λ_{V} is the parameter temperature dependence coefficient for V_{0}.
- $\quad \beta$ is calculated in the same way as "Battery Model" on page 1-103, using the temperature-modified nominal voltage $V_{0 T}$.

The internal series resistance, self-discharge resistance, and any charge-dynamic resistances are also functions of temperature:

$$
R_{T}=R\left(1+\lambda_{R}\left(T-T_{1}\right)\right)
$$

where λ_{R} is the parameter temperature dependence coefficient.

All the temperature dependence coefficients are determined from the corresponding values you provide at the nominal and second measurement temperatures. If you include charge dynamics in the model, the time constants vary with temperature in the same way.

The battery temperature is determined from a summation of all the ohmic losses included in the model:

$$
M_{t h} \dot{T}=\sum_{i} V_{T, i}{ }^{2} / R_{T, i}
$$

where:

- M_{th} is the battery thermal mass.
- i corresponds to the i th ohmic loss contributor. Depending on how you have configured the block, the losses include:
- Series resistance
- Self-discharge resistance
- First charge dynamics segment
- Second charge dynamics segment
- $V_{T, i}$ is the voltage drop across resistor i.
- $R_{T, i}$ is resistor i.

Modeling Charge Dynamics

You can model battery charge dynamics using the Charge dynamics parameter:

- No dynamics - The equivalent circuit contains no parallel RC sections. There is no delay between terminal voltage and internal charging voltage of the battery.
- Single time-constant dynamics - The equivalent circuit contains one parallel RC section. Specify the time constant using the First time constant parameter.
- Double time-constant dynamics - The equivalent circuit contains two parallel RC sections. Specify the time constants using the First time constant and Second time constant parameters.

This figure shows the equivalent circuit for the block configured with double timeconstant dynamics.

In the diagram:

- $R_{R C 1}$ and $R_{R C 2}$ are the parallel RC resistances. Specify these values with the First polarization resistance and Second polarization resistance parameters, respectively.
- $C_{R C 1}$ and $C_{R C 2}$ are the parallel RC capacitances. The time constant τ for each parallel section relates the R and C values using the relationship $C=\tau / R$. Specify τ for each section using the First time constant and Second time constant parameters, respectively.
- R_{0} is the series resistance. Specify this value with the Internal resistance parameter.

Variables

Use the Variables section of the block interface to set the priority and initial target values for the block variables prior to simulation. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape).

Unlike block parameters, variables do not have conditional visibility. The Variables section lists all the existing block variables. If a variable is not used in the set of equations corresponding to the selected block configuration, the values specified for this variable are ignored.

When you model battery fade, the Discharge cycles variable lets you specify the number of charge-discharge cycles completed prior to the start of simulation. If you disable battery fade modeling, this variable is not used by the block.

Basic Assumptions and Limitations

- The self-discharge resistance is assumed not to depend strongly on the number of discharge cycles.
- For the thermal variant of the battery, you provide fade data only for the reference temperature operation. The block applies the same derived $\lambda_{\mathrm{AH}}, \lambda_{\mathrm{R} 0}$, and $\lambda_{\mathrm{V} 1}$ multipliers to parameter values corresponding to the second temperature.
- When using the thermal block variants, use caution when operating at temperatures outside of the temperature range bounded by the Measurement temperature and Second measurement temperature values. The block uses linear interpolation for the derived equation coefficients, and simulation results can become nonphysical outside of the specified range. The block checks that the internal series resistance, self-discharge resistance, and nominal voltage always remain positive. If there is a violation, the block issues error messages.

Ports

Output

q - Battery charge level, C
physical signal
Physical signal port that outputs the internal charge, in the units of coulomb (C). Use this output port to change load behavior as a function of charge, without the complexity of building a charge state estimator.

Dependencies

Enabled for the instrumented variants of the block: Instrumented | No thermal port and Instrumented | Show thermal port.

Conserving

+ - Positive terminal
electrical
Electrical conserving port associated with the battery positive terminal.

- - Negative terminal
 electrical

Electrical conserving port associated with the battery negative terminal.

H - Battery thermal mass

thermal
Thermal conserving port that represents the battery thermal mass. When you expose this port, provide additional parameters to define battery behavior at a second temperature. For more information, see "Modeling Thermal Effects" on page 1-105.

Dependencies

Enabled for the thermal variants of the block: Uninstrumented | Show thermal port and Instrumented | Show thermal port.

Parameters

Main

Nominal voltage - Output voltage when battery is fully charged

 12 V (default) | positive numberThe no-load voltage across the battery when it is fully charged.

Internal resistance - Battery internal resistance

2Ω (default) | positive number
Internal connection resistance of the battery.

Battery charge capacity - Select battery model Infinite (default) | Finite

Select one of the options for modeling the charge capacity of the battery:

- Infinite - The battery voltage is independent of charge drawn from the battery.
- Finite - The battery voltage decreases as charge decreases.

Ampere-hour rating - Nominal battery capacity when fully charged 50 hr*A (default) | positive number

The maximum (nominal) battery charge in ampere-hours. To specify a target value for the initial battery charge at the start of simulation, use the high-priority Charge variable. For more information, see "Variables" on page 1-107.

Dependencies

Enabled when the Battery charge capacity parameter is set to Finite.
Voltage V1 < Vnom when charge is AH1 - Output voltage at charge level AH1 11.5 V (default) | positive number

The fundamental battery output voltage when the charge level is AH1, as specified by the Charge AH1 when no-load volts are V1 parameter.

Dependencies

Enabled when the Battery charge capacity parameter is set to Finite.

Charge AH1 when no-load volts are V1 - Charge level when the no-load output voltage is V1

25 hr*A (default) | positive number
The battery charge level corresponding to the no-load output voltage specified by the Voltage V1 < Vnom when charge is AH1 parameter.

Dependencies

Enabled when the Battery charge capacity parameter is set to Finite.

Self-discharge - Select whether to model the self-discharge resistance of the battery
 Disabled (default) | Enabled

Select whether to model the self-discharge resistance of the battery. The block models this effect as a resistor across the terminals of the fundamental battery model.

As temperature increases, self-discharge resistance decreases, causing self-discharge to increase. If the decrease in resistance is too fast, thermal runaway of the battery and numerical instability can occur. You can resolve this by doing any of the following:

- Decrease the thermal resistance
- Decrease the gradient of the self-discharge resistance with respect to temperature
- Increase the self-discharge resistance

Dependencies

Enabled when the Battery charge capacity parameter is set to Finite.

Self-discharge resistance - Resistance that represents battery selfdischarge
 2000Ω (default) | positive number

The resistance across the fundamental battery model that represents battery selfdischarge.

Dependencies

Enabled when the Self-discharge parameter is set to Enabled.

Measurement temperature - Temperature at which the block parameters are measured
 298.15 K (default) | positive number

Temperature T_{1}, at which the block parameters in the Main section are measured. For more information, see "Modeling Thermal Effects" on page 1-105.

Dependencies

Enabled for blocks with exposed thermal port.

Dynamics

```
Charge dynamics - Battery charge dynamics model
No dynamics (default)|Single time-constant dynamics|Double time-
constant dynamics
```

Select how to model battery charge dynamics. This parameter determines the number of parallel RC sections in the equivalent circuit:

- No dynamics - The equivalent circuit contains no parallel RC sections. There is no delay between terminal voltage and internal charging voltage of the battery.
- Single time-constant dynamics - The equivalent circuit contains one parallel RC section. Specify the time constant using the First time constant parameter.
- Double time-constant dynamics - The equivalent circuit contains two parallel RC sections. Specify the time constants using the First time constant and Second time constant parameters.

First polarization resistance - First RC resistance

0.005Ω (default)| positive number
The resistance of the first parallel RC section. This parameter primarily affects the ohmic losses of the RC section.

Dependencies

To enable this parameter, set Charge dynamics to Single time-constant dynamics or Double time-constant dynamics.

First time constant - First RC time constant

30 s (default)| positive number
The time constant of the first parallel RC section. This value is equal to $R C$ and affects the dynamics of the RC section.

Dependencies

To enable this parameter, set Charge dynamics to Single time-constant dynamics or Double time-constant dynamics.

Second polarization resistance - Second RC resistance

0.005Ω (default)| positive number

The resistance of the second parallel RC section. This parameter primarily affects the ohmic losses of the RC section.

Dependencies

To enable this parameter, set Charge dynamics to Double time-constant dynamics.

Second time constant - Second RC time constant

 30 s (default) | positive numberThe time constant of the second parallel RC section. This value is equal to $R C$ and affects the dynamics of the RC section.

Dependencies

To enable this parameter, set Charge dynamics to Double time-constant dynamics.

Fade

Battery fade - Select whether to model battery performance deterioration with aging

Disabled (default) | Enabled
Select whether to include battery fade modeling:

- Disabled - The battery performance is not age dependent.
- Enabled - The battery performance changes depending on the number of completed charge-discharge cycles. Selecting this option exposes additional parameters in this section, which define the battery performance after a certain number of discharge cycles. The block uses these parameter values to calculate the scaling coefficients k_{1}, k_{2}, and k_{3}. For more information, see "Modeling Battery Fade" on page 1-104.

Dependencies

Enabled when the Battery charge capacity parameter in the Main section is set to Finite. If Battery charge capacity is Infinite, the Fade section is empty.

Number of discharge cycles, N - Number of cycles that defines a second set of data points
 100 (default) | positive number

The number of charge-discharge cycles after which the other parameters in this section are measured. This second set of data points defines the scaling coefficients k_{1}, k_{2}, and k_{3}, used in modeling battery fade.

Dependencies

Enabled when the Battery fade parameter is set to Enabled.

Ampere-hour rating after N discharge cycles - Maximum battery capacity after \mathbf{N} discharge cycles
 45 hr*A (default) | positive number

The maximum battery charge, in ampere-hours, after the number of discharge cycles specified by the Number of discharge cycles, \mathbf{N} parameter.

Dependencies

Enabled when the Battery fade parameter is set to Enabled.

Internal resistance after N discharge cycles - Battery internal resistance after \mathbf{N} discharge cycles

2.02Ω (default) | positive number
The battery internal resistance after the number of discharge cycles specified by the Number of discharge cycles, \mathbf{N} parameter.

Dependencies

Enabled when the Battery fade parameter is set to Enabled.

Voltage V1 at charge AH1 after N discharge cycles - Output voltage at charge level AH1 after \mathbf{N} discharge cycles

10.35 V (default) | positive number

The fundamental battery model output voltage, at charge level AH1, after the number of discharge cycles specified by the Number of discharge cycles, \mathbf{N} parameter.

Dependencies

Enabled when the Battery fade parameter is set to Enabled.

Temperature Dependence

This section appears only for blocks with exposed thermal port. For more information, see "Modeling Thermal Effects" on page 1-105.

Nominal voltage at second measurement temperature - Output voltage when battery is fully charged
12 V (default) | positive number
The no-load voltage across the battery at the second measurement temperature when it is fully charged.

Internal resistance at second measurement temperature - Battery internal resistance

2.2Ω (default) | positive number

Internal connection resistance of the battery at the second measurement temperature.

Voltage V1 at second measurement temperature - Output voltage at charge level AH1
 11.4 V (default) | positive number

The fundamental battery model output voltage at the second measurement temperature and at charge level AH1, as specified by the Charge AH1 when no-load volts are V1 parameter.

Dependencies

Enabled when the Battery charge capacity parameter in the Main section is set to Finite.

Self-discharge resistance at second measurement temperature Resistance that represents battery self-discharge

2200Ω (default) | positive number
The resistance across the fundamental battery model at the second measurement temperature. This resistance represents the self-discharge.

Dependencies

Enabled when the Self-discharge resistance parameter in the Main section is set to Enabled.

First polarization resistance at second measurement temperature First RC resistance at second measurement temperature 0.005Ω (default) | positive number

The resistance of the first parallel RC section at the second measurement temperature.

Dependencies

To enable this parameter, set Charge dynamics to Single time-constant dynamics or Double time-constant dynamics.

First time constant at second measurement temperature - First RC time constant at second measurement temperature
 30 s (default) | positive number

The time constant of the first parallel RC section at the second measurement temperature.

Dependencies

To enable this parameter, set Charge dynamics to Single time-constant dynamics or Double time-constant dynamics.

Second polarization resistance at second measurement temperature Second RC resistance at second measurement temperature
 0.005Ω (default) | positive number

The resistance of the second parallel RC section at the second measurement temperature.

Dependencies

To enable this parameter, set Charge dynamics to Double time-constant dynamics.

Second time constant at second measurement temperature - Second RC time constant at second measurement temperature

30 s (default) | positive number
The time constant of the second parallel RC section at the second measurement temperature.

Dependencies

To enable this parameter, set Charge dynamics to Double time-constant dynamics.

Second measurement temperature - Temperature at which the block parameters in this section are measured
 273.15 K (default) | positive number

Temperature T_{2}, at which the block parameters in the Temperature Dependence section are measured. For more information, see "Modeling Thermal Effects" on page 1-105.

To specify the initial temperature at the start of simulation, use the high-priority Temperature variable. For more information, see "Variables" on page 1-107.

Thermal Port

This section appears only for blocks with exposed thermal port. For more information, see "Modeling Thermal Effects" on page 1-105.

Thermal mass - Thermal mass associated with the thermal port 30000 J/K (default) | positive number

Thermal mass associated with the thermal port H. It represents the energy required to raise the temperature of the thermal port by one degree.

References

[1] Ramadass, P., B. Haran, R. E. White, and B. N. Popov. "Mathematical modeling of the capacity fade of Li-ion cells." Journal of Power Sources. 123 (2003), pp. 230â €"240.
[2] Ning, G., B. Haran, and B. N. Popov. "Capacity fade study of lithium-ion batteries cycled at high discharge rates." Journal of Power Sources. 117 (2003), pp. 160â €"169.

See Also

Current Source | Voltage Source

Introduced in R2013b

Battery (Table-Based)

Tabulated battery model
Library: Simscape / Simscape Components / Sources

Description

The Battery (Table-Based) block represents a high-fidelity battery model. The block calculates no-load voltage as a function of charge level and temperature using lookup tables and includes several modeling options:

- Self-discharge
- Battery fade
- Charge dynamics

The plot shows a battery whose performance varies with temperature and state of charge changes, as typically found on a datasheet.

Use this block to parameterize batteries with complex no-load voltage behavior from datasheets or experimental results. For a simpler representation of a battery, see the Battery block.

The Battery (Table-Based) block has four modeling variants, accessible by right-clicking the block in your block diagram and then selecting the appropriate option from the context menu, under Simscape > Block choices:

- Uninstrumented | No thermal port - Basic model that does not output battery charge level and simulates at a fixed temperature. This modeling variant is the default.
- Uninstrumented | Show thermal port - Model with exposed thermal port. This model does not output internal charge level of the battery.
- Instrumented | No thermal port - Model with exposed charge output port. This model uses a fixed temperature throughout the simulation.
- Instrumented | Show thermal port - Model that lets you output internal charge level of the battery. Both the thermal port and the charge output port are exposed.

The instrumented variants have an extra physical signal port that outputs the internal state of charge. Use this functionality to change load behavior as a function of state of charge, without the complexity of building a charge state estimator.

The thermal port variants expose a thermal port, which represents the battery thermal mass.

The battery equivalent circuit is made up of the fundamental battery model, the selfdischarge resistance $R_{S D}$, the charge dynamics model, and the series resistance R_{0}.

Battery Model

The block calculates the no-load voltage, or the voltage across the fundamental battery model by interpolation:

$$
v_{0}=v_{0}(\mathrm{SOC}, T)
$$

Where:

- v_{0} is the no-load voltage of the battery. Specify the grid of lookup values using the Noload voltage, V0(SOC,T) parameter.
- SOC is the ratio of current charge to rated battery capacity. Specify the SOC breakpoints using the Vector of state-of-charge values, SOC parameter.
- T is the battery temperature. Specify the T breakpoints using the Vector of temperatures, \mathbf{T} parameter.

The block also models the series resistance R_{0} as a function of state of charge and temperature. Specify the grid of lookup values for the series resistance using the Terminal resistance, R0(SOC,T) parameter.

Modeling Self-Discharge

When the battery terminals are open-circuit, it is still possible for internal currents to discharge the battery. This behavior is called self-discharge. To enable this effect, set the Self-discharge parameter to Enabled.

The block models these internal currents with a temperature-dependent resistance $R_{S D}(T)$ across the terminals of the fundamental battery model. You can specify the lookup values for this resistance using the Self-discharge resistance, Rleak(T) parameter.

Modeling Charge Dynamics

Batteries exhibit greater charging/discharging currents immediately after a change in load than they do after an extended period. This time-varying property is a result of battery charge dynamics and is modeled using parallel RC sections in the equivalent circuit.

You can model battery charge dynamics using the Charge dynamics parameter:

- No dynamics - The equivalent circuit contains no parallel RC sections. There is no delay between terminal voltage and internal charging voltage of the battery.
- Single time-constant dynamics - The equivalent circuit contains one parallel RC section. Specify the time constant using the First time constant, tau1(SOC,T) parameter.
- Double time-constant dynamics - The equivalent circuit contains two parallel RC sections. Specify the time constants using the First time constant, tau1(SOC,T) and Second time constant, tau2(SOC,T) parameters.

This diagram shows the equivalent circuit for the block configured with double timeconstant dynamics.

In the diagram:

- $\quad R_{1}$ and R_{2} are the parallel RC resistances. Specify these values with the First polarization resistance, R1(SOC,T) and Second polarization resistance, R2(SOC,T) parameters, respectively.
- C_{1} and C_{2} are the parallel RC capacitances. The time constant τ for each parallel section relates the R and C values using the relationship $C=\tau / R$. Specify τ for each section using the First time constant, tau1(SOC,T) and Second time constant, tau2(SOC,T) parameters, respectively.
- R_{0} is the series resistance. Specify this value with the Internal resistance, R0(SOC,T) parameter.

Modeling Battery Fade

Battery fade is the deterioration of battery performance over repeated charge and discharge cycles. The no-load voltage across the fundamental battery model fades proportionally with the number of discharge cycles n :

$$
v_{0, \text { fade }}=v_{0}\left(1+\frac{\delta_{v_{0}}}{100} \frac{n}{N}\right)
$$

Where:

- N is the reference number of discharge cycles over which you specify percent change of various battery parameters. Set this value using the Number of discharge cycles, \mathbf{N} parameter.
- $\delta_{v_{0}}$ is the percent change in no-load voltage after N discharge cycles. Specify $\delta_{v_{0}}$ using the Change in no-load voltage after \mathbf{N} discharge cycles (\%) parameter.

The nominal charge, from which state of charge is calculated, fades with the square root of number of discharge cycles:

$$
q_{\text {nom,fade }}=q_{n o m}\left(1+\frac{\delta_{A H}}{100} \sqrt{\frac{n}{N}}\right)
$$

Where:

- $q_{\text {nom }}$ is the ampere-hour rating of the battery. Specify this value using the Amperehour rating, AH(T) parameter.
- $\delta_{A H}$ is the percent change in ampere-hour rating of the battery after N discharge cycles.

All resistances in the battery model also fade with the square root of the number of discharge cycles:

$$
R_{i, \text { fade }}=R_{i}\left(1+\frac{\delta_{R_{i}}}{100} \sqrt{\frac{n}{N}}\right)
$$

Where:

- R_{i} is the $i^{\text {th }}$ resistance
- $\delta_{R_{i}}$ is the percent change in this resistance over N cycles

Depending on how you have configured the block, the resistances might include:

- The series resistance - Specify the percent change over N cycles using the Change in terminal resistance after \mathbf{N} discharge cycles (\%) parameter.
- The self-discharge resistance - Specify the percent change over N cycles using the Change in self-discharge resistance after \mathbf{N} discharge cycles (\%) parameter.
- The first charge dynamics resistance - Specify the percent change over N cycles using the Change in first polarization resistance after \mathbf{N} discharge cycles (\%): parameter.
- The second charge dynamics resistance - Specify the percent change over N cycles using the Change in second polarization resistance after \mathbf{N} discharge cycles (\%) parameter.

Modeling Thermal Effects

For thermal variants of the block, the battery temperature is determined from a summation of all the ohmic losses included in the model:

$$
M_{t h} \dot{T}=\sum_{i} V_{T, i}^{2} / R_{T, i}
$$

Where:

- M_{th} is the battery thermal mass.
- i corresponds to the $i^{\text {th }}$ ohmic loss contributor. Depending on how you have configured the block, the losses might include:
- The series resistance
- The self-discharge resistance
- The first charge dynamics segment
- The second charge dynamics segment
- $V_{T, i}$ is the voltage drop across resistor i.
- $\quad R_{T, i}$ is resistor i.

Ports

Output

SOC - Battery charge level, C

physical signal

Physical signal port that outputs the internal state of charge. Use this output port to change load behavior as a function of state of charge, without the complexity of building a charge state estimator.

Dependencies

Enabled for the instrumented variants of the block: Instrumented | No thermal port and Instrumented | Show thermal port.

Conserving

+ - Positive terminal
 electrical

Electrical conserving port associated with the battery positive terminal.

- - Negative terminal
electrical
Electrical conserving port associated with the battery negative terminal.

H - Battery thermal mass

thermal
Thermal conserving port that represents the battery thermal mass.

Dependencies

Enabled for the thermal variants of the block: Uninstrumented | Show thermal port and Instrumented | Show thermal port.

Parameters

Main

Vector of state-of-charge values, SOC - SOC breakpoints [0, .25, .75, 1] (default)|vector

Vector of state-of-charge breakpoints defining the points at which you specify lookup data. This vector must be strictly ascending.

Vector of temperatures, $\mathrm{T} \boldsymbol{- T}$ breakpoints [273.15, 298.15, 323.15] K (default) | vector of positive numbers

Vector of temperature breakpoints defining the points at which you specify lookup data. This vector must be positive and strictly ascending.

```
No-load voltage, V0(SOC,T) - VO lookup table
[3.2, 3.1, 3.14; 3.25, 3.27, 3.3; 3.28, 3.31, 3.34; 3.33, 3.5, 3.59]
V (default)| matrix of nonnegative numbers
```

Lookup data for no-load voltages across the fundamental battery model at the specified SOC and temperature breakpoints.

```
Terminal resistance, R0(SOC,T) - RO lookup table
[.03, .015, .002; .04, .017, .008; .039, .012, .006; .027, .013, .
021] Ohm (default) | matrix of nonnegative numbers
```

Lookup data for series resistance of the battery at the specified SOC and temperature breakpoints.

Ampere-hour rating, $\mathbf{A H}(\mathrm{T})$ - AH breakpoints

```
[2.9, 4.1, 4.2] hr*A (default)| vector of nonnegative numbers
```

Lookup data for the ampere-hour rating of the battery at the specified temperature breakpoints. The block calculates the state of charge by dividing the accumulated charge by this value. The block calculates accumulated charge by integrating the battery current.

Self-discharge - Select whether to model the self-discharge resistance of the battery

Disabled (default) | Enabled
Select whether to model the self-discharge resistance of the battery. The block models this effect as a resistor across the terminals of the fundamental battery model.

As temperature increases, self-discharge resistance decreases, causing self-discharge to increase. If the decrease in resistance is too fast, thermal runaway of the battery and numerical instability can occur. You can resolve this instability by making any of these changes:

- Decrease the thermal resistance
- Decrease the gradient of the self-discharge resistance with respect to temperature
- Increase the self-discharge resistance

Self-discharge resistance, Rleak(T) - Resistance that represents battery self-discharge
 [8000, 7000, 6000] Ohm (default) | vector of positive numbers

Lookup data for self-discharge resistance of the battery at the specified temperature breakpoints. This resistance acts across the terminals of the fundamental battery model.

Dependencies

Enabled when the Self-discharge parameter is set to Enabled.

Dynamics

Charge dynamics - Battery charge dynamics model

No dynamics (default)|Single time-constant dynamics|Double timeconstant dynamics

Select how to model battery charge dynamics. This parameter determines the number of parallel RC sections in the equivalent circuit:

- No dynamics - The equivalent circuit contains no parallel RC sections. There is no delay between terminal voltage and internal charging voltage of the battery.
- Single time-constant dynamics - The equivalent circuit contains one parallel RC section. Specify the time constant using the First time constant, tau1(SOC,T) parameter.
- Double time-constant dynamics - The equivalent circuit contains two parallel RC sections. Specify the time constants using the First time constant, tau1(SOC,T) and Second time constant, tau2(SOC,T) parameters.

First polarization resistance, R1(SOC,T) - First RC resistance [.089, .076, .01; .042, .022, .099; .019, .007, .002; .051, .043, 029] Ohm (default) | matrix of positive numbers

Lookup data for the first parallel RC resistance at the specified SOC and temperature breakpoints. This parameter primarily affects the ohmic losses of the RC section.

Dependencies

To enable this parameter, set Charge dynamics to Single time-constant dynamics or Double time-constant dynamics.

First time constant, tau1(SOC, T) - First RC time constant
[44, 148, 235; 93, 110, 1000; 19, 27, 133; .5, 22, 3] s (default)|matrix of positive numbers

Lookup data for the first parallel RC time constant at the specified SOC and temperature breakpoints.

Dependencies

To enable this parameter, set Charge dynamics to Single time-constant dynamics or Double time-constant dynamics.

Second polarization resistance, R2(SOC,T) - Second RC resistance [.014, .382, .407; .028, .006, .007; .014, .007, .006; .333, .956, 912] Ohm (default) | matrix of positive numbers

Lookup data for the second parallel RC resistance at the specified SOC and temperature breakpoints. This parameter primarily affects the ohmic losses of the RC section.

Dependencies

To enable this parameter, set Charge dynamics to Double time-constant dynamics.

Second time constant, tau2(SOC,T) - Second RC time constant

```
[1, 44, 5644; 11, 24, 506; 2, 14, 330; 3310, 13419, 30216] s (default)|
``` matrix of positive numbers

Lookup data for the second parallel RC time constant at the specified SOC and temperature breakpoints.

\section*{Dependencies}

To enable this parameter, set Charge dynamics to Double time-constant dynamics.

\section*{Fade}

\section*{Number of discharge cycles, \(N\) - Reference number of cycles for percent change calculations}

\section*{100 (default) | number from 1 to Inf}

The number of charge-discharge cycles over which the specified percent changes occur.

\section*{Change in no-load voltage after N discharge cycles (\%) - Percent change in no-load voltage after \(\boldsymbol{N}\) cycles \\ 0 (default) | scalar}

Percent change in the no-load voltage after the battery undergoes \(N\) discharge cycles.
Change in terminal resistance after \(N\) discharge cycles (\%) - Percent change in series resistance after \(\boldsymbol{N}\) cycles
0 (default) | scalar
Percent change in the series resistance after the battery undergoes \(N\) discharge cycles.
Change in ampere-hour rating after N discharge cycles (\%) - Percent change in ampere-hour rating after \(\boldsymbol{N}\) cycles
0 (default) | scalar
Percent change in the ampere-hour rating after the battery undergoes \(N\) discharge cycles.
Change in self-discharge resistance after \(N\) discharge cycles (\%) Percent change in self-discharge resistance after \(\boldsymbol{N}\) cycles 0 (default) | scalar

Percent change in the self-discharge resistance after the battery undergoes \(N\) discharge cycles.

\section*{Dependencies}

To enable this parameter, set Self-discharge to Enabled.
Change in first polarization resistance after \(N\) discharge cycles (\%) - Percent change in first RC resistance after \(\boldsymbol{N}\) cycles

0 (default) | scalar
Percent change in the first RC resistance after the battery undergoes \(N\) discharge cycles.

\section*{Dependencies}

To enable this parameter, set Charge dynamics to Single time-constant dynamics or Double time-constant dynamics.

Change in second polarization resistance after \(N\) discharge cycles (\%) - Percent change in first RC resistance after \(N\) cycles
0 (default) | scalar

Percent change in the second RC resistance after the battery undergoes \(N\) discharge cycles.

\section*{Dependencies}

To enable this parameter, set Charge dynamics to Double time-constant dynamics.

\section*{Thermal}

\section*{Simulation temperature - Battery temperature} 298.15 K (default) | positive number

Battery temperature used in lookup tables throughout simulation.

\section*{Dependencies}

This section appears only for blocks without an exposed thermal port. For more information, see "Modeling Thermal Effects" on page 1-105.

\section*{Thermal mass - Thermal mass associated with the thermal port 30000 J/K (default)}

Thermal mass associated with the thermal port H. It represents the energy required to raise the temperature of the thermal port by one degree.

\section*{Dependencies}

Enabled for blocks with an exposed thermal port. For more information, see "Modeling Thermal Effects" on page 1-105.

\section*{See Also}

Battery
Introduced in R2018a

\section*{Bidirectional DC-DC Converter}

Controller-driven bidirectional DC-DC step-up and step-down voltage regulator Library: Simscape / Power Systems / Simscape Components / Semiconductors

\section*{Description}

The Bidirectional DC-DC Converter block represents a converter that steps up or steps down DC voltage from either side of the converter to the other as driven by an attached controller and gate-signal generator. Bidirectional DC-DC converters are useful for switching between energy storage and use, for example, in electric vehicles.

The Bidirectional DC-DC Converter block allows you to model a nonisolated converter with two switching devices or an isolated converter with six switching devices. Options for the type of switching devices are:
- GTO - Gate turn-off thyristor. For information on the I-V characteristic of the device, see GTO.
- Ideal semiconductor switch - For information on the I-V characteristic of the device, see Ideal Semiconductor Switch.
- IGBT - Insulated-gate bipolar transistor. For information on the I-V characteristic of the device, see IGBT.
- MOSFET - N-channel metal-oxide-semiconductor field-effect transistor. For information on the I-V characteristic of the device, see MOSFET.
- Thyristor - For information on the I-V characteristic of the device, see Thyristor.

\section*{Model}

Each of two model variants for the Bidirectional DC-DC Converter block corresponds to a Block choice option. To access the block choices, in the model window, right-click the block, and then use either of these methods:
- From the context menu, select Simscape > Block choices.
- On the Simulink® Editor menu bar, select View > Property Inspector. In the Property Inspector window, click the value of the Block choice.

The model variants are:
- Nonisolated converter - Bidirectional DC-DC converter without an electrical barrier. This model variant contains an inductor, two capacitors, and two switches that are of the same device type. This block choice is the default.

- Isolated converter - Bidirectional DC-DC converter with an electrical barrier. This model variant contains four additional switches that form a full bridge. The full bridge is on the input or high-voltage (HV) side of the converter. The other two switches are on the output or low-voltage (LV) side of the converter. You can select different semiconductor types for the HV and LV switching devices. For example, you can use a GTO for the HV switching devices and an IGBT for the LV switching devices. To provide separation between the input and output voltages, the model uses a highfrequency transformer.

\section*{Protection}

The block contains an integral protection diode for each switching device. The integral diode protects the semiconductor device by providing a conduction path for reverse current. An inductive load can produce a high reverse-voltage spike when the semiconductor device suddenly switches off the voltage supply to the load.

To configure the internal protection diode block, use the Protection Diode parameters. This table shows how to set the Model dynamics parameter based on your goals.
\begin{tabular}{|l|l|l|}
\hline Goals & Value to Select & Integral Protection Diode \\
\hline Prioritize simulation speed. & \begin{tabular}{l}
Protection diode with \\
no dynamics
\end{tabular} & The Diode block \\
\hline \begin{tabular}{l}
Prioritize model fidelity by \\
precisely specifying reverse- \\
mode charge dynamics.
\end{tabular} & \begin{tabular}{l}
Protection diode with \\
charge dynamics
\end{tabular} & \begin{tabular}{l}
The Commutation Diode \\
block
\end{tabular} \\
\hline
\end{tabular}

You can also include a snubber circuit for each switching device. Snubber circuits contain a series-connected resistor and capacitor. They protect switching devices against high voltages that inductive loads produce when the device turns off the voltage supply to the
load. Snubber circuits also prevent excessive rates of current change when a switching device turns on.

To include and configure a snubber circuit for each switching device, use the Snubbers parameters.

\section*{Gate Control}

To connect Simulink gate-control voltage signals to the gate ports of the switching devices:

1 Convert each voltage signal using a Simulink-PS Converter block.
2 Multiplex the converted gate signals into a single vector. For a nonisolated converter model, use a Two-Pulse Gate Multiplexer block. For an isolated converter model, use a Six-Pulse Gate Multiplexer block.
3 Connect the vector signal to the \(\mathbf{G}\) port.

\section*{Assumptions}

A source impedance or a nonzero equivalent-series resistance (ESR) is connected to the left side of the Bidirectional DC-DC Converter block.

\section*{Ports}

\section*{Conserving}

\section*{G - Switching device gate control}
electrical | vector
Electrical conserving port associated with the gate terminals of the switching devices.
Data Types: double

\section*{1+ - Positive DC voltage 1}
electrical | scalar
Electrical conserving port associated with the positive terminal of the first DC voltage.
Data Types: double

\section*{1- - Negative DC voltage 1 \\ electrical | scalar}

Electrical conserving port associated with the negative terminal of the first DC voltage.

\section*{Data Types: double}

\section*{2+ - Positive DC voltage 2}
electrical | scalar
Electrical conserving port associated with the positive terminal of the second DC voltage.
Data Types: double

\section*{2- - Negative DC voltage 2 electrical | scalar}

Electrical conserving port associated with the negative terminal of the second DC voltage. Data Types: double

\section*{Parameters}

\section*{Switching Devices}

These tables show how the visibility of Switching Devices parameters depends on the converter model and switching devices that you select. To learn how to read the table, see "Parameter Dependencies" on page A-2.

Nonisolated Converter Switching Devices Parameter Dependencies
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{4}{|l|}{ Parameters and Options } & IGBT \\
\hline \begin{tabular}{l}
Switching device \\
\begin{tabular}{l}
Semiconducto \\
r Switch
\end{tabular}
\end{tabular} & GTO & MOSFET & Thyristor \\
\hline \begin{tabular}{l}
On-state \\
resistance
\end{tabular} & Forward voltage & Forward voltage & \begin{tabular}{l}
Drain-source on \\
resistance
\end{tabular} & Forward voltage \\
\hline \begin{tabular}{l}
Off-state \\
conductance
\end{tabular} & \begin{tabular}{l}
On-state \\
resistance
\end{tabular} & \begin{tabular}{l}
On-state \\
resistance
\end{tabular} & \begin{tabular}{l}
Off-state \\
conductance
\end{tabular} & \begin{tabular}{l}
On-state \\
resistance
\end{tabular} \\
\hline \begin{tabular}{l}
Threshold \\
voltage
\end{tabular} & \begin{tabular}{l}
Off-state \\
conductance
\end{tabular} & \begin{tabular}{l}
Off-state \\
conductance
\end{tabular} & \begin{tabular}{l}
Threshold \\
voltage
\end{tabular} & \begin{tabular}{l}
Off-state \\
conductance
\end{tabular} \\
\cline { 2 - 2 } & \begin{tabular}{l}
Gate trigger \\
voltage, Vgt
\end{tabular} & \begin{tabular}{l}
Threshold \\
voltage
\end{tabular} & & \begin{tabular}{l}
Gate trigger \\
voltage, Vgt
\end{tabular} \\
\cline { 2 - 2 } & \begin{tabular}{l}
Gate turn-off \\
voltage, Vgt_off
\end{tabular} & & \begin{tabular}{l}
Gate turn-off \\
voltage, Vgt_off
\end{tabular} \\
\cline { 2 - 2 } & Holding current & & Holding current \\
\hline
\end{tabular}

Isolated Converter Switching Devices Parameter Dependencies
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Parameters and Options} \\
\hline \multicolumn{5}{|l|}{Switching device HV} \\
\hline \begin{tabular}{l}
Ideal \\
Semiconducto \\
r Switch
\end{tabular} & GTO & IGBT & MOSFET & Thyristor \\
\hline On-state resistance HV & Forward voltage HV & Forward voltage HV & Drain-source on resistance HV & Forward voltage HV \\
\hline Off-state conductance HV & On-state resistance HV & On-state resistance HV & Off-state conductance HV & On-state resistance HV \\
\hline \multirow[t]{4}{*}{Threshold voltage HV} & Off-state conductance HV & Off-state conductance HV & \multirow[t]{4}{*}{Threshold voltage HV} & Off-state conductance HV \\
\hline & Gate trigger voltage HV, Vgt_hv & \multirow[t]{3}{*}{Threshold voltage HV} & & Gate trigger voltage HV, Vgt_hv \\
\hline & Gate turn-off voltage HV, Vgt_off_hv & & & Gate turn-off voltage HV, Vgt_off_hv \\
\hline & Holding current HV & & & Holding current HV \\
\hline \multicolumn{5}{|l|}{Switching device LV} \\
\hline \begin{tabular}{l}
Ideal \\
Semiconducto \\
r Switch
\end{tabular} & GTO & IGBT & MOSFET & Thyristor \\
\hline On-state resistance LV & Forward voltage LV & Forward voltage LV & Drain-source on resistance LV & Forward voltage LV \\
\hline Off-state conductance LV & On-state resistance LV & On-state resistance LV & Off-state conductance LV & On-state resistance LV \\
\hline \multirow[t]{2}{*}{Threshold voltage LV} & Off-state conductance LV & Off-state conductance LV & \multirow[t]{2}{*}{Threshold voltage LV} & Off-state conductance LV \\
\hline & Gate trigger voltage LV, Vgt & Threshold voltage LV & & Gate trigger voltage LV, Vgt \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{6}{|l|}{ Parameters and Options } \\
\hline & \begin{tabular}{l}
Gate turn-off \\
voltage LV, \\
Vgt_off_lv
\end{tabular} & & \begin{tabular}{l}
Gate turn-off \\
voltage LV, \\
Vgt_off_lv
\end{tabular} \\
\hline & \begin{tabular}{l}
Holding current \\
LV
\end{tabular} & & \begin{tabular}{l}
Holding current \\
LV
\end{tabular} \\
\hline
\end{tabular}

\section*{Switching device - Switch type}

Ideal Semiconductor Switch (default)|GTO|IGBT|MOSFET|Thyristor
Switching device type for the nonisolated converter model.

\section*{Dependencies}

See the Nonisolated Converter Switching Devices Parameter Dependencies table.

\section*{Forward voltage - Voltage}
0.8 V (default) | scalar

For the different switching device types, the Forward voltage is taken as:
- GTO - Minimum voltage required across the anode and cathode block ports for the gradient of the device I-V characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of On-state resistance
- IGBT - Minimum voltage required across the collector and emitter block ports for the gradient of the diode i-v characteristic to be \(1 / R_{o n}\), where \(R_{\text {on }}\) is the value of \(\mathbf{O n}\)-state resistance
- Thyristor - Minimum voltage required for the device to turn on

\section*{Dependencies}

See the Nonisolated Converter Switching Devices Parameter Dependencies table.

\section*{On-state resistance - Resistance}
0.001 Ohm (default) | scalar

For the different switching device types, the On-state resistance is taken as:
- GTO - Rate of change of voltage versus current above the forward voltage
- Ideal semiconductor switch - Anode-cathode resistance when the device is on
- IGBT - Collector-emitter resistance when the device is on
- Thyristor - Anode-cathode resistance when the device is on

Dependencies
See the Nonisolated Converter Switching Devices Parameter Dependencies table.
Drain-source on resistance - Resistance
0.001 Ohm (default) | scalar

Resistance between the drain and the source, which also depends on the gate-to-source voltage.

\section*{Dependencies}

See the Nonisolated Converter Switching Devices Parameter Dependencies table.

\section*{Off-state conductance - Conductance}

1e-5 1/Ohm (default) | scalar
Conductance when the device is off. The value must be less than \(1 / R\), where \(R\) is the value of \(O\) n-state resistance.

For the different switching device types, the On-state resistance is taken as:
- GTO - Anode-cathode conductance
- Ideal semiconductor switch - Anode-cathode conductance
- IGBT - Collector-emitter conductance
- MOSFET - Drain-source conductance
- Thyristor - Anode-cathode conductance

\section*{Dependencies}

See the Nonisolated Converter Switching Devices Parameter Dependencies table.

\section*{Threshold voltage - Voltage threshold 6 V (default) | scalar}

Gate voltage threshold. The device turns on when the gate voltage is above this value. For the different switching device types, the device voltage of interest is:
- Ideal semiconductor switch - Gate-emitter voltage
- IGBT - Gate-cathode voltage
- MOSFET - Gate-source voltage

\section*{Dependencies}

See the Nonisolated Converter Switching Devices Parameter Dependencies table.

\section*{Gate trigger voltage, Vgt - Voltage threshold}

1 V (default) | scalar
Gate-cathode voltage threshold. The device turns on when the gate-cathode voltage is above this value.

\section*{Dependencies}

See the Nonisolated Converter Switching Devices Parameter Dependencies table.

\section*{Gate turn-off voltage, Vgt_off - Voltage threshold}
- 1 V (default) | scalar

Gate-cathode voltage threshold. The device turns off when the gate-cathode voltage is below this value.

\section*{Dependencies}

See the Nonisolated Converter Switching Devices Parameter Dependencies table.

\section*{Holding current - Current threshold}

\section*{1 A (default) | scalar}

Gate current threshold. The device stays on when the current is above this value, even when the gate-cathode voltage falls below the gate trigger voltage.

\section*{Dependencies}

See the Nonisolated Converter Switching Devices Parameter Dependencies table.

\section*{Switching device HV - Switch}

Ideal Semiconductor Switch (default)|GTO|IGBT|MOSFET|Thyristor
Switching device type for the high-voltage side of the isolated converter model.

\section*{Dependencies}

See the Isolated Converter Switching Devices Parameter Dependencies table.

\section*{Forward voltage HV - Voltage}
0.8 hm (default) | scalar

For the different switching device types, the Forward voltage HV is taken as:
- GTO - Minimum voltage required across the anode and cathode block ports for the gradient of the device I-V characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of \(\mathbf{O n}\)-state resistance
- IGBT - Minimum voltage required across the collector and emitter block ports for the gradient of the diode i-v characteristic to be \(1 / R_{o n}\), where \(R_{o n}\) is the value of \(\mathbf{O n}\)-state resistance
- Thyristor - Minimum voltage required for the device to turn on

\section*{Dependencies}

See the Isolated Converter Switching Devices Parameter Dependencies table.

\section*{Drain-source on resistance HV - Resistance}
0.001 Ohm (default) | scalar

Resistance between the drain and the source, which also depends on the gate-to-source voltage.

\section*{Dependencies}

See the Isolated Converter Switching Devices Parameter Dependencies table.

\section*{On-state resistance HV - Resistance}
0.001 Ohm (default) | scalar

For the different switching device types, the On-state resistance HV is taken as:
- GTO - Rate of change of voltage versus current above the forward voltage
- Ideal semiconductor switch - Anode-cathode resistance when the device is on
- IGBT - Collector-emitter resistance when the device is on
- Thyristor - Anode-cathode resistance when the device is on

\section*{Dependencies}

See the Isolated Converter Switching Devices Parameter Dependencies table.

\section*{Off-state conductance HV - Conductance}

1e-5 1/0hm (default) | scalar
Conductance when the device is off. The value must be less than \(1 / R\), where \(R\) is the value of On-state resistance HV.

For the different switching device types, the On-state resistance HV is taken as:
- GTO - Anode-cathode conductance
- Ideal semiconductor switch - Anode-cathode conductance
- IGBT - Collector-emitter conductance
- MOSFET - Drain-source conductance
- Thyristor - Anode-cathode conductance

\section*{Dependencies}

See the Isolated Converter Switching Devices Parameter Dependencies table.

\section*{Threshold voltage HV - Voltage threshold \\ 6 V (default) | scalar}

Gate voltage threshold. The device turns on when the gate voltage is above this value. For the different switching device types, the device voltage of interest is:
- Ideal semiconductor switch - Gate-emitter voltage
- IGBT - Gate-cathode voltage
- MOSFET - Gate-source voltage

Dependencies
See the Isolated Converter Switching Devices Parameter Dependencies table.

\section*{Gate trigger voltage HV, Vgt_hv - Voltage threshold}

1 V (default) | scalar
Gate-cathode voltage threshold. The device turns on when the gate-cathode voltage is above this value.

\section*{Dependencies}

See the Isolated Converter Switching Devices Parameter Dependencies table.

\section*{Gate turn-off voltage HV, Vgt_off_hv - Voltage threshold}
```

-1 V (default) | scalar

```

Gate-cathode voltage threshold. The device turns off when the gate-cathode voltage is below this value.

\section*{Dependencies}

See the Isolated Converter Switching Devices Parameter Dependencies table.

\section*{Holding current HV - Current threshold}

\section*{1 A (default) | scalar}

Gate current threshold. The device stays on when the current is above this value, even when the gate-cathode voltage falls below the gate trigger voltage.

\section*{Dependencies}

See the Isolated Converter Switching Devices Parameter Dependencies table.

\section*{Switching device LV - Switch}

Ideal Semiconductor Switch (default)|GTO | IGBT | MOSFET | Thyristor
Switching device type for the low-voltage side of the isolated converter model.

\section*{Dependencies}

See the Isolated Converter Switching Devices Parameter Dependencies table.

\section*{Forward voltage LV - Voltage}
0.8 hhm (default) | scalar

For the different switching device types, the Forward voltage \(\mathbf{L V}\) is taken as:
- GTO - Minimum voltage required across the anode and cathode block ports for the gradient of the device I-V characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of On-state resistance
- IGBT - Minimum voltage required across the collector and emitter block ports for the gradient of the diode i-v characteristic to be \(1 / R_{o n}\), where \(R_{o n}\) is the value of On-state resistance
- Thyristor - Minimum voltage required for the device to turn on

\section*{Dependencies}

See the Isolated Converter Switching Devices Parameter Dependencies table.

\section*{Drain-source on resistance LV - Resistance}
0.001 Ohm (default) | scalar

Resistance between the drain and the source, which also depends on the gate-to-source voltage.

\section*{Dependencies}

See the Isolated Converter Switching Devices Parameter Dependencies table.
On-state resistance LV - Resistance
0.001 Ohm (default) | scalar

For the different switching device types, the On-state resistance LV is taken as:
- GTO - Rate of change of voltage versus current above the forward voltage
- Ideal semiconductor switch - Anode-cathode resistance when the device is on
- IGBT - Collector-emitter resistance when the device is on
- Thyristor - Anode-cathode resistance when the device is on

\section*{Dependencies}

See the Isolated Converter Switching Devices Parameter Dependencies table.

\section*{Off-state conductance LV - Conductance}

1e-5 1/Ohm (default) | scalar
Conductance when the device is off. The value must be less than \(1 / R\), where \(R\) is the value of On-state resistance LV.

For the different switching device types, the On-state resistance LV is taken as:
- GTO - Anode-cathode conductance
- Ideal semiconductor switch - Anode-cathode conductance
- IGBT - Collector-emitter conductance
- MOSFET - Drain-source conductance
- Thyristor - Anode-cathode conductance

\section*{Dependencies}

See the Isolated Converter Switching Devices Parameter Dependencies table.

\section*{Threshold voltage LV - Voltage threshold}

6 V (default) | scalar
Gate voltage threshold. The device turns on when the gate voltage is above this value. For the different switching device types, the device voltage of interest is:
- Ideal semiconductor switch - Gate-emitter voltage
- IGBT - Gate-cathode voltage
- MOSFET - Gate-source voltage

\section*{Dependencies}

See the Isolated Converter Switching Devices Parameter Dependencies table.

\section*{Gate trigger voltage LV, Vgt_lv - Voltage threshold} 1 V (default) | scalar

Gate-cathode voltage threshold. The device turns on when the gate-cathode voltage is above this value.

\section*{Dependencies}

See the Isolated Converter Switching Devices Parameter Dependencies table.

\section*{Gate turn-off voltage LV, Vgt_off_lv - Voltage threshold}
- 1 V (default) | scalar

Gate-cathode voltage threshold. The device turns off when the gate-cathode voltage is below this value.

\section*{Dependencies}

See the Isolated Converter Switching Devices Parameter Dependencies table.

\section*{Holding current LV - Current threshold}

1 A (default) | scalar

Gate current threshold. The device stays on when the current is above this value, even when the gate-cathode voltage falls below the gate trigger voltage.

\section*{Dependencies}

See the Isolated Converter Switching Devices Parameter Dependencies table.

\section*{Protection Diode}

The visibility of Protection Diode parameters depends on how you configure the protection diode Model dynamics and Reverse recovery time parameterization parameters. To learn how to read this table, see "Parameter Dependencies" on page A2.

\section*{Protection Diode Parameter Dependencies}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Parameters and Options} \\
\hline \multicolumn{4}{|l|}{Model dynamics} \\
\hline Protection diode with no dynamics & \multicolumn{3}{|l|}{Protection diode with charge dynamics} \\
\hline Forward voltage & \multicolumn{3}{|l|}{Forward voltage} \\
\hline On resistance & \multicolumn{3}{|l|}{On resistance} \\
\hline \multirow[t]{8}{*}{Off conductance} & \multicolumn{3}{|l|}{Off conductance} \\
\hline & \multicolumn{3}{|l|}{Junction capacitance} \\
\hline & \multicolumn{3}{|l|}{Peak reverse current, iRM} \\
\hline & \multicolumn{3}{|l|}{Initial forward current when measuring iRM} \\
\hline & \multicolumn{3}{|l|}{Rate of change of current when measuring iRM} \\
\hline & \multicolumn{3}{|l|}{Reverse recovery time parameterization} \\
\hline & Specify stretch factor & Specify reverse recovery time directly & Specify reverse recovery charge \\
\hline & Reverse recovery time stretch factor & Reverse recovery time, trr & Reverse recovery charge, Qrr \\
\hline
\end{tabular}

\section*{Model dynamics - Diode model}

Protection diode with no dynamics (default)|Protection diode with charge dynamics

Diode type. The options are:
- Diode with no dynamics - Select this option to prioritize simulation speed using the Diode block.
- Diode with charge dynamics - Select this option to prioritize model fidelity in terms of reverse mode charge dynamics using the Commutation Diode block.

\section*{Dependencies}

See the Protection Diode Parameter Dependencies table.

\section*{Forward voltage - Voltage}
0.8 V (default) | scalar

Minimum voltage required across the positive and negative block ports for the gradient of the diode I-V characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of On resistance.

\section*{On resistance - Resistance}
0.001 Ohm (default) | scalar

Rate of change of voltage versus current above the Forward voltage.

\section*{Off conductance - Conductance}

1e-5 1/Ohm (default) | scalar
Conductance of the reverse-biased diode.

\section*{Junction capacitance - Capacitance}

50 nF (default) | scalar
Diode junction capacitance.

\section*{Dependencies}

See the Protection Diode Parameter Dependencies table.
Peak reverse current, iRM - Current
- 235 A (default) | scalar less than 0

Peak reverse current measured by an external test circuit.

\section*{Dependencies}

See the Protection Diode Parameter Dependencies table.

\section*{Initial forward current when measuring iRM - Current 300 A (default) | scalar greater than 0}

Initial forward current when measuring peak reverse current. This value must be greater than zero.

\section*{Dependencies}

See the Protection Diode Parameter Dependencies table.

\section*{Rate of change of current when measuring iRM - Current change rate -50 A/us (default) | scalar}

Rate of change of current when measuring peak reverse current.

\section*{Dependencies}

See the Protection Diode Parameter Dependencies table.
Reverse recovery time parameterization - Recovery-time model
Specify stretch factor (default)|Specify reverse recovery time directly |Specify reverse recovery charge

Model for parameterizing the recovery time. When you select Specify stretch factor or Specify reverse recovery charge, you can specify a value that the block uses to derive the reverse recovery time. For more information on these options, see "Alternatives to Specifying trr Directly" on page 1-254.

\section*{Dependencies}

See the Protection Diode Parameter Dependencies table.

\section*{Reverse recovery time stretch factor - Stretch factor 3 (default) | scalar greater than 1}

Value that the block uses to calculate Reverse recovery time, trr. Specifying the stretch factor is an easier way to parameterize the reverse recovery time than specifying the reverse recovery charge. The larger the value of the stretch factor, the longer it takes for the reverse recovery current to dissipate.

\section*{Dependencies}

See the Protection Diode Parameter Dependencies table.

\section*{Reverse recovery time, trr - Time}

\section*{15 us (default) | scalar}

Interval between the time when the current initially goes to zero (when the diode turns off) and the time when the current falls to less than 10 percent of the peak reverse current.

The value of the Reverse recovery time, trr parameter must be greater than the value of the Peak reverse current, iRM parameter divided by the value of the Rate of change of current when measuring iRM parameter.

\section*{Dependencies}

See the Protection Diode Parameter Dependencies table.
Reverse recovery charge, Qrr - Charge
1500 s*uA (default) | scalar
Value that the block uses to calculate Reverse recovery time, trr. Use this parameter if the data sheet for your diode device specifies a value for the reverse recovery charge instead of a value for the reverse recovery time.

The reverse recovery charge is the total charge that continues to dissipate when the
diode turns off. The value must be less than \(-\frac{i^{2}{ }_{R M}}{2 a}\),
where:
- \(i_{R M}\) is the value specified for Peak reverse current, iRM.
- \(a\) is the value specified for Rate of change of current when measuring iRM.

\section*{Dependencies}

See the Protection Diode Parameter Dependencies table.

\section*{Transformer}

The Transformer parameters are only visible when Block choice is set to Isolated converter.

\author{
Transformer inductance L1 - Inductance \\ 10 H (default) | positive scalar
}

Self-inductance of the first winding of the transformer.

\section*{Dependencies}

This parameter is only visible when Block choice is set to Isolated converter.

\section*{Transformer inductance L2 - Inductance \\ 0.1 H (default) | positive scalar}

Self-inductance of the second winding of the transformer.

\section*{Dependencies}

This parameter is only visible when Block choice is set to Isolated converter.

\section*{Transformer coefficient of coupling - Coupling coefficient}
0.9 (default) | positive scalar greater than zero and less than 1

Defines the mutual inductance of the transformer.

\section*{Dependencies}

This parameter is only visible when Block choice is set to Isolated converter.

\section*{LC Parameters}

\section*{Inductance, L - Inductance \\ 1e-6 H (default) | positive scalar}

Converter inductance. For the isolated converter model variant, the two inductors are identical.

\section*{Capacitance, C1 - Capacitance} 1e-7 F (default) | positive scalar

Capacitance of the first DC terminal.

\section*{Capacitance, C2 - Capacitance} 1e-7 F (default) | positive scalar

Capacitance of the second DC terminal.
C1 effective series resistance - Resistance 1e-6 Ohm (default) | zero or positive scalar

Series resistance of capacitor \(C 1\).
C2 effective series resistance - Resistance
1e-6 Ohm (default) | zero or positive scalar
Series resistance of capacitor \(C 2\).

\section*{Snubbers}

The table summarizes the Snubbers parameter dependencies. To learn how to read the table, see "Parameter Dependencies" on page A-2.

Snubbers Parameter Dependencies
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Snubbers Parameter Dependencies} \\
\hline \multicolumn{4}{|l|}{Block choice} \\
\hline \multicolumn{2}{|l|}{Nonisolated Converter} & \multicolumn{2}{|l|}{Isolated Converter} \\
\hline \multicolumn{2}{|l|}{Snubber} & \multicolumn{2}{|l|}{Snubber HV} \\
\hline \multirow[t]{7}{*}{None} & RC Snubber & \multirow[t]{3}{*}{None} & RC Snubber \\
\hline & Snubber resistance & & Snubber resistance HV \\
\hline & \multirow[t]{5}{*}{Snubber capacitance} & & Snubber capacitance HV \\
\hline & & \multicolumn{2}{|l|}{Snubber LV} \\
\hline & & \multirow[t]{3}{*}{None} & RC Snubber \\
\hline & & & Snubber resistance LV \\
\hline & & & Snubber capacitance LV \\
\hline
\end{tabular}

\section*{Snubber - Snubber model}

None (default) | RC snubber
Snubber for each switching device.

\section*{Dependencies}

See the Snubbers Parameter Dependencies table.

\section*{Snubber resistance - Resistance}
0.1 Ohm (default) | scalar

Resistance of the snubbers.

\section*{Dependencies}

See the Snubbers Parameter Dependencies table.

\section*{Snubber capacitance - Capacitance \\ 1e-7 F (default) | scalar}

Capacitance of the snubbers.

\section*{Dependencies}

See the Snubbers Parameter Dependencies table.

\section*{Snubber HV - Snubber model}

None (default) | RC snubber
HV snubber for each switching device.

\section*{Dependencies}

See the Snubbers Parameter Dependencies table.

\section*{Snubber resistance HV - Resistance}
0.1 hhm (default) | scalar

Resistance of the high-voltage snubbers.

\section*{Dependencies}

See the Snubbers Parameter Dependencies table.

\section*{Snubber capacitance HV - Capacitance 1e-7 F (default) | scalar}

Capacitance of the high-voltage snubbers.

\section*{Dependencies}

See the Snubbers Parameter Dependencies table.

\section*{Snubber LV - Snubber model \\ None (default) | RC snubber}

LV snubber for each switching device.

\section*{Dependencies}

See the Snubbers Parameter Dependencies table.

\section*{Snubber resistance LV - Resistance}
0.1 Ohm (default) | scalar

Resistance of the low-voltage snubbers.

\section*{Dependencies}

See the Snubbers Parameter Dependencies table.

\section*{Snubber capacitance LV - Capacitance 1e-7 F (default) | scalar}

Capacitance of the low-voltage snubbers.

\section*{Dependencies}

See the Snubbers Parameter Dependencies table.

\section*{References}
[1] Saleh, M., Y. Esa, Y. Mhandi, W. Brandauer, and A. Mohamed. Design and implementation of CCNY DC microgrid testbed. Industry Applications Society Annual Meeting. Portland, OR: 2016, pp 1-7.
[2] Kutkut, N. H., and G. Luckjiff. Current mode control of a full bridge DC-to-DC converter with a two inductor rectifier. Power Electronics Specialists Conference. Saint Louis, MO: 1997, pp 203-209.
[3] Nene, H. Digital control of a bi-directional DC-DC converter for automotive applications. Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). Long Beach, CA: 2013, pp 1360-1365.

\section*{See Also}

Boost Converter | Buck Converter | Buck-Boost Converter | Converter | Converter | GTO | IGBT | Ideal Semiconductor Switch | MOSFET | PWM Generator | PWM Generator (Threephase, Two-level) | Six-Pulse Gate Multiplexer | Three-Level Converter | Thyristor

Introduced in R2018a

\section*{BLDC Commutation Logic}

Commutation logic for brushless DC motors
Library: Simscape / Power Systems / Simscape Components / Control / BLDC Control

\section*{Description}

The BLDC Commutation Logic block implements a commutation logic for brushless DC motors as part of this control algorithm.

The commutation logic is based on the Hall signals as summarized in this table.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{ Hall Sensors } & \multicolumn{3}{c|}{ Motor Phases } \\
\hline Hall a & Hall b & Hall c & Phase a & Phase b & Phase c \\
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 1 & 0 & 0 & 1 & -1 \\
\hline 0 & 1 & 0 & -1 & 1 & 0 \\
\hline 0 & 1 & 1 & -1 & 0 & 1 \\
\hline 0 & 0 & 1 & 0 & -1 & 1 \\
\hline 1 & 0 & 1 & 1 & -1 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{ Hall Sensors } & \multicolumn{3}{c|}{ Motor Phases } \\
\hline 1 & 0 & 0 & 1 & 0 & -1 \\
\hline 1 & 1 & 1 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{Ports}

\section*{Input}

\section*{Hall - Hall sensor}
vector
Hall sensor data.

\section*{Data Types: single | double}

\section*{Direction - Motor direction}
scalar
Direction of motor rotation.
Data Types: single | double

\section*{Output}

\section*{abc - Motor phase}
vector
Motor phase indicated by the commutation logic.
Data Types: single | double

\section*{Parameters}

\author{
Sample time (-1 for inherited) - Block sample time - 1 (default) | positive scalar
}

Time, in s, between consecutive block executions. During execution, the block produces outputs and, if appropriate, updates its internal state. For more information, see "What Is Sample Time?" (Simulink) and "Specify Sample Time" (Simulink).

If this block is inside a triggered subsystem, inherit the sample time by setting this parameter to -1. If this block is in a continuous variable-step model, specify the sample time explicitly using a positive scalar.

\section*{References}
[1] Stirban, A., I. Boldea, and G. D. Andreescu. "Motion-Sensorless Control of BLDC-PM Motor With Offline FEM-Information-Assisted Position and Speed Observer." IEEE Transactions on Industry Applications. 48, no. 6 (2012): 1950-1958.

\section*{See Also}

BLDC Current Controller | BLDC Current Controller with PWM Generation | Brushless DC Motor

\section*{Introduced in R2018a}

\section*{BLDC Current Controller}

Discrete-time PI-based Brushless DC Motor current control
Library: \(\quad \begin{aligned} & \text { Simscape / Power Systems / Simscape Components / } \\ & \text { Control / BLDC Control }\end{aligned}\)

\section*{Description}

The BLDC Current Controller block uses this algorithm to control current in a DC brushless motor.

\section*{Equations}

The BLDC Current Controller produces the duty cycle for a Brushless DC Motor block by implementing proportional-integral (PI) current control using this equation.
\[
\mathrm{D}=\left(K_{p}+K_{i} \frac{T_{s} z}{z-1}\right)\left(I_{s_{-} r e f}-I_{s}\right)
\]

Where:
- \(D\) is the duty cycle.
- \(K_{p}\) is the proportional gain.
- \(K_{i}\) is the integral gain.
- \(T_{s}\) is the time period.
- \(I_{s_{-} r e f}\) is the reference current.
- \(I_{s}\) is the measured current.
- \(G_{z c}\) is the zero cancellation polynomial.

The closed-loop transfer function for the PI control algorithm yields a zero that can be cancelled by using zero-cancellation in the feedforward path. The zero-cancellation transfer function in discrete-time is:
\[
G_{Z C}(z)=\frac{\frac{T_{s} K_{i}}{K_{p}}}{z+\left(\frac{T_{s}-\frac{K_{p}}{K_{i}}}{\frac{K_{p}}{K_{i}}}\right)}
\]

The block obtains control signals for the three phases by multiplying the duty cycle by the commutation signals. The resulting three control signals are normalized over the interval \([-1,1]\).

\section*{Ports}

\section*{Input}

\section*{IsRef - Reference current \\ scalar}

Reference current for control.
Data Types: single | double

\section*{Is - Measured current}

\section*{scalar}

Actual current.

\section*{Data Types: single | double}

\section*{Reset - External reset scalar}

External reset signal (rising edge) for the integrator.
Data Types: single | double

\section*{Hall - Hall sensor}
vector
Hall sensor data.
Data Types: single | double

\section*{Direction - Motor direction}
scalar
Direction of motor rotation.
Data Types: single | double

\section*{Output}

\section*{vabcRef - Reference voltage}
vector
Reference voltage for the \(a-, b\)-, and \(c\)-phases.

\section*{Data Types: single | double}

\section*{Parameters}

\section*{Proportional gain - Controller proportional gain, \(\boldsymbol{K}_{\boldsymbol{p}}\)} 1 (default) | positive scalar

Proportional gain, \(K_{p}\), of the controller.
Integral gain - Integral gain, \(\boldsymbol{K}_{\boldsymbol{i}}\)
5 (default) | positive scalar
Integral gain, \(K_{i}\), of the controller.

\section*{Anti-windup gain - Anti-windup gain, \(\boldsymbol{K}_{\text {aw }}\) 1 (default) | positive scalar}

Anti-windup gain, \(K_{a w}\), of the controller.

\section*{Sample time (-1 for inherited) - Block sample time}
-1 (default) | positive scalar
Time, in s, between consecutive block executions. During execution, the block produces outputs and, if appropriate, updates its internal state. For more information, see "What Is Sample Time?" (Simulink) and "Specify Sample Time" (Simulink).

If this block is inside a triggered subsystem, inherit the sample time by setting this parameter to -1. If this block is in a continuous variable-step model, specify the sample time explicitly using a positive scalar.

\section*{Dependencies}

If you set Sample time (-1 for inherited) to -1 and select the Enable zero cancellation option, the Discretization sample time parameter becomes visible.

\section*{Discretization sample time - Sample time for discretization \\ 0.001 (default) | positive scalar}

Time, in s, between consecutive discretizations. Discretization is required for zero cancellation.

\section*{Dependencies}

This parameter is only visible when both these conditions are met:
- Sample time is set to - 1 .
- Enable zero cancellation is selected.

\section*{Enable zero cancellation - Feedforward zero cancellation off (default) | on}

Option to use zero cancellation on the feedforward path.

\section*{Dependencies}

If you select the Enable zero cancellation option and set Sample time (-1 for inherited) to -1 , the Discretization sample time parameter becomes visible.

\section*{References}
[1] Stirban, A., I. Boldea, and G. D. Andreescu. "Motion-Sensorless Control of BLDC-PM Motor With Offline FEM-Information-Assisted Position and Speed Observer." IEEE Transactions on Industry Applications. 48, no. 6 (2012): 1950-1958.

\section*{See Also}

BLDC Commutation Logic | BLDC Current Controller with PWM Generation | Brushless DC Motor

\section*{Introduced in R2018a}

\section*{BLDC Current Controller with PWM Generation}

Brushless DC motor current control with pulse width modulation generation
Library: Simscape / Power Systems / Simscape Components / Control / BLDC Control

\section*{Description}

The BLDC Current Controller with PWM Generation block generates a pulse width modulation (PWM) signal and controls current in a brushless DC motor. The controller uses this algorithm.

\section*{Equations}

The BLDC Current Controller produces the duty cycle for a Brushless DC Motor block by implementing proportional-integral (PI) current control using this equation
\[
\mathrm{D}=\left(K_{p}+K_{i} \frac{T_{s} z}{z-1}\right)\left(I_{s_{-} r e f}-I_{s}\right)
\]
where:
- \(D\) is the duty cycle.
- \(K_{p}\) is the proportional gain.
- \(K_{i}\) is the integral gain.
- \(T_{s}\) is the time period.
- \(I_{s_{-} r e f}\) is the reference current.
- \(I_{s}\) is the measured current.
- \(G_{z c}\) is the zero cancellation polynomial.

The closed-loop transfer function for the PI control algorithm yields a zero that can be cancelled by using zero-cancellation block in the feedforward path. The zero-cancellation transfer function in discrete-time is:
\[
G_{\text {ZC }}(z)=\frac{\frac{T_{s} K_{i}}{K_{p}}}{z+\left(\frac{T_{s}-\frac{K_{p}}{K_{i}}}{\frac{K_{p}}{K_{i}}}\right)}
\]

The block obtains control signals for the three phases by multiplying the duty cycle by the commutation signals. The resulting three control signals are normalized over the interval \([-1,1]\).

The PWM generator outputs a 1 when the value of the control signal is greater than the carrier counter value. Otherwise, the PWM generator outputs a 0 .

\section*{Ports}

\section*{Input}

\section*{IsRef - Reference current}
scalar
Reference current for control.
Data Types: single | double

\section*{Is - Measured current \\ scalar}

Actual current.
Data Types: single | double

\section*{Reset - External reset}
scalar
External reset signal (rising edge) for the integrator.
Data Types: single | double

\section*{Hall - Hall sensor}
vector
Hall sensor data.
Data Types: single | double

\section*{Direction - Motor direction \\ scalar}

Direction of motor rotation.
Data Types: single | double

\section*{Output}

\section*{G - Gate pulses}
vector
Pulse waveforms that determine switching behavior in the attached block.
Data Types: single | double

\section*{Parameters}

\section*{Control Parameters}

\section*{Proportional gain - Controller proportional gain, \(\boldsymbol{K}_{\boldsymbol{p}}\) 1 (default) | positive scalar}

Proportional gain, \(K_{p}\), of the controller.

\section*{Integral gain - Integral gain, \(\boldsymbol{K}_{\boldsymbol{i}}\) \\ 5 (default) | positive scalar}

Integral gain, \(K_{i}\), of the controller.

\section*{Anti-windup gain - Anti-windup gain, \(\boldsymbol{K}_{\text {aw }}\)}

1 (default) | positive scalar
Anti-windup gain, \(K_{a w}\), of the controller.

\section*{Sample time (-1 for inherited) - Block sample time} -1 (default) | positive scalar

Time, in s, between consecutive block executions. During execution, the block produces outputs and, if appropriate, updates its internal state. For more information, see "What Is Sample Time?" (Simulink) and "Specify Sample Time" (Simulink).

If this block is inside a triggered subsystem, inherit the sample time by setting this parameter to -1. If this block is in a continuous variable-step model, specify the sample time explicitly using a positive scalar.

\section*{Dependencies}

If you set Sample time (-1 for inherited) to -1 and select the Enable zero cancellation option, the Discretization sample time parameter becomes visible.

\section*{Discretization sample time - Sample time for discretization}

\subsection*{0.001 (default) | positive scalar}

Time, in s, between consecutive discretizations. Discretization is required for zero cancellation.

\section*{Dependencies}

This parameter is only visible when both these conditions are met:
- Sample time is set to - 1 .
- Enable zero cancellation is selected.

\section*{Enable zero cancellation - Feedforward zero cancellation off (default) | on}

Option to use zero cancellation on the feedforward path.

\section*{Dependencies}

If you select the Enable zero cancellation option and set Sample time (-1 for inherited) to -1 , the Discretization sample time parameter becomes visible.

\section*{PWM Generator}

\section*{Carrier counter - Carrier counter model}

Up (default) | Down | Up-Down
Use the carrier counter strategy to change the initial behavior of the PWM output:
- Up counter - PWM output begins at the start of the on state.
- Down counter - PWM output begins at the start of the off state.
- Up-down counter - PWM output begins in the middle of the on state.

\section*{Timer period (s) - PWM timer period \\ 0.001 (default) | positive scalar}

Pulse width modulation timer period, \(T_{p e r}\), in seconds.

\section*{Fundamental sample time (s) - Sample time for PWM generation 0.0001 (default) | positive scalar}

Time, in s, between consecutive PWM generator executions. During execution, the block produces PWM output and, if appropriate, updates its internal state. For more information, see "What Is Sample Time?" (Simulink) and "Specify Sample Time" (Simulink).

To ensure adequate resolution in the generated PWM signal, set the fundamental sample time so that \(0<T_{s_{-} p w m} \leq 10 T_{p e r}\), where:
- \(T_{s_{-} p w m}\) is the Fundamental sample time (s).
- \(T_{p e r}\) is the Timer period (s).

\section*{References}
[1] Stirban, A., I. Boldea, and G. D. Andreescu. "Motion-Sensorless Control of BLDC-PM Motor With Offline FEM-Information-Assisted Position and Speed Observer." IEEE Transactions on Industry Applications. 48, no. 6 (2012): 1950-1958.

\section*{See Also}

BLDC Commutation Logic | BLDC Current Controller | Brushless DC Motor

\section*{Introduced in R2018a}

\section*{Boost Converter}

Controller-driven DC-DC step-up voltage regulator
Library: Simscape / Power Systems / Simscape Components / Semiconductors

\section*{Description}

The Boost Converter block represents a converter that steps up DC voltage as driven by an attached controller and gate-signal generator. Boost converters are also known as step-up voltage regulators because they increase voltage magnitude.

The Boost Converter block allows you to model an asynchronous converter with one switching device or a synchronous converter with two switching devices. Options for the type of switching devices are:
- GTO - Gate turn-off thyristor. For information on the I-V characteristic of the device, see GTO.
- Ideal semiconductor switch - For information on the I-V characteristic of the device, see Ideal Semiconductor Switch.
- IGBT - Insulated-gate bipolar transistor. For information on the I-V characteristic of the device, see IGBT.
- MOSFET - N-channel metal-oxide-semiconductor field-effect transistor. For information on the I-V characteristic of the device, see MOSFET.
- Thyristor - For information on the I-V characteristic of the device, see Thyristor.

\section*{Model}

Each of three model variants for the Boost Converter block corresponds to a Block choice option. To access the block choices, in the model window, right-click the block, and then use either of these methods:
- From the context menu, select Simscape \(>\) Block choices.
- On the Simulink Editor menu bar, select View > Property Inspector. In the Property Inspector window, click the value of the Block choice.

The model variants are:
- PS control port - Asynchronous converter with a physical signal port. This block choice is the default.
- Electrical control ports - Asynchronous converter with one positive and one negative electrical conserving port. To control switching device gates using Simscape Electronics \({ }^{\text {TM }}\) blocks, select this option.
- Synchronous converter - Synchronous converter with an electrical conserving port.

The asynchronous boost converter models contain an inductor, a switching device, a diode, and an output capacitor.

The synchronous boost converter model contains an inductor, two switching devices, and an output capacitor.

In each case, the capacitor smoothes the output voltage.

\section*{Protection}

For the synchronous converter model, you can include an integral protection diodes. Integral diodes protect the semiconductor device by providing a conduction path for reverse current. An inductive load can produce a high reverse-voltage spike when the semiconductor device suddenly switches off the voltage supply to the load.

To include and configure the internal protection diodes, use the Diode parameters. This table shows how to set the Model dynamics parameter based on your goals.
\begin{tabular}{|l|l|l|}
\hline Goals & Value to Select & Integral Protection Diode \\
\hline Do not include protection. & None & None \\
\hline \begin{tabular}{l}
Include \\
protection.
\end{tabular} & \begin{tabular}{l}
Prioritize \\
simulation \\
speed.
\end{tabular} & \begin{tabular}{l}
Protection diode \\
with no dynamics
\end{tabular} \\
The Diode block \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Goals & Value to Select & Integral Protection Diode \\
\hline & \begin{tabular}{l}
Prioritize \\
model fidelity \\
by precisely \\
specifying \\
reverse-mode \\
charge \\
dynamics.
\end{tabular} & \begin{tabular}{l}
Protection diode \\
with charge \\
dynamics
\end{tabular} & The Commutation Diode block \\
\hline
\end{tabular}

You can also include a snubber circuit for each switching device. Snubber circuits contain a series-connected resistor and capacitor. They protect switching devices against high voltages that inductive loads produce when the device turns off the voltage supply to the load. Snubber circuits also prevent excessive rates of current change when a switching device turns on.

To include and configure a snubber circuit for each switching device, use the Snubbers parameters.

\section*{Gate Control}

To connect gate-control voltage signals to the gate ports of the switching devices, for the:
- PS control port model:

1 Convert a Simulink gate-control voltage signal to a physical signal using a Simulink-PS Converter block.
2 Connect the Simulink-PS Converter block to the G port.
- Electrical control ports model:

1 Connect a Simscape electrical-domain positive DC voltage signal to the G+ port.
2 Connect the Simscape electrical-domain negative DC voltage signal to the G- port.
- Synchronous converter model:

1 Convert each Simulink gate-control voltage signal to a physical signal using Simulink-PS Converter blocks.
2 Multiplex the converted gate-control signals into a single vector using a Two-Pulse Gate Multiplexer.

3 Connect the vector signal to the \(\mathbf{G}\) port.

\section*{Ports}

\section*{Input}

\section*{G - Switching device gate control}
physical signal | vector
Physical signal port associated with the gate terminals of the switching device.

\section*{Dependencies}

This port is enabled only for the PS control port block choice.

\section*{Data Types: double}

\section*{Conserving}

\section*{G - Switching device gate control}
electrical | vector
Electrical conserving port associated with the gate terminals of the switching devices.

\section*{Dependencies}

This port is enabled only for the Synchronous converter block choice.
Data Types: double

\section*{G+ - Switching device gate control positive terminal electrical | scalar}

Positive electrical conserving port associated with the positive gate terminal of the switching device.

\section*{Dependencies}

This port is enabled only for the Electrical control ports block choice.
Data Types: double
G- - Switching device gate control negative terminal
electrical | scalar

Negative electrical conserving port associated with the negative gate terminal of the switching device.

\section*{Dependencies}

This port is enabled only for the Electrical control ports block choice.
Data Types: double

\section*{1+ - Positive DC voltage 1}

\section*{electrical | scalar}

Electrical conserving port associated with the positive terminal of the first DC voltage.

\section*{Data Types: double}

\section*{1- - Negative DC voltage 1}
electrical | scalar
Electrical conserving port associated with the negative terminal of the first DC voltage.

\section*{Data Types: double}

\section*{2+ - Positive DC voltage 2}
electrical | scalar
Electrical conserving port associated with the positive terminal of the second DC voltage.
Data Types: double

\section*{2- - Negative DC voltage 2}
electrical | scalar
Electrical conserving port associated with the negative terminal of the second DC voltage.
Data Types: double

\section*{Parameters}

\section*{Switching Devices}

This table shows how the visibility of Switching Devices parameters depends on the Switching device that you select. To learn how to read the table, see "Parameter Dependencies" on page A-2.

\section*{Switching Devices Parameter Dependencies}
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{4}{|l|}{ Parameters and Options } \\
\hline \multicolumn{4}{|l|}{ Switching device } & IGBT \\
\hline \begin{tabular}{l}
Ideal \\
Semiconducto \\
r Switch
\end{tabular} & GTO & MOSFET & Thyristor \\
\hline \begin{tabular}{l}
On-state \\
resistance
\end{tabular} & Forward voltage & Forward voltage & \begin{tabular}{l}
Drain-source on \\
resistance
\end{tabular} & Forward voltage \\
\hline \begin{tabular}{l}
Off-state \\
conductance
\end{tabular} & \begin{tabular}{l}
On-state \\
resistance
\end{tabular} & \begin{tabular}{l}
On-state \\
resistance
\end{tabular} & \begin{tabular}{l}
Off-state \\
conductance
\end{tabular} & \begin{tabular}{l}
On-state \\
resistance
\end{tabular} \\
\hline \begin{tabular}{l}
Threshold \\
voltage
\end{tabular} & \begin{tabular}{l}
Off-state \\
conductance
\end{tabular} & \begin{tabular}{l}
Off-state \\
conductance
\end{tabular} & \begin{tabular}{l}
Threshold \\
voltage
\end{tabular} & \begin{tabular}{l}
Off-state \\
conductance
\end{tabular} \\
\hline & \begin{tabular}{l}
Gate trigger \\
voltage, Vgt
\end{tabular} & \begin{tabular}{l}
Threshold \\
voltage
\end{tabular} & & \begin{tabular}{l}
Gate trigger \\
voltage, Vgt
\end{tabular} \\
\cline { 2 - 2 } & \begin{tabular}{l}
Gate turn-off \\
voltage, Vgt_off
\end{tabular} & \begin{tabular}{l}
Gate turn-off \\
voltage, Vgt_off
\end{tabular} \\
\cline { 2 - 2 } & Holding current
\end{tabular}

\section*{Switching device - Switch type \\ Ideal Semiconductor Switch (default)|GTO|IGBT|MOSFET|Thyristor}

Switching device type for the converter. For the synchronous model, the switches are identical.

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{Forward voltage - Voltage}

\subsection*{0.8 V (default) | scalar}

For the different switching device types, the Forward voltage is taken as:
- GTO - Minimum voltage required across the anode and cathode block ports for the gradient of the device I-V characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of On-state resistance
- IGBT - Minimum voltage required across the collector and emitter block ports for the gradient of the diode I-V characteristic to be \(1 / R_{o n}\), where \(R_{o n}\) is the value of \(\mathbf{O n}\)-state resistance
- Thyristor - Minimum voltage required for the device to turn on

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{On-state resistance - Resistance}
0.001 Ohm (default) | scalar

For the different switching device types, the On-state resistance is taken as:
- GTO - Rate of change of voltage versus current above the forward voltage
- Ideal semiconductor switch - Anode-cathode resistance when the device is on
- IGBT - Collector-emitter resistance when the device is on
- Thyristor - Anode-cathode resistance when the device is on

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.
Drain-source on resistance - Resistance
0.001 Ohm (default) | scalar

Resistance between the drain and the source, which also depends on the gate-to-source voltage.

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{Off-state conductance - Conductance}

\section*{le-5 1/Ohm (default) | scalar}

Conductance when the device is off. The value must be less than \(1 / R\), where \(R\) is the value of On-state resistance.

For the different switching device types, the On-state resistance is taken as:
- GTO - Anode-cathode conductance
- Ideal semiconductor switch - Anode-cathode conductance
- IGBT - Collector-emitter conductance
- MOSFET - Drain-source conductance
- Thyristor - Anode-cathode conductance

Dependencies
See the Switching Devices Parameter Dependencies table.

\section*{Threshold voltage - Voltage threshold \\ 6 V (default) | scalar}

Gate voltage threshold. The device turns on when the gate voltage is above this value. For the different switching device types, the device voltage of interest is:
- Ideal semiconductor switch - Gate-emitter voltage
- IGBT - Gate-cathode voltage
- MOSFET - Gate-source voltage

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{Gate trigger voltage, Vgt - Voltage threshold}

\section*{1 V (default) | scalar}

Gate-cathode voltage threshold. The device turns on when the gate-cathode voltage is above this value.

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{Gate turn-off voltage, Vgt_off - Voltage threshold}
- 1 V (default) | scalar

Gate-cathode voltage threshold. The device turns off when the gate-cathode voltage is below this value.

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{Holding current - Current threshold}

\section*{1 A (default) | scalar}

Gate current threshold. The device stays on when the current is above this value, even when the gate-cathode voltage falls below the gate trigger voltage.

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{Diode}

This table shows how the visibility of Diode parameters depends on how you configure the Block choice, Model dynamics, and Reverse recovery time parameterization parameters. To learn how to read this table, see "Parameter Dependencies" on page A2.

Diode Parameter Dependencies
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Parameters and Options} \\
\hline \multicolumn{5}{|l|}{Block choice} \\
\hline \multicolumn{2}{|l|}{PS control port or Electrical control ports} & \multicolumn{3}{|l|}{Synchronous converter} \\
\hline \multicolumn{2}{|l|}{Model dynamics} & \multicolumn{3}{|l|}{Model dynamics} \\
\hline Diode with no dynami cs & Diode with charge dynamics & None & Protec tion diode with no dynami cs & Protection diode with charge dynamics \\
\hline Forward voltage & Forward voltage & & Forward voltage & Forward voltage \\
\hline On resistan ce & On resistance & & On resistan ce & On resistance \\
\hline \multirow[t]{6}{*}{Off conduct ance} & Off conductance & & \multirow[t]{6}{*}{\begin{tabular}{l}
Off \\
conduct ance
\end{tabular}} & Off conductance \\
\hline & Junction capacitance & & & Junction capacitance \\
\hline & Peak reverse current, iRM & & & Peak reverse current, iRM \\
\hline & Initial forward current when measuring iRM & & & Initial forward current when measuring iRM \\
\hline & Rate of change of current when measuring iRM & & & Rate of change of current when measuring iRM \\
\hline & Reverse recovery time parameterization & & & Reverse recovery time parameterization \\
\hline
\end{tabular}

\section*{Parameters and Options}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & ```
Specif
y
stretc
h
factor
``` & \begin{tabular}{l}
Specif \\
y \\
revers \\
e \\
recove \\
ry \\
time \\
direct \\
ly
\end{tabular} & \begin{tabular}{l}
Specif \\
y \\
revers \\
e \\
recove \\
ry \\
charge
\end{tabular} & & & \begin{tabular}{l}
Specif \\
y \\
stretc \\
\(h\) \\
factor
\end{tabular} & \begin{tabular}{l}
Specif \\
y \\
revers \\
e \\
recove \\
ry \\
time \\
direct \\
ly
\end{tabular} & \begin{tabular}{l}
Specif \\
y \\
revers \\
e \\
recove \\
ry \\
charge
\end{tabular} \\
\hline & Reverse recovery time stretch factor & Reverse recovery time, trr & Reverse recovery charge, Qrr & & & Reverse recovery time stretch factor & Reverse recovery time, trr & Reverse recovery charge, Qrr \\
\hline
\end{tabular}

\section*{Model dynamics - Diode model}

\section*{Protection diode with no dynamics (default)|Protection diode with} charge dynamics|None

Diode type. The options are:
- None - This option is the default for the synchronous converter, but is not available for the asynchronous converter.
- Diode with no dynamics - Select this option to prioritize simulation speed using the Diode block. This option is the default for the asynchronous converter.
- Diode with charge dynamics - Select this option to prioritize model fidelity in terms of reverse mode charge dynamics using the Commutation Diode block.

\section*{Dependencies}

See the Diode Parameter Dependencies table.

\section*{Forward voltage - Voltage}
0.8 V (default) | scalar

Minimum voltage required across the positive and negative block ports for the gradient of the diode I-V characteristic to be \(1 / R_{o n}\), where \(R_{o n}\) is the value of On resistance.

\section*{On resistance - Resistance}
0.001 Ohm (default) | scalar

Rate of change of voltage versus current above the Forward voltage.

\section*{Off conductance - Conductance}

1e-5 1/Ohm (default) | scalar
Conductance of the reverse-biased diode.

\section*{Junction capacitance - Capacitance}

50 nF (default) | scalar
Diode junction capacitance.

\section*{Dependencies}

See the Diode Parameter Dependencies table.

\section*{Peak reverse current, iRM - Current}
-235 A (default) | scalar less than 0
Peak reverse current measured by an external test circuit.

\section*{Dependencies}

See the Diode Parameter Dependencies table.

\section*{Initial forward current when measuring iRM - Current 300 A (default) | scalar greater than 0}

Initial forward current when measuring peak reverse current. This value must be greater than zero.

\section*{Dependencies}

See the Diode Parameter Dependencies table.

\section*{Rate of change of current when measuring iRM - Current change rate} -50 A/us (default) | scalar

Rate of change of current when measuring peak reverse current.

\section*{Dependencies}

See the Diode Parameter Dependencies table.
Reverse recovery time parameterization - Recovery-time model
Specify stretch factor (default)|Specify reverse recovery time directly |Specify reverse recovery charge

Model for parameterizing the recovery time. When you select Specify stretch factor or Specify reverse recovery charge, you can specify a value that the block uses to derive the reverse recovery time.

\section*{Dependencies}

See the Diode Parameter Dependencies table.

\section*{Reverse recovery time stretch factor - Stretch factor} 3 (default) | scalar greater than 1

Value that the block uses to calculate Reverse recovery time, trr. Specifying the stretch factor is an easier way to parameterize the reverse recovery time than specifying the reverse recovery charge. The larger the value of the stretch factor, the longer it takes for the reverse recovery current to dissipate.

\section*{Dependencies}

See the Diode Parameter Dependencies table.

\section*{Reverse recovery time, trr - Time}

\section*{15 us (default) | scalar}

Interval between the time when the current initially goes to zero (when the diode turns off) and the time when the current falls to less than 10 percent of the peak reverse current.

The value of the Reverse recovery time, trr parameter must be greater than the value of the Peak reverse current, iRM parameter divided by the value of the Rate of change of current when measuring iRM parameter.

\section*{Dependencies}

See the Diode Parameter Dependencies table.

\section*{Reverse recovery charge, Qrr - Charge}

1500 s*uA (default) | scalar
Value that the block uses to calculate Reverse recovery time, trr. Use this parameter if the data sheet for your diode device specifies a value for the reverse recovery charge instead of a value for the reverse recovery time.

The reverse recovery charge is the total charge that continues to dissipate when the
diode turns off. The value must be less than \(-\frac{i^{2}{ }_{R M}}{2 a}\),
where:
- \(i_{R M}\) is the value specified for Peak reverse current, iRM.
- \(a\) is the value specified for Rate of change of current when measuring iRM.

\section*{Dependencies}

See the Diode Parameter Dependencies table.

\section*{LC Parameters}

\section*{Inductance - Inductance}

1e-6 H (default) | positive scalar
Inductance.

\section*{Capacitance - Capacitance}

1e-7 F (default) | positive scalar
Capacitance.

\section*{Capacitor effective series resistance - Capacitor resistance 1e-6 Ohm (default) | zero or positive scalar}

Series resistance of the capacitor.

\section*{Snubbers}

The table summarizes the Snubbers parameter dependencies. To learn how to read the table, see "Parameter Dependencies" on page A-2.

\section*{Snubbers Parameter Dependencies}
\begin{tabular}{|l|l|}
\hline Snubbers Parameter Dependencies \\
\hline Snubber & RC Snubber \\
\hline \multirow{3}{|l|}{\begin{tabular}{l} 
None \\
\cline { 2 - 3 } \\
\cline { 2 - 3 } \\
\hline
\end{tabular}} & Snubber resistance \\
\hline
\end{tabular}

\section*{Snubber - Snubber model \\ None (default) | RC snubber}

Switching device snubber.

\section*{Dependencies}

See the Snubbers Parameter Dependencies table.

\section*{Snubber resistance - Resistance}
0.1 (default) | Ohm | scalar

Resistance of the switching device snubber.

\section*{Dependencies}

See the Snubbers Parameter Dependencies table.

\section*{Snubber capacitance - Capacitance \\ 1e-7 (default) | F | scalar}

Capacitance of the switching device snubber.

\section*{Dependencies}

See the Snubbers Parameter Dependencies table.

\section*{References}
[1] Trzynadlowski, A. M. Introduction to Modern Power Electronics, 2nd Edition. Hoboken, NJ: John Wiley \& Sons Inc., 2010.
[2] Han, D. and B. Sarlioglu, "Deadtime Effect on GaN-Based Synchronous Boost Converter and Analytical Model for Optimal Deadtime Selection." IEEE Transactions on Power Electronics.Vol. 31, Number 1, 2016, pp 601-612.

\author{
See Also \\ Bidirectional DC-DC Converter | Buck Converter | Buck-Boost Converter | Converter | GTO | IGBT | Ideal Semiconductor Switch | MOSFET | PWM Generator | PWM Generator (Three-phase, Two-level) | Six-Pulse Gate Multiplexer | Three-Level Converter | Thyristor
}

\section*{Topics}
"Alternatives to Specifying trr Directly" on page 1-254

\section*{Introduced in R2018a}

\section*{Brushless DC Motor}

Three-winding brushless DC motor with trapezoidal flux distribution


\section*{Library}

Simscape / Power Systems / Simscape Components / Machines / Permanent Magnet Rotor

\section*{Description}

The Brushless DC Motor block models a permanent magnet synchronous machine with a three-phase wye-wound stator. The block has four options for defining the permanent magnet flux distribution as a function of rotor angle. Two options allow for simple parameterization by assuming a perfect trapezoid for the back emf. For simple parameterization, you specify either the flux linkage or the rotor-induced back emf. The other two options give more accurate results using tabulated data that you specify. For more accurate results, you specify either the flux linkage partial derivative or the measured back emf constant for a given rotor speed.

The figure shows the equivalent electrical circuit for the stator windings.


\section*{Motor Construction}

This figure shows the motor construction with a single pole-pair on the rotor.


For the axes convention in the preceding figure, the \(a\)-phase and permanent magnet fluxes are aligned when rotor angle \(\theta_{r}\) is zero. The block supports a second rotor-axis definition. For the second definition, the rotor angle is the angle between the \(a\)-phase magnetic axis and the rotor \(q\)-axis.

\section*{Trapezoidal Rate of Change of Flux}

The rotor magnetic field due to the permanent magnets create a trapezoidal rate of change of flux with rotor angle. The figure shows this rate of change of flux.


Back emf is the rate of change of flux, defined by
\[
\frac{d \Phi}{d t}=\frac{\partial \Phi}{\partial \theta} \frac{d \theta}{d t}=\frac{\partial \Phi}{\partial \theta} \omega,
\]
where:
- \(\Phi\) is the permanent magnet flux linkage.
- \(\theta\) is the rotor angle.
- \(\omega\) is the mechanical rotational speed.

The height \(h\) of the trapezoidal rate of change of flux profile is derived from the permanent magnet peak flux.

Integrating \(\frac{\partial \Phi}{\partial \theta}\) over the range 0 to \(\Pi / 2\),
\[
\Phi_{\max }=\frac{h}{2}\left(\theta_{F}+\theta_{W}\right),
\]
where:
- \(\Phi_{\max }\) is the permanent magnet flux linkage.
- \(h\) is the rate of change of flux profile height.
- \(\theta_{F}\) is the rotor angle range over which the back emf that the permanent magnet flux induces in the stator is constant.
- \(\theta_{W}\) is the rotor angle range over which back emf increases or decreases linearly when the rotor moves at constant speed.

Rearranging the preceding equation,
\[
h=2 \Phi_{\max } /\left(\theta_{F}+\theta_{W}\right) .
\]

\section*{Electrical Defining Equations}

Voltages across the stator windings are defined by
\[
\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right]=\left[\begin{array}{ccc}
R_{s} & 0 & 0 \\
0 & R_{s} & 0 \\
0 & 0 & R_{s}
\end{array}\right]\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right]+\left[\begin{array}{c}
\frac{d \psi_{a}}{d t} \\
\frac{d \psi_{b}}{d t} \\
\frac{d \psi_{c}}{d t}
\end{array}\right],
\]
where:
- \(v_{a}, v_{b}\), and \(v_{c}\) are the external voltages applied to the three motor electrical connections.
- \(R_{s}\) is the equivalent resistance of each stator winding.
- \(i_{a}, i_{b}\), and \(i_{c}\) are the currents flowing in the stator windings.
-
\[
\frac{d \psi_{a}}{d t}, \frac{d \psi_{b}}{d t}, \text { and } \frac{d \psi_{c}}{d t}
\]
are the rates of change of magnetic flux in each stator winding.
The permanent magnet and the three windings contribute to the total flux linking each winding. The total flux is defined by
\[
\left[\begin{array}{l}
\psi_{a} \\
\psi_{b} \\
\psi_{c}
\end{array}\right]=\left[\begin{array}{lll}
L_{a a} & L_{a b} & L_{a c} \\
L_{b a} & L_{b b} & L_{b c} \\
L_{c a} & L_{c b} & L_{c c}
\end{array}\right]\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right]+\left[\begin{array}{l}
\psi_{a m} \\
\psi_{b m} \\
\psi_{c m}
\end{array}\right],
\]
where:
- \(\psi_{a}, \psi_{b}\), and \(\psi_{c}\) are the total fluxes linking each stator winding.
- \(L_{a a}, L_{b b}\), and \(L_{c c}\) are the self-inductances of the stator windings.
- \(L_{a b}, L_{a c}, L_{b a}\), etc. are the mutual inductances of the stator windings.
- \(\psi_{a m}, \psi_{b m}\), and \(\psi_{c m}\) are the permanent magnet fluxes linking the stator windings.

The inductances in the stator windings are functions of rotor angle, defined by
\[
\begin{aligned}
& L_{a a}=L_{s}+L_{m} \cos \left(2 \theta_{r}\right), \\
& L_{b b}=L_{s}+L_{m} \cos \left(2\left(\theta_{r}-2 \pi / 3\right)\right), \\
& L_{c c}=L_{s}+L_{m} \cos \left(2\left(\theta_{r}+2 \pi / 3\right)\right), \\
& L_{a b}=L_{b a}=-M_{s}-L_{m} \cos \left(2\left(\theta_{r}+\pi / 6\right)\right), \\
& L_{b c}=L_{c b}=-M_{s}-L_{m} \cos \left(2\left(\theta_{r}+\pi / 6-2 \pi / 3\right)\right),
\end{aligned}
\]
and
\[
L_{c a}=L_{a c}=-M_{s}-L_{m} \cos \left(2\left(\theta_{r}+\pi / 6+2 \pi / 3\right)\right),
\]
where:
- \(L_{s}\) is the stator self-inductance per phase - The average self-inductance of each of the stator windings.
- \(L_{m}\) is the stator inductance fluctuation - The amplitude of the fluctuation in selfinductance and mutual inductance with changing rotor angle.
- \(M_{s}\) is the stator mutual inductance - The average mutual inductance between the stator windings.

The permanent magnet flux linking each stator winding follows the trapezoidal profile shown in the figure. The block implements the trapezoidal profile using lookup tables to calculate permanent magnet flux values.

\section*{Simplified Equations}

The defining voltage and torque equations for the block are
\[
\begin{aligned}
& {\left[\begin{array}{l}
v_{d} \\
v_{q} \\
v_{0}
\end{array}\right]=P\left(\left[\begin{array}{c}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right]-N \omega\left[\begin{array}{c}
\frac{\partial \psi_{a m}}{\partial \theta_{r}} \\
\frac{\partial \psi_{b m}}{\partial \theta_{r}} \\
\frac{\partial \psi_{c m}}{\partial \theta_{r}}
\end{array}\right]\right),} \\
& v_{d}=R_{s} i_{d}+L_{d} \frac{d i_{d}}{d t}-N \omega i_{q} L_{q}, \\
& v_{q}=R_{s} i_{q}+L_{q} \frac{d i_{q}}{d t}+N \omega i_{d} L_{d}, \\
& v_{0}=R_{s} i_{0}+L_{0} \frac{d i_{0}}{d t}
\end{aligned}
\]
and
\[
T=\frac{3}{2} N\left(i_{q} i_{d} L_{d}-i_{d} i_{q} L_{q}\right)+\left[\begin{array}{lll}
i_{a} & i_{b} & i_{c}
\end{array}\right]\left[\begin{array}{c}
\frac{\partial \psi_{a m}}{\partial \theta_{r}} \\
\frac{\partial \psi_{b m}}{\partial \theta_{r}} \\
\frac{\partial \psi_{c m}}{\partial \theta_{r}}
\end{array}\right],
\]
where:
- \(v_{d}, v_{q}\), and \(v_{0}\) are the \(d\)-axis, \(q\)-axis, and zero-sequence voltages.
- \(P\) is Park's Transformation, defined by
\[
P=2 / 3\left[\begin{array}{ccc}
\cos \theta_{e} & \cos \left(\theta_{e}-2 \pi / 3\right) & \cos \left(\theta_{e}+2 \pi / 3\right) \\
-\sin \theta_{e} & -\sin \left(\theta_{e}-2 \pi / 3\right) & -\sin \left(\theta_{e}+2 \pi / 3\right) \\
0.5 & 0.5 & 0.5
\end{array}\right] .
\]
- \(N\) is the number of rotor permanent magnet pole pairs.
- \(\omega\) is the rotor mechanical rotational speed.
-
\(\frac{\partial \psi_{a m}}{\partial \theta_{r}}, \frac{\partial \psi_{b m}}{\partial \theta_{r}}\), and \(\frac{\partial \psi_{c m}}{\partial \theta_{r}}\)
are the partial derivatives of instantaneous permanent magnet flux linking each phase winding.
- \(i_{d}, i_{q}\), and \(i_{0}\) are the \(d\)-axis, \(q\)-axis, and zero-sequence currents, defined by
- \(\left[\begin{array}{l}i_{d} \\ i_{q} \\ L_{i_{0}}=\end{array}\right]=P\left[\begin{array}{l}i_{a} \\ L_{s} \\ i_{b} \\ i^{\prime} M_{s}\end{array}\right] .3 / 2 L_{m} . L_{d}\) is the stator \(d\)-axis inductance.
- \(L_{q}=L_{s}+M_{s}-3 / 2 L_{m} . L_{q}\) is the stator \(q\)-axis inductance.
- \(L_{0}=L_{s}-2 M_{s} . L_{0}\) is the stator zero-sequence inductance.
- \(T\) is the rotor torque. Torque flows from the motor case (block physical port C) to the motor rotor (block physical port R).

\section*{Variables}

Use the Variables settings to specify the priority and initial target values for the block variables before simulation. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape) .

Unlike block parameters, variables do not have conditional visibility. The Variables settings include all the existing block variables. If a variable is not used in the set of equations corresponding to the selected block configuration, the values specified for this variable are ignored.

\section*{Ports}

Expandable three-phase port
n
Electrical conserving port associated with the neutral phase
R
Mechanical rotational conserving port associated with the motor rotor
C
Mechanical rotational conserving port associated with the motor case

\section*{Parameters}

\section*{Rotor}

\section*{Back EMF profile}

Parameterization for defining the permanent magnet flux distribution as a function of rotor angle. Choose:
- Perfect trapezoid - specify maximum flux linkage to specify the maximum flux linkage for the permanent magnet and the rotor angle where the back emf is constant. The block assumes a perfect trapezoid for the back emf. This is the default value.
- Perfect trapezoid - specify maximum rotor-induced back emf to specify the maximum rotor-induced back emf and the corresponding rotor speed. The block assumes a perfect trapezoid for the back emf.
- Tabulated - specify flux partial derivative with respect to rotor angle to specify values for the partial derivative of flux linkage and the corresponding rotor angles.
- Tabulated - specify rotor-induced back emf as a function of rotor angle to specify the measured back emf constant and the corresponding rotor speed and angles.

\section*{Maximum permanent magnet flux linkage}

Peak permanent magnet flux linkage with any of the stator windings. This parameter is visible only when Back EMF profile is set to Perfect trapezoid - specify maximum flux linkage. The default value is 0.03 Wb .

\section*{Rotor angle over which back emf is constant}

Rotor angle range over which the permanent magnet flux linking the stator winding is constant. This angle is \(\theta_{\mathrm{F}}\) in the figure that shows the "Trapezoidal Rate of Change of Flux" on page 1-189. This parameter is visible only when Back EMF profile is set to Perfect trapezoid - specify maximum flux linkage. The default value is pi / 12 rad.

\section*{Maximum rotor-induced back emf}

Peak rotor-induced back emf into the stator windings. This parameter is visible only when Back EMF profile is set to Perfect trapezoid - specify maximum rotor-induced back emf. The default value is 9.6 V .

\section*{Rotor-induced back emf}

Vector of values for the rotor-induced back emf as a function of rotor angle. The first and last values must be the same, and are normally both zero. For more information, see the Corresponding rotor angles parameter. First and last values are the same
because flux is cyclic with period \(2 \pi / N\), where N is the number of permanent magnet pole pairs. This parameter is visible only when Back EMF profile is set to Tabulated - specify rotor-induced back emf as a function of rotor angle. The default value is [0.0, -9.6, -9.6, 9.6, 9.6, 0.0] V.

\section*{Flux linkage partial derivative with respect to rotor angle}

Vector of values for the partial derivative of flux linkage (where flux linkage is flux times number of winding turns) with respect to rotor angle. The first and last values must be the same, and are normally both zero. For more information, see the
Corresponding rotor angles parameter. First and last values are the same because
flux is cyclic with period \(2 \pi / N\), where \(N\) is the number of permanent magnet pole pairs. This parameter is visible only when Back EMF profile is set to Tabulated specify flux partial derivative with respect to rotor angle. The default value is \([0.0,-0.1528,-0.1528,0.1528,0.1528,0.0] \mathrm{Wb} / \mathrm{rad}\).
Corresponding rotor angles
Vector of rotor angles where the flux linkage partial derivative or rotor-induced back emf is defined. Rotor angle is defined as the angle between the \(a\)-phase magnetic axis and the \(d\)-axis. That is, when the angel is zero, the magnetic fields due to the rotor and the \(a\)-phase winding align. This definition is used regardless of your block setting
for rotor angle definition. The first value is zero, and the last value is \(2 \pi / N\), where \(N\) is the number of permanent magnet pole pairs. This parameter is visible only when Back EMF profile is set to Tabulated - specify flux partial derivative with respect to rotor angle or to Tabulated - specify rotor-induced back emf as a function of rotor angle. The default value is [0, 7.5, \(22.5,37.5,52.5,60]\) deg.

\section*{Rotor speed used for back emf measurement}

Specify the rotor speed corresponding to the maximum rotor-induced back emf. This parameter is visible only when Back EMF profile is set to Perfect trapezoid specify maximum rotor-induced back emf or Tabulated - specify rotor-induced back emf as a function of rotor angle. The default value is 600 rpm .

\section*{Number of pole pairs}

Number of permanent magnet pole pairs on the rotor. The default value is 6 .

\section*{Zero sequence}

Option to neglect zero-sequence terms. Choices are:
- Include - Include zero-sequence terms. To prioritize model fidelity, use this default setting. Using this option results in an error for simulations that use the Partitioning solver. For more information, see "Increase Simulation Speed Using the Partitioning Solver" (Simscape).
- Exclude - Exclude zero-sequence terms. To prioritize simulation speed for desktop simulation or real-time deployment, select this option.

\section*{Rotor angle definition}

Reference point for the rotor angle measurement. The default value is Angle between the a-phase magnetic axis and the d-axis. This definition is shown in the "Motor Construction" on page 1-189 figure. When you select this value, the rotor and \(a\)-phase fluxes are aligned when the rotor angle is zero.

The other value you can choose for this parameter is Angle between the a-phase magnetic axis and the \(q\)-axis. When you select this value, the \(a\)-phase current generates maximum torque when the rotor angle is zero.

\section*{Stator}

\section*{Stator parameterization}

Choose Specify Ld, Lq, and L0, the default value, or Specify Ls, Lm, and Ms.

\section*{Stator d-axis inductance, Ld}

D-axis inductance. This parameter is visible only if you set Stator parameterization to Specify Ld, Lq, and L0. The default value is 0.00022 H .

\section*{Stator \(\mathbf{q}\)-axis inductance, \(\mathbf{L q}\)}

Q-axis inductance. This parameter is visible only if you set Stator parameterization to Specify Ld, Lq, and L0. The default value is 0.00022 H .

\section*{Stator zero-sequence inductance, L0}

Zero-sequence inductance. This parameter is visible only if you set Stator parameterization to Specify Ld, Lq, and L0. The default value is 0.00016 H .

\section*{Stator self-inductance per phase, Ls}

Average self-inductance of each of the three stator windings. This parameter is visible only if you set Stator parameterization to Specify Ls, Lm, and Ms. The default value is 0.00002 H .

\section*{Stator inductance fluctuation, \(\mathbf{L m}\)}

Amplitude of the fluctuation in self-inductance and mutual inductance of the stator windings with rotor angle. This parameter is visible only if you set Stator parameterization to Specify Ls, Lm, and Ms. The default value is 0 H .

\section*{Stator mutual inductance, Ms}

Average mutual inductance between the stator windings. This parameter is visible only if you set Stator parameterization to Specify Ls, Lm, and Ms. The default value is 0.00002 H .

\section*{Stator resistance per phase, Rs}

Resistance of each of the stator windings. The default value is 0.0130 hm .

\section*{Mechanical}

\section*{Rotor Inertia}

Inertia of the rotor attached to mechanical translational port \(\mathbf{R}\). The default value is \(0.01 \mathrm{~kg}^{*} \mathrm{~m}^{\wedge} 2\). The value can be zero.

\section*{Rotor damping}

Rotary damping. The default value is \(0 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})\).

\section*{References}
[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.
[2] Anderson, P. M. Analysis of Faulted Power Systems. Hoboken, NJ: Wiley-IEEE Press, 1995.

\section*{See Also}

\section*{Simscape Blocks}

Hybrid Excitation Synchronous Machine | Permanent Magnet Synchronous Motor

\section*{Blocks \\ BLDC Commutation Logic | BLDC Current Controller | BLDC Current Controller with PWM Generation}

\section*{Topics}
"Expand and Collapse Three-Phase Ports on a Block"
Introduced in R2013b

\section*{Buck Converter}

Controller-driven DC-DC step-down voltage regulator
Library: Simscape / Power Systems / Simscape Components / Semiconductors


\section*{Description}

The Buck Converter block represents a converter that steps down DC voltage as driven by an attached controller and gate-signal generator. Buck converters are also known as stepdown voltage regulators because they decrease voltage magnitude.

The Buck Converter block allows you to model an asynchronous converter with one switching device or a synchronous converter with two switching devices. Options for the type of switching devices are:
- GTO - Gate turn-off thyristor. For information on the I-V characteristic of the device, see GTO.
- Ideal semiconductor switch - For information on the I-V characteristic of the device, see Ideal Semiconductor Switch.
- IGBT - Insulated-gate bipolar transistor. For information on the I-V characteristic of the device, see IGBT.
- MOSFET - N-channel metal-oxide-semiconductor field-effect transistor. For information on the I-V characteristic of the device, see MOSFET.
- Thyristor - For information on the I-V characteristic of the device, see Thyristor.

\section*{Model}

Each of three model variants for the Buck Converter block corresponds to a Block choice option. To access the block choices, in the model window, right-click the block, and then use either of these methods:
- From the context menu, select Simscape > Block choices.
- On the Simulink Editor menu bar, select View > Property Inspector. In the Property Inspector window, click the value of the Block choice.

The model variants are:
- PS control port - Asynchronous converter with a physical signal port. This block choice is the default.
- Electrical control ports - Asynchronous converter with one positive and one negative electrical conserving port.To control switching device gates using Simscape Electronics blocks, select this option.
- Synchronous converter - Synchronous converter with an electrical conserving port.

The asynchronous buck converter models contain a switching device, a diode, an inductor, and an output capacitor.


The synchronous buck converter model contains two switching devices, an inductor, and an output capacitor.


In each case, the capacitor smoothes the output voltage.

\section*{Protection}

For the synchronous converter model, you can include an integral protection diode for the S2 switching device. An integral diode protects the semiconductor device by providing a conduction path for reverse current. An inductive load can produce a high reverse-voltage spike when the semiconductor device suddenly switches off the voltage supply to the load.

To include and configure the internal protection diode block, use the Diode parameters. This table shows how to set the Model dynamics parameter based on your goals.
\begin{tabular}{|l|l|l|}
\hline Goals & Value to Select & Integral Protection Diode \\
\hline Do not include protection. & None & None \\
\hline \begin{tabular}{l} 
Include \\
protection.
\end{tabular} & \begin{tabular}{l} 
Prioritize \\
simulation \\
speed.
\end{tabular} & \begin{tabular}{l} 
Protection diode \\
with no dynamics
\end{tabular} \\
\cline { 2 - 4 } & \begin{tabular}{l} 
Prioritize \\
model fidelity \\
by precisely \\
specifying \\
reverse-mode \\
charge \\
dynamics.
\end{tabular} & \begin{tabular}{l} 
Protection diode block \\
with charge \\
dynamics
\end{tabular} \\
\hline
\end{tabular}

You can also include a snubber circuit for each switching device. Snubber circuits contain a series-connected resistor and capacitor. They protect switching devices against high voltages that inductive loads produce when the device turns off the voltage supply to the load. Snubber circuits also prevent excessive rates of current change when a switching device turns on.

To include and configure a snubber circuit for each switching device, use the Snubbers parameters.

\section*{Gate Control}

To connect gate-control voltage signals to the gate ports of the switching devices, for the:
- PS control port model:

1 Convert a Simulink gate-control voltage signal to a physical signal using a Simulink-PS Converter block.
2 Connect the Simulink-PS Converter block to the G port.
- Electrical control ports model:

1 Connect a Simscape electrical-domain positive DC voltage signal to the G+ port.
2 Connect the Simscape electrical-domain negative DC voltage signal to the G- port.
- Synchronous converter model:

1 Convert each Simulink gate-control voltage signal to a physical signal using Simulink-PS Converter blocks.
2 Multiplex the converted gate-control signals into a single vector using a Two-Pulse Gate Multiplexer.
3 Connect the vector signal to the \(\mathbf{G}\) port.

\section*{Ports}

\section*{Input}

G - Switching device gate control
physical signal | vector
Physical signal port associated with the gate terminals of the switching device.

\section*{Dependencies}

This port is enabled only for the PS control port block choice.
Data Types: double

\section*{Conserving}

\section*{G - Switching device gate control}
electrical | vector
Electrical conserving port associated with the gate terminals of the switching devices.

\section*{Dependencies}

This port is enabled only for the Synchronous converter block choice.

\section*{Data Types: double}

\section*{G+ - Switching device gate control positive terminal}
electrical | scalar
Positive electrical conserving port associated with the positive gate terminal of the switching device.

\section*{Dependencies}

This port is enabled only for the Electrical control ports block choice.
Data Types: double

\section*{G- - Switching device gate control negative terminal \\ electrical | scalar}

Negative electrical conserving port associated with the negative gate terminal of the switching device.

\section*{Dependencies}

This port is enabled only for the Electrical control ports block choice.
Data Types: double
1+ - Positive DC voltage 1
electrical | scalar

Electrical conserving port associated with the positive terminal of the first DC voltage.

\section*{Data Types: double}

\section*{1- - Negative DC voltage 1 \\ electrical | scalar}

Electrical conserving port associated with the negative terminal of the first DC voltage.

\section*{Data Types: double}

\section*{2+ - Positive DC voltage 2}
electrical | scalar
Electrical conserving port associated with the positive terminal of the second DC voltage.

\section*{Data Types: double}

\section*{2- - Negative DC voltage 2 electrical | scalar}

Electrical conserving port associated with the negative terminal of the second DC voltage. Data Types: double

\section*{Parameters}

\section*{Switching Devices}

This table shows how the visibility of Switching Devices parameters depends on the Switching device that you select. To learn how to read the table, see "Parameter Dependencies" on page A-2.

Switching Devices Parameter Dependencies
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{5}{|l|}{ Parameters and Options } \\
\hline \multicolumn{4}{|l|}{ Switching device } & IGBT \\
\hline \begin{tabular}{l} 
Ideal \\
Semiconducto \\
r Switch
\end{tabular} & GTO & MOSFET & Thyristor \\
\hline \begin{tabular}{l} 
On-state \\
resistance
\end{tabular} & Forward voltage & Forward voltage & \begin{tabular}{l} 
Drain-source on \\
resistance
\end{tabular} & Forward voltage \\
\hline \begin{tabular}{l} 
Off-state \\
conductance
\end{tabular} & \begin{tabular}{l} 
On-state \\
resistance
\end{tabular} & \begin{tabular}{l} 
On-state \\
resistance
\end{tabular} & \begin{tabular}{l} 
Off-state \\
conductance
\end{tabular} & \begin{tabular}{l} 
On-state \\
resistance
\end{tabular} \\
\hline \begin{tabular}{l} 
Threshold \\
voltage
\end{tabular} & \begin{tabular}{l} 
Off-state \\
conductance
\end{tabular} & \begin{tabular}{l} 
Off-state \\
conductance
\end{tabular} & \begin{tabular}{l} 
Threshold \\
voltage
\end{tabular} & \begin{tabular}{l} 
Off-state \\
conductance
\end{tabular} \\
\cline { 2 - 2 } & \begin{tabular}{l} 
Gate trigger \\
voltage, Vgt
\end{tabular} & \begin{tabular}{l} 
Threshold \\
voltage
\end{tabular} & & \begin{tabular}{l} 
Gate trigger \\
voltage, Vgt
\end{tabular} \\
\cline { 2 - 2 } & \begin{tabular}{l} 
Gate turn-off \\
voltage, Vgt_off
\end{tabular} & & \begin{tabular}{l} 
Gate turn-off \\
voltage, Vgt_off
\end{tabular} \\
\cline { 2 - 2 } & Holding current & & Holding current \\
\hline
\end{tabular}

\section*{Switching device - Switch type}

\section*{Ideal Semiconductor Switch (default)|GTO|IGBT|MOSFET|Thyristor}

Switching device type for the converter. For the synchronous model, the switches are identical.

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{Forward voltage - Voltage}
0. 8 V (default) | scalar

For the different switching device types, the Forward voltage is taken as:
- GTO - Minimum voltage required across the anode and cathode block ports for the gradient of the device I-V characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of \(\mathbf{O n}\)-state resistance
- IGBT - Minimum voltage required across the collector and emitter block ports for the gradient of the diode I-V characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of \(\mathbf{O n}\)-state resistance
- Thyristor - Minimum voltage required for the device to turn on

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{On-state resistance - Resistance}
0.001 Ohm (default) | scalar

For the different switching device types, the On-state resistance is taken as:
- GTO - Rate of change of voltage versus current above the forward voltage
- Ideal semiconductor switch - Anode-cathode resistance when the device is on
- IGBT - Collector-emitter resistance when the device is on
- Thyristor - Anode-cathode resistance when the device is on

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{Drain-source on resistance - Resistance}
0.001 Ohm (default) | scalar

Resistance between the drain and the source, which also depends on the gate-to-source voltage.

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{Off-state conductance - Conductance}

1e-5 1/0hm (default) | scalar
Conductance when the device is off. The value must be less than \(1 / R\), where \(R\) is the value of On-state resistance.

For the different switching device types, the On-state resistance is taken as:
- GTO - Anode-cathode conductance
- Ideal semiconductor switch - Anode-cathode conductance
- IGBT - Collector-emitter conductance
- MOSFET - Drain-source conductance
- Thyristor - Anode-cathode conductance

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{Threshold voltage - Voltage threshold}

6 V (default) | scalar
Gate voltage threshold. The device turns on when the gate voltage is above this value. For the different switching device types, the device voltage of interest is:
- Ideal semiconductor switch - Gate-emitter voltage
- IGBT - Gate-cathode voltage
- MOSFET - Gate-source voltage

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{Gate trigger voltage, Vgt - Voltage threshold}

\section*{1 V (default) | scalar}

Gate-cathode voltage threshold. The device turns on when the gate-cathode voltage is above this value.

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{Gate turn-off voltage, Vgt_off - Voltage threshold}
```

-1 V (default)| scalar

```

Gate-cathode voltage threshold. The device turns off when the gate-cathode voltage is below this value.

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{Holding current - Current threshold}

\section*{1 A (default) | scalar}

Gate current threshold. The device stays on when the current is above this value, even when the gate-cathode voltage falls below the gate trigger voltage.

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{Diode}

This table shows how the visibility of Diode parameters depends on how you configure the Block choice, Model dynamics, and Reverse recovery time parameterization parameters. To learn how to read this table, see "Parameter Dependencies" on page A2.

Diode Parameter Dependencies
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Parameters and Options} \\
\hline \multicolumn{5}{|l|}{Block choice} \\
\hline \multicolumn{2}{|l|}{PS control port or Electrical control ports} & \multicolumn{3}{|l|}{Synchronous converter} \\
\hline \multicolumn{2}{|l|}{Model dynamics} & \multicolumn{3}{|l|}{Model dynamics} \\
\hline Diode with no dynami cs & Diode with charge dynamics & None & Protec tion diode with no dynami cs & Protection diode with charge dynamics \\
\hline Forward voltage & Forward voltage & & Forward voltage & Forward voltage \\
\hline On resistan ce & On resistance & & On resistan ce & On resistance \\
\hline \multirow[t]{6}{*}{Off conduct ance} & Off conductance & & \multirow[t]{6}{*}{\begin{tabular}{l}
Off \\
conduct ance
\end{tabular}} & Off conductance \\
\hline & Junction capacitance & & & Junction capacitance \\
\hline & Peak reverse current, iRM & & & Peak reverse current, iRM \\
\hline & Initial forward current when measuring iRM & & & Initial forward current when measuring iRM \\
\hline & Rate of change of current when measuring iRM & & & Rate of change of current when measuring iRM \\
\hline & Reverse recovery time parameterization & & & Reverse recovery time parameterization \\
\hline
\end{tabular}

\section*{Parameters and Options}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \begin{tabular}{l}
Specif \\
y \\
stretc \\
h \\
factor
\end{tabular} & \begin{tabular}{l}
Specif \\
y \\
revers \\
e \\
recove \\
ry \\
time \\
direct \\
ly
\end{tabular} & \begin{tabular}{l}
Specif \\
y \\
revers \\
e \\
recove \\
ry \\
charge
\end{tabular} & & & ```
Specif
y
stretc
h
factor
``` & \begin{tabular}{l}
Specif \\
y \\
revers \\
e \\
recove \\
ry \\
time \\
direct \\
ly
\end{tabular} & \begin{tabular}{l}
Specif \\
y \\
revers \\
e \\
recove \\
ry \\
charge
\end{tabular} \\
\hline & Reverse recovery time stretch factor & Reverse recovery time, trr & Reverse recovery charge, Qrr & & & Reverse recovery time stretch factor & Reverse recovery time, trr & Reverse recovery charge, Qrr \\
\hline
\end{tabular}

\section*{Model dynamics - Diode model}

\section*{Protection diode with no dynamics (default)|Protection diode with} charge dynamics|None

Diode type. The options are:
- None - This option is the default for the synchronous converter, but is not available for the asynchronous converter.
- Diode with no dynamics - Select this option to prioritize simulation speed using the Diode block. This option is the default for the asynchronous converter.
- Diode with charge dynamics - Select this option to prioritize model fidelity in terms of reverse mode charge dynamics using the Commutation Diode block.

\section*{Dependencies}

See the Diode Parameter Dependencies table.

\section*{Forward voltage - Voltage}
0.8 V (default) | scalar

Minimum voltage required across the positive and negative block ports for the gradient of the diode I-V characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of \(\mathbf{O n}\) resistance.

\section*{On resistance - Resistance}
0.001 Ohm (default) | scalar

Rate of change of voltage versus current above the Forward voltage.

\section*{Off conductance - Conductance}

1e-5 1/Ohm (default) | scalar
Conductance of the reverse-biased diode.

\section*{Junction capacitance - Capacitance}

50 nF (default) | scalar
Diode junction capacitance.

\section*{Dependencies}

See the Diode Parameter Dependencies table.
Peak reverse current, iRM - Current
-235 A (default) | scalar less than 0
Peak reverse current measured by an external test circuit.

\section*{Dependencies}

See the Diode Parameter Dependencies table.

\section*{Initial forward current when measuring iRM - Current 300 A (default) | scalar greater than 0}

Initial forward current when measuring peak reverse current. This value must be greater than zero.

\section*{Dependencies}

See the Diode Parameter Dependencies table.
Rate of change of current when measuring iRM - Current change rate -50 A/us (default) | scalar

Rate of change of current when measuring peak reverse current.

\section*{Dependencies}

See the Diode Parameter Dependencies table.
Reverse recovery time parameterization - Recovery-time model
Specify stretch factor (default)|Specify reverse recovery time directly |Specify reverse recovery charge

Model for parameterizing the recovery time. When you select Specify stretch factor or Specify reverse recovery charge, you can specify a value that the block uses to derive the reverse recovery time.

\section*{Dependencies}

See the Diode Parameter Dependencies table.

\section*{Reverse recovery time stretch factor - Stretch factor} 3 (default) | scalar greater than 1

Value that the block uses to calculate Reverse recovery time, trr. Specifying the stretch factor is an easier way to parameterize the reverse recovery time than specifying the reverse recovery charge. The larger the value of the stretch factor, the longer it takes for the reverse recovery current to dissipate.

\section*{Dependencies}

See the Diode Parameter Dependencies table.

\section*{Reverse recovery time, trr - Time}
```

15 us (default)| scalar

```

Interval between the time when the current initially goes to zero (when the diode turns off) and the time when the current falls to less than 10 percent of the peak reverse current.

The value of the Reverse recovery time, trr parameter must be greater than the value of the Peak reverse current, iRM parameter divided by the value of the Rate of change of current when measuring iRM parameter.

\section*{Dependencies}

See the Diode Parameter Dependencies table.

\section*{Reverse recovery charge, Qrr - Charge 1500 s*uA (default) | scalar}

Value that the block uses to calculate Reverse recovery time, trr. Use this parameter if the data sheet for your diode device specifies a value for the reverse recovery charge instead of a value for the reverse recovery time.

The reverse recovery charge is the total charge that continues to dissipate when the diode turns off. The value must be less than \(-\frac{i^{2}{ }_{R M}}{2 a}\), where:
- \(i_{R M}\) is the value specified for Peak reverse current, iRM.
- \(a\) is the value specified for Rate of change of current when measuring iRM.

\section*{Dependencies}

See the Diode Parameter Dependencies table.

\section*{LC Filter}

\section*{Inductance - Filter inductance}

1e-6 H (default) | positive scalar
Inductance of the LC filter.

\section*{Capacitance - Filter capacitance}
```

1e-7 F (default) | positive scalar

```

Capacitance of the LC filter.

\section*{Capacitor effective series resistance - Capacitor resistance 1e-6 Ohm (default) | zero or positive scalar}

Series resistance of the capacitor.

\section*{Snubbers}

The table summarizes the Snubbers parameter dependencies. To learn how to read the table, see "Parameter Dependencies" on page A-2.

\section*{Snubbers Parameter Dependencies}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ Snubbers Parameter Dependencies } \\
\hline Snubber & \multicolumn{1}{|l|}{} \\
\hline \multirow{3}{|l|}{ None } & RC Snubber \\
\cline { 2 - 3 } & Snubber resistance \\
\cline { 2 - 3 } & Snubber capacitance \\
\hline
\end{tabular}

\section*{Snubber - Snubber model \\ None (default) | RC snubber}

Switching device snubber.

\section*{Dependencies}

See the Snubbers Parameter Dependencies table.

\section*{Snubber resistance - Resistance}
0.1 (default) | Ohm | scalar

Resistance of the switching device snubber.

\section*{Dependencies}

See the Snubbers Parameter Dependencies table.

\section*{Snubber capacitance - Capacitance}

1e-7 (default) | F | scalar
Capacitance of the switching device snubber.

\section*{Dependencies}

See the Snubbers Parameter Dependencies table.

\section*{References}
[1] Trzynadlowski, A. M. Introduction to Modern Power Electronics, 2nd Edition. Hoboken, NJ: John Wiley \& Sons Inc., 2010.
[2] Hedayati, M. H., P. Bharadwaj, and V. John. "Hybrid synchronous DC-DC buck power converter using Si and GaN transistors." IEEE International Conference on Power

Electronics, Drives and Energy Systems (PEDES). Trivandrum, India: 2016, pp 1-6.

\section*{See Also}

Bidirectional DC-DC Converter | Boost Converter | Buck-Boost Converter | Converter | GTO | IGBT | Ideal Semiconductor Switch | MOSFET | PWM Generator | PWM Generator (Three-phase, Two-level) | Six-Pulse Gate Multiplexer | Three-Level Converter | Thyristor

\section*{Topics}
"Alternatives to Specifying trr Directly" on page 1-254

\section*{Introduced in R2018a}

\section*{Buck-Boost Converter}

Controller-driven DC-DC inverting or four-switch step-up or step-down voltage regulator
Library: Simscape / Power Systems / Simscape Components / Semiconductors

\section*{Description}

The Buck-Boost Converter block represents a DC-DC converter that can either step up or step down DC voltage from one side of the converter to the other as driven by an attached controller and gate-signal generator. Buck-boost converters are also known as step-up/ step-down voltage regulators because they can increase or decrease voltage magnitude.

The block can also invert voltage so that the polarity of the output voltage is the opposite of the polarity of the input voltage. The magnitude of the output voltage depends on the duty cycle.

The Buck-Boost Converter block allows you to model an inverting buck-boost converter with one switching device or a buck-boost converter with four switching devices. Options for the type of switching devices are:
- GTO - Gate turn-off thyristor. For information on the I-V characteristic of the device, see GTO.
- Ideal semiconductor switch - For information on the I-V characteristic of the device, see Ideal Semiconductor Switch.
- IGBT - Insulated-gate bipolar transistor. For information on the I-V characteristic of the device, see IGBT.
- MOSFET - N-channel metal-oxide-semiconductor field-effect transistor. For information on the I-V characteristic of the device, see MOSFET.
- Thyristor - For information on the I-V characteristic of the device, see Thyristor.

\section*{Model}

Each of three model variants for the Buck-Boost Converter block corresponds to a Block choice option. To access the block choices, in the model window, right-click the block, and then use either of these methods:
- From the context menu, select Simscape > Block choices.
- On the Simulink Editor menu bar, select View > Property Inspector. In the Property Inspector window, click the value of the Block choice.

The model variants are:
- PS control port - Inverting buck-boost converter with a physical signal port. This block choice is the default.
- Electrical control ports - Inverting buck-boost converter with one positive and one negative electrical conserving ports. To control switching device gates using Simscape Electronics blocks, select this option.
- Four-switch converter - Four-switch buck-boost converter with an electrical conserving port.

The inverting converter models contain a switching device, a diode, an inductor, and an output capacitor.

The four-switch converter model contains four switching devices, an inductor, and an output capacitor.

In each case, the capacitor smoothes the output voltage.

\section*{Protection}

You can include a snubber circuit for each switching device. Snubber circuits contain a series-connected resistor and capacitor. They protect switching devices against high voltages that inductive loads produce when the device turns off the voltage supply to the load. Snubber circuits also prevent excessive rates of current change when a switching device turns on.

To include and configure a snubber circuit for each switching device, use the Snubbers parameters.

\section*{Gate Control}

To connect gate-control voltage signals to the gate ports of the switching devices, for the:
- PS control port model:

1 Convert a Simulink gate-control voltage signal to a physical signal using a Simulink-PS Converter block.
2 Connect the Simulink-PS Converter block to the G port.
- Electrical control ports model:

1 Connect a Simscape electrical-domain positive DC voltage signal to the \(\mathbf{G}+\) port.
2 Connect the Simscape electrical-domain negative DC voltage signal to the G- port.
- Synchronous converter model:

1 Convert each Simulink gate-control voltage signal to a physical signal using Simulink-PS Converter blocks.
2 Multiplex the converted gate-control signals into a single vector using a FourPulse Gate Multiplexer
3 Connect the vector signal to the \(\mathbf{G}\) port.

\section*{Ports}

\section*{Input}

G - Switching device gate control
physical signal | vector
Physical signal port associated with the gate terminals of the switching device.

\section*{Dependencies}

This port is enabled only for the PS control port block choice.

\section*{Data Types: double}

\section*{Conserving}

\section*{G - Switching device gate control}
electrical | vector
Electrical conserving port associated with the gate terminals of the switching devices.

\section*{Dependencies}

This port is enabled only for the Four-switch converter block choice.
Data Types: double

\section*{G+ - Switching device gate control positive terminal electrical | scalar}

Positive electrical conserving port associated with the positive gate terminal of the switching device.

\section*{Dependencies}

This port is enabled only for the Electrical control ports block choice.
Data Types: double

\section*{G- - Switching device gate control negative terminal electrical | scalar}

Negative electrical conserving port associated with the negative gate terminal of the switching device.

\section*{Dependencies}

This port is enabled only for the Electrical control ports block choice.
Data Types: double

\section*{1+ - Positive DC voltage 1}
electrical | scalar
Electrical conserving port associated with the positive terminal of the first DC voltage.
Data Types: double

\section*{1- - Negative DC voltage 1 \\ electrical | scalar}

Electrical conserving port associated with the negative terminal of the first DC voltage.
Data Types: double
2+ - Positive DC voltage 2
electrical | scalar

Electrical conserving port associated with the positive terminal of the second DC voltage.

\section*{Data Types: double}

\section*{2- - Negative DC voltage 2}
electrical | scalar
Electrical conserving port associated with the negative terminal of the second DC voltage.
Data Types: double

\section*{Parameters}

\section*{Switching Devices}

This table shows how the visibility of Switching Devices parameters depends on the Switching device that you select. To learn how to read the table, see "Parameter Dependencies" on page A-2.

Switching Devices Parameter Dependencies
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{4}{|l|}{ Parameters and Options } & IGBT \\
\hline \begin{tabular}{l}
Switching device \\
\begin{tabular}{l}
Semiconducto \\
r Switch
\end{tabular}
\end{tabular} & GTO & MOSFET & Thyristor \\
\hline \begin{tabular}{l}
On-state \\
resistance
\end{tabular} & Forward voltage & Forward voltage & \begin{tabular}{l}
Drain-source on \\
resistance
\end{tabular} & Forward voltage \\
\hline \begin{tabular}{l}
Off-state \\
conductance
\end{tabular} & \begin{tabular}{l}
On-state \\
resistance
\end{tabular} & \begin{tabular}{l}
On-state \\
resistance
\end{tabular} & \begin{tabular}{l}
Off-state \\
conductance
\end{tabular} & \begin{tabular}{l}
On-state \\
resistance
\end{tabular} \\
\hline \begin{tabular}{l}
Threshold \\
voltage
\end{tabular} & \begin{tabular}{l}
Off-state \\
conductance
\end{tabular} & \begin{tabular}{l}
Off-state \\
conductance
\end{tabular} & \begin{tabular}{l}
Threshold \\
voltage
\end{tabular} & \begin{tabular}{l}
Off-state \\
conductance
\end{tabular} \\
\cline { 2 - 2 } & \begin{tabular}{l}
Gate trigger \\
voltage, Vgt
\end{tabular} & \begin{tabular}{l}
Threshold \\
voltage
\end{tabular} & & \begin{tabular}{l}
Gate trigger \\
voltage, Vgt
\end{tabular} \\
\cline { 2 - 2 } & \begin{tabular}{l}
Gate turn-off \\
voltage, Vgt_off
\end{tabular} & & \begin{tabular}{l}
Gate turn-off \\
voltage, Vgt_off
\end{tabular} \\
\cline { 2 - 2 } & Holding current & & Holding current \\
\hline
\end{tabular}

\section*{Switching device - Switch type \\ Ideal Semiconductor Switch (default)|GTO | IGBT | MOSFET | Thyristor}

Switching device type for the converter. For the four-switch model, the switches are identical.
model.

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{Forward voltage - Voltage}
0.8 V (default) | scalar

For the different switching device types, the Forward voltage is taken as:
- GTO - Minimum voltage required across the anode and cathode block ports for the gradient of the device I-V characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of \(\mathbf{O n}\)-state resistance
- IGBT - Minimum voltage required across the collector and emitter block ports for the gradient of the diode I-V characteristic to be \(1 / R_{o n}\), where \(R_{o n}\) is the value of On-state resistance
- Thyristor - Minimum voltage required for the device to turn on

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{On-state resistance - Resistance}
0.001 Ohm (default) | scalar

For the different switching device types, the On-state resistance is taken as:
- GTO - Rate of change of voltage versus current above the forward voltage
- Ideal semiconductor switch - Anode-cathode resistance when the device is on
- IGBT - Collector-emitter resistance when the device is on
- Thyristor - Anode-cathode resistance when the device is on

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.
Drain-source on resistance - Resistance
0.001 Ohm (default) | scalar

Resistance between the drain and the source, which also depends on the gate-to-source voltage.

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{Off-state conductance - Conductance}

1e-5 1/Ohm (default) | scalar
Conductance when the device is off. The value must be less than \(1 / R\), where \(R\) is the value of On-state resistance.

For the different switching device types, the On-state resistance is taken as:
- GTO - Anode-cathode conductance
- Ideal semiconductor switch - Anode-cathode conductance
- IGBT - Collector-emitter conductance
- MOSFET - Drain-source conductance
- Thyristor - Anode-cathode conductance

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{Threshold voltage - Voltage threshold}

6 V (default) | scalar
Gate voltage threshold. The device turns on when the gate voltage is above this value. For the different switching device types, the device voltage of interest is:
- Ideal semiconductor switch - Gate-emitter voltage
- IGBT - Gate-cathode voltage
- MOSFET - Gate-source voltage

Dependencies
See the Switching Devices Parameter Dependencies table.

\section*{Gate trigger voltage, Vgt - Voltage threshold 1 V (default) | scalar}

Gate-cathode voltage threshold. The device turns on when the gate-cathode voltage is above this value.

Dependencies
See the Switching Devices Parameter Dependencies table.

\section*{Gate turn-off voltage, Vgt_off - Voltage threshold}
```

-1 V (default) | scalar

```

Gate-cathode voltage threshold. The device turns off when the gate-cathode voltage is below this value.

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{Holding current - Current threshold}

\section*{1 A (default) | scalar}

Gate current threshold. The device stays on when the current is above this value, even when the gate-cathode voltage falls below the gate trigger voltage.

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{Diode}

This table shows how the visibility of Diode parameters depends on how you configure the Model dynamics and Reverse recovery time parameterization parameters. To learn how to read this table, see "Parameter Dependencies" on page A-2.

Diode Parameter Dependencies
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Parameters and Options} \\
\hline \multicolumn{4}{|l|}{Model dynamics} \\
\hline Diode with no dynamics & \multicolumn{3}{|l|}{Diode with charge dynamics} \\
\hline Forward voltage & \multicolumn{3}{|l|}{Forward voltage} \\
\hline On resistance & \multicolumn{3}{|l|}{On resistance} \\
\hline \multirow[t]{8}{*}{Off conductance} & \multicolumn{3}{|l|}{Off conductance} \\
\hline & \multicolumn{3}{|l|}{Junction capacitance} \\
\hline & \multicolumn{3}{|l|}{Peak reverse current, iRM} \\
\hline & \multicolumn{3}{|l|}{Initial forward current when measuring iRM} \\
\hline & \multicolumn{3}{|l|}{Rate of change of current when measuring iRM} \\
\hline & \multicolumn{3}{|l|}{Reverse recovery time parameterization} \\
\hline & Specify stretch factor & Specify reverse recovery time directly & Specify reverse recovery charge \\
\hline & Reverse recovery time stretch factor & Reverse recovery time, trr & Reverse recovery charge, Qrr \\
\hline
\end{tabular}

\section*{Model dynamics - Diode model}

\section*{Diode with no dynamics (default)|Diode with charge dynamics}

Diode type. The options are:
- Diode with no dynamics - Select this option to prioritize simulation speed using the Diode block.
- Diode with charge dynamics - Select this option to prioritize model fidelity in terms of reverse mode charge dynamics using the Commutation Diode block.

\section*{Dependencies}

See the Diode Parameter Dependencies table.

\section*{Forward voltage - Voltage}

\subsection*{0.8 V (default) | scalar}

Minimum voltage required across the positive and negative block ports for the gradient of the diode I-V characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of \(\mathbf{O n}\) resistance.

On resistance - Resistance
0.001 Ohm (default) | scalar

Rate of change of voltage versus current above the Forward voltage.

\section*{Off conductance - Conductance}

1e-5 1/0hm (default) | scalar
Conductance of the reverse-biased diode.

\section*{Junction capacitance - Capacitance}

50 nF (default) | scalar
Diode junction capacitance.

\section*{Dependencies}

See the Diode Parameter Dependencies table.

\section*{Peak reverse current, iRM - Current}
- 235 A (default) | scalar less than 0

Peak reverse current measured by an external test circuit.

\section*{Dependencies}

See the Diode Parameter Dependencies table.

\section*{Initial forward current when measuring iRM - Current 300 A (default) | scalar greater than 0}

Initial forward current when measuring peak reverse current. This value must be greater than zero.

\section*{Dependencies}

See the Diode Parameter Dependencies table.

\section*{Rate of change of current when measuring iRM - Current change rate} -50 A/us (default) | scalar

Rate of change of current when measuring peak reverse current.

\section*{Dependencies}

See the Diode Parameter Dependencies table.
Reverse recovery time parameterization - Recovery-time model
Specify stretch factor (default)|Specify reverse recovery time directly |Specify reverse recovery charge

Model for parameterizing the recovery time. When you select Specify stretch factor or Specify reverse recovery charge, you can specify a value that the block uses to derive the reverse recovery time.

\section*{Dependencies}

See the Diode Parameter Dependencies table.

\section*{Reverse recovery time stretch factor - Stretch factor 3 (default) | scalar greater than 1}

Value that the block uses to calculate Reverse recovery time, trr. Specifying the stretch factor is an easier way to parameterize the reverse recovery time than specifying the reverse recovery charge. The larger the value of the stretch factor, the longer it takes for the reverse recovery current to dissipate.

\section*{Dependencies}

See the Diode Parameter Dependencies table.

\section*{Reverse recovery time, trr - Time}

15 us (default) | scalar
Interval between the time when the current initially goes to zero (when the diode turns off) and the time when the current falls to less than 10 percent of the peak reverse current.

The value of the Reverse recovery time, trr parameter must be greater than the value of the Peak reverse current, iRM parameter divided by the value of the Rate of change of current when measuring iRM parameter.

Dependencies
See the Diode Parameter Dependencies table.
Reverse recovery charge, Qrr - Charge 1500 s*uA (default) | scalar

Value that the block uses to calculate Reverse recovery time, trr. Use this parameter if the data sheet for your diode device specifies a value for the reverse recovery charge instead of a value for the reverse recovery time.

The reverse recovery charge is the total charge that continues to dissipate when the diode turns off. The value must be less than \(-\frac{i^{2}{ }_{R M}}{2 a}\), where:
- \(i_{R M}\) is the value specified for Peak reverse current, iRM.
- \(a\) is the value specified for Rate of change of current when measuring iRM.

Dependencies
See the Diode Parameter Dependencies table.

\section*{LC Parameters}

\section*{Inductance - Inductance}

1e-6 H (default) | positive scalar
Inductance.
Capacitance - Capacitance
1e-7 F (default) | positive scalar
Capacitance.
Capacitor effective series resistance - Capacitor resistance
1e-6 Ohm (default) | zero or positive scalar
Series resistance of the capacitor.

\section*{Snubbers}

The table summarizes the Snubbers parameter dependencies. To learn how to read the table, see "Parameter Dependencies" on page A-2.

\section*{Snubbers Parameter Dependencies}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ Snubbers Parameter Dependencies } \\
\hline Snubber \\
\hline \multirow{3}{|l|}{ None } & \(R C\) Snubber \\
\cline { 2 - 3 } & Snubber resistance \\
\cline { 2 - 3 } & Snubber capacitance \\
\hline
\end{tabular}

\section*{Snubber - Snubber model \\ None (default) \| RC snubber}

Switching device snubber.

\section*{Dependencies}

See the Snubbers Parameter Dependencies table.

\section*{Snubber resistance - Resistance}
0.1 (default) | Ohm | scalar

Resistance of the switching device snubber.

\section*{Dependencies}

See the Snubbers Parameter Dependencies table.

\section*{Snubber capacitance - Capacitance}

1e-7 (default) | F | scalar
Capacitance of the switching device snubber.

\section*{Dependencies}

See the Snubbers Parameter Dependencies table.

\section*{References}
[1] Trzynadlowski, A. M. Introduction to Modern Power Electronics, 2nd Edition. Hoboken, NJ: John Wiley \& Sons Inc., 2010.
[2] Xiaoyong, R., Z. Tang, X. Ruan, J. Wei and G. Hua. Four Switch Buck-Boost Converter for Telecom DC-DC power supply applications. Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition. Austin, TX: 2008, pp 1527-1530.

\section*{See Also}

Bidirectional DC-DC Converter | Boost Converter | Buck Converter | Converter | GTO | IGBT | Ideal Semiconductor Switch | MOSFET | PWM Generator | PWM Generator (Threephase, Two-level) | Six-Pulse Gate Multiplexer | Three-Level Converter | Thyristor

\section*{Topics}
"Alternatives to Specifying trr Directly" on page 1-254

Introduced in R2018a

\section*{Cauer Thermal Model Element}

Heat transfer through an individual layer of a semiconductor module

\section*{Library}

Semiconductors / Fundamental Components / Thermal

\section*{Description}

The Cauer Thermal Model Element block represents heat transfer through an individual layer of a semiconductor module. The figure shows an equivalent circuit for a Cauer Thermal Model Element block.

A Cauer thermal model represents the multiple layers that constitute the packaging of a semiconductor. Layers include chip, solder, substrate, solder, and base. Other terms that describe a Cauer thermal model are:
- Continued fraction circuit
- T model
- Ladder network

To create a Cauer thermal model, connect multiple instances of the Cauer Thermal Model Element block in series. In the figure of the Cauer thermal model, \(T_{j}\) is the junction temperature and \(T_{c}\) is the base plate temperature.

The defining equations for the Cauer Thermal Model Element block are:
\[
\begin{aligned}
& C_{\text {thermal }}=\frac{\tau}{R_{\text {thermal }}}, \\
& Q_{A B}=\frac{T_{A B}}{R_{\text {thermal }}},
\end{aligned}
\]
and
\[
Q_{A R}=C_{\text {thermal }} \frac{d T_{A R}}{d t},
\]
where:
- \(C_{\text {thermal }}\) is the thermal capacity.
- \(\tau\) is the thermal time constant.
- \(R_{\text {thermal }}\) is the thermal resistance.
- \(Q_{A B}\) is the heat flow through the material.
- \(T_{A B}\) is the temperature difference between the material layers.
- \(Q_{A R}\) is the heat flow through the thermal capacity.
- \(T_{A R}\) is the temperature drop across the thermal capacity.

\section*{Parameters}
- "Parameters Tab" on page 1-234
- "Variables Tab" on page 1-234

\section*{Parameters Tab}

\section*{Thermal resistance}

The default value for the thermal resistance, \(R_{\text {thermal, }}\) is \(5 \mathrm{e}-3 \mathrm{~K} / \mathrm{W}\).

\section*{Thermal time constant}

The default value for the thermal time constant, \(\tau\), is 0.1 s .

\section*{Variables Tab}

Use the Variables settings to specify the priority and initial target values for the block variables before simulation. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape) .

Unlike block parameters, variables do not have conditional visibility. The Variables settings include all the existing block variables. If a variable is not used in the set of equations corresponding to the selected block configuration, the values specified for this variable are ignored.

\section*{Ports}

The block has the following ports:
A
Thermal conserving port associated with the first surface of the individual layer of the semiconductor.
R
Thermal conserving port associated with the chosen thermal reference.
B
Thermal conserving port associated with the second surface of the individual layer of the semiconductor.

\section*{References}
[1] Schütze, T. AN2008-03: Thermal equivalent circuit models. Application Note. V1.0. Germany: Infineon Technologies AG, 2008.

\section*{See Also}

Foster Thermal Model \| Thermal Resistor

\section*{Topics}
"Quantifying IGBT Thermal Losses"

Introduced in R2016a

\section*{Circuit Breaker}

Three-phase circuit breaker controlled by external signal

\section*{Library}

Switches \& Breakers

\section*{Description}

The Circuit Breaker block models a three-phase circuit breaker that uses an external signal and phase current information to break an electrical circuit.

The table shows how the external signal vT controls the block behavior.
\begin{tabular}{|l|l|l|}
\hline Condition & Block Behavior & \begin{tabular}{l}
Resistance \\
Parameter Used
\end{tabular} \\
\hline vT < Threshold & \begin{tabular}{l}
The breaker is closed. Each phase in the \\
composite three-phase port \(\sim 1\) connects to the \\
corresponding phase in the port \(\sim 2\).
\end{tabular} & Closed Resistance \\
\hline vT \(\geq\) Threshold & \begin{tabular}{l}
When the current in any phase of the \\
composite port \(\sim 1\) crosses zero, the phase \\
disconnects from the corresponding phase at \\
port \(\sim 2\). The breaker is open.
\end{tabular} & Open Conductance \\
\hline
\end{tabular}

\section*{Parameters}

\section*{Closed resistance}

Resistance between ports \(\sim 1\) and \(\sim 2\) when the breaker is closed. The default value is 0. 001 Ohm.

\section*{Open conductance}

Conductance between ports \(\sim 1\) and \(\sim 2\) when the breaker is open. The default value is 1e-6 1/0hm.

\section*{Threshold}

Threshold voltage for the control port vT. The block uses the threshold voltage and the value of \(v T\) at the start of the simulation to determine whether the breaker is initially open or closed. When the voltage rises above the threshold, the breaker opens each phase as its current crosses zero. When the control port voltage falls below the threshold, the breaker closes. The default value is 0 V .

\section*{Ports}

The block has the following ports:
\[
\sim 1
\]

Expandable three-phase port
\(\sim 2\)
Expandable three-phase port
vT
Scalar control port, which is either a physical signal or an electrical port.

\section*{See Also}

Single-Phase Circuit Breaker | Single-Phase Circuit Breaker (with arc)

\section*{Topics}
"Three-Phase Synchronous Machine Control"
"Three-Phase Custom Simplified Synchronous Machine"
"Marine Full Electric Propulsion Power System"

\author{
"Switch Between Physical Signal and Electrical Ports" \\ "Expand and Collapse Three-Phase Ports on a Block" \\ Introduced in R2013b
}

\title{
Clarke to Park Angle Transform
}

\section*{Implement \(\alpha \beta 0\) to dq0 transform}

Library: Simscape / Power Systems / Simscape Components / Control / Mathematical Transforms

\section*{Description}

The Clarke to Park Angle Transform block converts the alpha, beta, and zero components in a stationary reference frame to direct, quadrature, and zero components in a rotating reference frame. For balanced three-phase systems, the zero components are equal to zero.

You can configure the block to align the phase \(a\)-axis of the three-phase system to either the \(q\) - or \(d\)-axis of the rotating reference frame at time, \(t=0\). The figures show the direction of the magnetic axes of the stator windings in the three-phase system, a stationary \(\alpha \beta 0\) reference frame, and a rotating \(d q 0\) reference frame where:
- The \(a\)-axis and the \(q\)-axis are initially aligned.

- The \(a\)-axis and the \(d\)-axis are initially aligned.

In both cases, the angle \(\theta=\omega t\), where
- \(\theta\) is the angle between the \(a\) and \(q\) axes for the \(q\)-axis alignment or the angle between the \(a\) and \(d\) axes for the \(d\)-axis alignment.
- \(\omega\) is the rotational speed of the \(d-q\) reference frame.
- \(t\) is the time, in s , from the initial alignment.

The figures show the time-response of the individual components of equivalent balanced \(\alpha \beta 0\) and \(d q 0\) for an:
- Alignment of the \(a\)-phase vector to the \(q\)-axis

- Alignment of the \(a\)-phase vector to the \(d\)-axis

\section*{Equations}

The Clarke to Park Angle Transform block implements the transform for an \(a\)-phase to \(q\) axis alignment as
\[
\left[\begin{array}{l}
d \\
q \\
0
\end{array}\right]=\left[\begin{array}{ccc}
\sin (\theta) & -\cos (\theta) & 0 \\
\cos (\theta) & \sin (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta \\
0
\end{array}\right]
\]
where:
- \(\alpha\) and \(\beta\) are the alpha-axis and beta-axis components of the two-phase system in the stationary reference frame.
- 0 is the zero component.
- \(d\) and \(q\) are the direct-axis and quadrature-axis components of the two-axis system in the rotating reference frame.

For an \(a\)-phase to \(d\)-axis alignment, the block implements the transform using this equation:
\[
\left[\begin{array}{l}
d \\
q \\
0
\end{array}\right]=\left[\begin{array}{ccc}
\cos (\theta) & \sin (\theta) & 0 \\
-\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta \\
0
\end{array}\right]
\]

\section*{Ports}

\section*{Input}

\section*{\(\alpha \beta 0-\alpha-\beta\) axis and zero components}
vector
Alpha-axis, \(\alpha\), beta-axis, \(\beta\), and zero components of the two-phase system in the stationary reference frame.

\section*{Data Types: single | double}

\section*{\(\boldsymbol{\theta}_{\mathrm{abc}}\) - Rotational angle}
scalar | in radians
Angular position of the rotating reference frame. The value of this parameter is equal to the polar distance from the vector of the \(a\)-phase in the \(a b c\) reference frame to the initially aligned axis of the \(d q 0\) reference frame.

\section*{Data Types: single | double}

\section*{Output}

\section*{dq0 - d-q axis and zero components}
vector

Direct-axis and quadrature-axis components and the zero component of the system in the rotating reference frame.

\section*{Data Types: single | double}

\section*{Parameters}

Phase-a axis alignment - dq0 reference frame alignment Q-axis (default)|D-axis

Align the \(a\)-phase vector of the \(a b c\) reference frame to the \(d\) - or \(q\)-axis of the rotating reference frame.

\section*{References}
[1] Krause, P., O. Wasynczuk, S. D. Sudhoff, and S. Pekarek. Analysis of Electric Machinery and Drive Systems. Piscatawy, NJ: Wiley-IEEE Press, 2013.

\section*{See Also}

\section*{Blocks}

Clarke Transform | Inverse Clarke Transform | Inverse Park Transform | Park Transform | Park to Clarke Angle Transform

\section*{Introduced in R2017b}

\section*{Clarke Transform}

\section*{Implement \(a b c\) to \(\alpha \beta 0\) transform}

Library: Simscape / Power Systems / Simscape Components / Control / Mathematical Transforms

\section*{Description}

The Clarke Transform block converts the time-domain components of a three-phase system in an \(a b c\) reference frame to components in a stationary \(\alpha \beta 0\) reference frame. The block can preserve the active and reactive powers with the powers of the system in the \(a b c\) reference frame by implementing a power invariant version of the Clarke transform. For a balanced system, the zero component is equal to zero.

The figures show:
- The direction of the magnetic axes of the stator windings in the \(a b c\) reference frame and the stationary \(\alpha \beta 0\) reference frame

- Equivalent \(\alpha, \beta\), and zero components in the stationary reference frame

- The time-response of the individual components of equivalent balanced \(a b c\) and \(\alpha \beta 0\) systems

\section*{Equations}

The block implements the Clarke transform as
\[
\left[\begin{array}{l}
\alpha \\
\beta \\
0
\end{array}\right]=\frac{2}{3}\left[\begin{array}{ccc}
1 & -\frac{1}{2} & -\frac{1}{2} \\
0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right],
\]
where:
- \(a, b\), and \(c\) are the components of the three-phase system in the \(a b c\) reference frame.
- \(\alpha\) and \(\beta\) are the components of the two-axis system in the stationary reference frame.
- 0 is the zero component of the two-axis system in the stationary reference frame.

The block implements the power invariant version of the Clarke transform as
\[
\left[\begin{array}{l}
\alpha \\
\beta \\
0
\end{array}\right]=\sqrt{\frac{2}{3}}\left[\begin{array}{ccc}
1 & -\frac{1}{2} & -\frac{1}{2} \\
0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\
\sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}}
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] .
\]

\section*{Ports}

\section*{Input}

\section*{abc -a-, b-, and c-phase components}
vector
Components of the three-phase system in the \(a b c\) reference frame.
Data Types: single | double

\section*{Output}

\section*{\(\alpha \beta 0-\alpha-\beta\) axis and zero components}
vector
Alpha-axis component, \(\alpha\), beta-axis component \(\beta\), and zero component in the stationary reference frame.

Data Types: single | double

\section*{Parameters}

\section*{Power Invariant - Power invariant transform}
off (default) | on
Preserve the active and reactive power of the system in the \(a b c\) reference frame.

\section*{References}
[1] Krause, P., O. Wasynczuk, S. D. Sudhoff, and S. Pekarek. Analysis of Electric Machinery and Drive Systems. Piscatawy, NJ: Wiley-IEEE Press, 2013.

\section*{See Also}

\section*{Blocks}

Clarke to Park Angle Transform | Inverse Clarke Transform | Inverse Park Transform | Park Transform | Park to Clarke Angle Transform

\section*{Introduced in R2017b}

\section*{Commutation Diode}

Piecewise linear diode with charge dynamics and junction capacitance

\section*{Library}

Semiconductors / Fundamental Components

\section*{Description}

The Commutation Diode block augments the Diode block with a model of charge dynamics. For a description of the piecewise linear diode operation that the Commutation Diode block uses, see Diode.

Use the Commutation Diode block in place of the Diode block when you want to specify precisely the charge dynamics of the device as it operates in reverse mode. For example, suppose that your model uses the diode to divert inductive currents from a motor drive or inverter. In this case, precise reverse-mode operation is important and an appropriate time to use the Commutation Diode block.

The Commutation Diode uses a charge model proposed by Lauritzen and Ma [1]. The defining expressions for this charge model are:
\[
\begin{aligned}
& i=\frac{q_{E}-q_{M}}{T_{M}} \\
& \frac{d q_{M}}{d t}+\frac{q_{M}}{\tau}-\frac{q_{E}-q_{M}}{T_{M}}=0 \\
& \left.q_{E}=\left(\tau+T_{M}\right)\left(v_{D}-v_{F}(1-R G)\right) / R\right) \\
& \quad \text { if } v_{D}>v_{F} \\
& q_{E}=\left(\tau+T_{M}\right) G v_{D} \\
& \text { if } v_{D} \leq v_{F}
\end{aligned}
\]
where:
- \(i\) is the diode current.
- \(q_{E}\) is the junction charge.
- \(q_{M}\) is the total stored charge.
- \(T_{M}\) is the transit time.
- \(\tau\) is the carrier lifetime.
- \(v_{D}\) is the voltage across the diode.
- \(V_{F}\) is the diode forward voltage.
- \(R\) is the diode on resistance.
- \(G\) is the diode off conductance.

This graphic shows a typical reverse-mode current characteristic for a diode device.

where:
- \(i_{R M}\) is the peak reverse current.
- \(i_{F}\) is the starting forward current when measuring \(i_{R M}\).
- \(a\) is the rate of change of current when measuring \(i_{R M}\).
- \(t_{r r}\) is the reverse recovery time.

On the Charge Dynamics tab of the block, you specify characteristics of your diode device. The block uses these values to calculate the diode charge dynamics expressed in equations 1-1, 1-2, and 1-3.

Data sheets for diodes quote values for peak reverse current for an initial forward current and a steady rate of change of current. The data sheet might also provide values for reverse recovery time and total recovery charge.

\section*{How the Block Calculates \(\boldsymbol{T}_{M}\) and Tau}

The block calculates transit time \(T_{M}\) and carrier lifetime \(\tau\) based on the values you enter on the Charge Dynamics tab of the block dialog box. The block uses \(T_{M}\) and \(\tau\) to solve the charge dynamics equations 1-1, 1-2, and 1-3.

During initial current drop in reverse mode, the diode is still on, and the rate of change of current is determined by an external test circuit.

Using Equation 1-1,
\(i_{F}+a t=\frac{q_{E}-q_{M}}{T_{M}}\).
Substituting Equation 1-4 into Equation 1-2,
\(\frac{d q_{M}}{d t}+\frac{q_{M}}{\tau}=i_{F}+a t\).
Solving Equation 1-5 for \(q_{M}\),
\(q_{M}=i_{F} \tau-a \tau^{2}+\frac{k}{\exp \left(\frac{t}{\tau}\right)}+a \tau t\),
where \(k\) is a constant.
When \(t\) is zero, \(i=i_{F}\) and \(q_{M}=\tau i_{F}\) because the system is in steady state.

Substituting these relationships into Equation 1-6 and solving the equation gives \(k=a \tau^{2}\).
Therefore,
\(q_{M}=i_{F} \tau+a \tau^{2}\left(\frac{1}{\exp \left(\frac{t}{\tau}\right)}-1\right)+a \tau t\).
At time \(t=t_{s}\), the current is \(i_{R M}\) and the junction charge \(q_{E}\) is zero.
Substituting these values into Equation 1-1,
\[
i_{R M}=\frac{-q_{M}}{T_{M}} .
\]

Rearranging Equation 1-8 to solve for \(q_{M}\) and substituting the result into Equation 1-7,
\(-T_{M} i_{R M}=i_{F} \tau+a \tau^{2}\left(\frac{1}{\exp \left(\frac{t_{s}}{\tau}\right)}-1\right)+a \tau t_{s}\).
Expressing time \(t_{s}\) in terms of \(i_{R M}, i_{F}\), and \(a\),
\(t_{s}=\frac{i_{R M}-i_{F}}{a}\).
Consider the diode recovery, that is, when \(t>t_{s}\). The diode is reverse biased, and current and junction charge are effectively zero.

The current is defined by
\(i=i_{R M} \exp \left[\frac{-\left(t-t_{s}\right)}{\tau_{r r}}\right]\),
where
\(\frac{1}{\tau_{r r}}=\frac{1}{\tau}+\frac{1}{T_{M}}\).
The block now relates the expression in Equation 1-12 to the reverse recovery time \(t_{r r}\).

When \(t=\frac{i_{R M}}{a}+t_{r r}\), the current is \(\frac{i_{R M}}{10}\).
Therefore,
\(\exp \left(-\frac{t-t_{s}}{\tau_{r r}}\right)=0.1\)
and
\(t_{r r}=\tau_{r r} \log (10)+\frac{i_{R M}}{a}\).

The block uses equations 1-9 and 1-14 to calculate values for \(T_{M}\) and \(\tau\). The calculation uses an iterative scheme because of the exponential term in Equation 1-9.

\section*{Alternatives to Specifying \(\boldsymbol{t}_{r r}\) Directly}

In addition to allowing you to specify reverse recovery time \(t_{r r}\) directly, the block supports two alternative parameterizations. The block can derive \(t_{r r}\) from either of these parameters:
- Reverse recovery time stretch factor \(\lambda\)
- Reverse recovery charge \(Q_{r r}\), when the data sheet specifies this value instead of the reverse recovery time.

The relationship between reverse recovery time stretch factor \(\lambda\) and \(t_{r r}\) is expressed by the equation
\[
\lambda=\frac{t_{r r} a}{i_{R M}}
\]

Reverse recovery time must be greater than \(\frac{i_{R M}}{a}\) and a typical value is \(3\left(\frac{i_{R M}}{a}\right)\). Therefore, a typical value for \(\lambda\) is \(3 . \lambda\) must be greater than 1 .

Reverse recovery charge \(Q_{r r}\) is the integral over time of the reverse current from the point where the current goes negative until it decays back to zero.

The initial charge, to time \(t_{s}\) (as shown in the figure), is expressed by the equation
\[
Q_{s}=\frac{1}{2}\left(-i_{R M}\right) \frac{i_{R M}}{a} .
\]

Integrating Equation 1-11 gives the charge between times \(t_{s}\) and inf. This charge is equal to
\[
\tau_{r r} i_{R M}
\]

Therefore, total reverse recovery charge is given by the equation
\[
Q_{r r}=-\frac{i_{R M}^{2}}{2 a}+\tau_{r r} i_{R M}
\]

Rearranging Equation 1-16 to solve for \(\tau_{r r}\) and substituting the result into Equation 1-14 gives an equation that expresses \(t_{r r}\) in terms of \(Q_{r r}\) :
\[
t_{r r}=\left(\frac{Q_{r r}}{i_{R M}}+\frac{i_{R M}}{2 a}\right) \log (10)+\frac{i_{R M}}{a} .
\]

\section*{Modeling Variants}

The block provides a thermal modeling variant. To select a variant, right-click the block in your model. From the context menu, select Simscape > Block choices, and then one of these variants:
- No thermal port - This variant does not simulate heat generation in the device. This variant is the default.
- Show thermal port - This variant contains a thermal port that allows you to model the heat that conduction losses generate. For numerical efficiency, the thermal state does not affect the electrical behavior of the block. The thermal port is hidden by default. When you select a thermal variant of the block, the thermal port appears.

\section*{Ports}
\(+\)
Electrical conserving port associated with the diode positive terminal
-
Electrical conserving port associated with the diode negative terminal
H
Thermal conserving port. The thermal port is optional and is hidden by default. To enable this port, select a variant that includes a thermal port.

\section*{Parameters}
- "Main Tab" on page 1-256
- "Charge Dynamics Tab" on page 1-257

\section*{Main Tab}

\section*{Forward voltage}

Minimum voltage required across the + and - block ports for the gradient of the diode I-V characteristic to be \(1 / R_{o n}\), where \(R_{o n}\) is the value of On resistance. The default value is 0.8 V .

\section*{On resistance}

Rate of change of voltage versus current above the Forward voltage. The default value is 0.0010 hm .

\section*{Off conductance}

Conductance of the reverse-biased diode. The default value is \(1 \mathrm{e}-51 / 0 \mathrm{hm}\).

\section*{Number of series diodes}

The number of diodes connected in series between the + and - block ports. Each diode has the Forward voltage, On resistance, and Off conductance that you specify. The default value is 1 .

\section*{Number of parallel diodes}

The number of parallel diodes, or number of parallel paths formed by seriesconnected diodes, between the + and - block ports. Each diode has the Forward voltage, On resistance, and Off conductance that you specify. The default value is 1.

\section*{Charge Dynamics Tab}

\section*{Junction capacitance}

Diode junction capacitance. The default value is 50 nF .

\section*{Peak reverse current, iRM}

Peak reverse current measured by an external test circuit. This value must be less than zero. The default value is -235 A.

\section*{Initial forward current when measuring iRM}

Initial forward current when measuring peak reverse current. This value must be greater than zero. The default value is 300 A.

\section*{Rate of change of current when measuring iRM}

Rate of change of current when measuring peak reverse current. This value must be less than zero. The default value is \(-50 \mathrm{~A} / \mu \mathrm{s}\).

\section*{Reverse recovery time parameterization}

Determines how you specify reverse recovery time in the block. The default value is Specify reverse recovery time directly.

If you select Specify stretch factor or Specify reverse recovery charge, you specify a value that the block uses to derive the reverse recovery time. For more information on these options, see "Alternatives to Specifying trr Directly" on page 1254.

\section*{Reverse recovery time, trr}

Interval between the time when the current initially goes to zero (when the diode turns off) and the time when the current falls to less than \(10 \%\) of the peak reverse current. The default value is \(15 \mu \mathrm{~s}\).

This parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery time directly.

The value of the Reverse recovery time, trr parameter must be greater than the value of the Peak reverse current, iRM parameter divided by the value of the Rate of change of current when measuring iRM parameter.

\section*{Reverse recovery time stretch factor}

Value that the block uses to calculate Reverse recovery time, trr. This value must be greater than 1. The default value is 3 .

This parameter is visible only if you set Reverse recovery time parameterization to Specify stretch factor.

Specifying the stretch factor is an easier way to parameterize the reverse recovery time than specifying the reverse recovery charge. The larger the value of the stretch factor, the longer it takes for the reverse recovery current to dissipate.

\section*{Reverse recovery charge, Qrr}

Value that the block uses to calculate Reverse recovery time, trr. Use this parameter if the data sheet for your diode device specifies a value for the reverse recovery charge instead of a value for the reverse recovery time.

The reverse recovery charge is the total charge that continues to dissipate when the
diode turns off. The value must be less than \(-\frac{i^{2}{ }_{R M}}{2 a}\),
where:
- \(i_{R M}\) is the value specified for Peak reverse current, iRM.
- \(a\) is the value specified for Rate of change of current when measuring iRM.

The default value is \(1500 \mu \mathrm{As}\).
The parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery charge.

\section*{References}
[1] Lauritzen, P.O. \& C.L. Ma, "A Simple Diode Model with Reverse Recovery." IEEE ® Transactions on Power Electronics. Vol. 6, No. 2, 1991, pp. 188-191.
See AlsoDiode | GTO | IGBT | Ideal Semiconductor Switch | MOSFET | Thyristor
Topics
"Quantifying IGBT Thermal Losses""Simulate Thermal Losses in Semiconductors"
Introduced in R2013b

\section*{Converter}

Connect three-phase AC network to DC network

\section*{Library}

Semiconductors

\section*{Description}

The Converter block models a three-arm converter circuit that connects a three-phase AC network to a DC network.

Each component in the three-arm circuit is the same switching device, which you specify using an option on the Converter block dialog box. The switching devices that you can specify are in the Semiconductors / Fundamental Components library.

The figure shows the equivalent circuit for a converter with fully controlled switching devices (e.g. IGBTs, GTOs).

The figure shows the equivalent circuit for a converter with partially controlled switching devices (e.g. thyristors).

Control the gate ports of the six switching devices via an input to port \(G\) on the Converter block:

1 Multiplex all six gate signals into a single vector with a Six-Pulse Gate Multiplexer block.
2 Connect the output of the Six-Pulse Gate Multiplexer block to the Converter block G port.

You can specify an integral protection diode for each switching device. An integral diode protects the semiconductor device by providing a conduction path for reverse current. An inductive load can produce a high reverse-voltage spike when the semiconductor device suddenly switches off the voltage supply to the load.

The table shows you how to set the Integral protection diode parameter based on your goals.
\begin{tabular}{|l|l|l|}
\hline Goal & Value to Select & Block Behavior \\
\hline Prioritize simulation speed. & \begin{tabular}{l}
Protection diode with \\
no dynamics
\end{tabular} & \begin{tabular}{l}
The block includes an \\
integral copy of the Diode \\
block. To parameterise the \\
internal Diode block, use the \\
Protection parameters.
\end{tabular} \\
\hline \begin{tabular}{l}
Precisely specify reverse- \\
mode charge dynamics.
\end{tabular} & \begin{tabular}{l}
Protection diode with \\
charge dynamics
\end{tabular} & \begin{tabular}{l}
The block includes an \\
integral copy of the \\
Commutation Diode block. \\
To parameterise the internal \\
Commutation Diode block, \\
use the Protection \\
parameters.
\end{tabular} \\
\hline
\end{tabular}

You can include a snubber circuit, consisting of a resistor and capacitor connected in series, for each switching device. Snubber circuits protect switching devices against high voltages that inductive loads produce when the device turns off the voltage supply to the load. Snubber circuits also prevent excessive rates of change of current when a switching device turns on.

\section*{Parameters}
- "Switching Devices Tab" on page 1-263
- "Protection Diodes Tab" on page 1-267
- "Snubbers Tab" on page 1-269

\section*{Switching Devices Tab}

\section*{Switching device}

Converter switching device. The default value is Ideal Semiconductor Switch.
The switching devices you can select are:
- GTO
- Ideal Semiconductor Switch
- IGBT
- MOSFET
- Thyristor

When you select GT0, parameters for the GTO block appear.

\section*{Additional GTO Parameters}

\section*{Forward voltage, Vf}

Minimum voltage required across the anode and cathode block ports for the gradient of the device i-v characteristic to be \(1 / \mathrm{R}_{\text {on }}\), where \(\mathrm{R}_{\text {on }}\) is the value of On-state resistance. The default value is 0.8 V .

\section*{On-state resistance}

Rate of change of voltage versus current above the forward voltage. The default value is 0.0010 hm .

\section*{Off-state conductance}

Anode-cathode conductance when the device is off. The value must be less than \(1 / \mathrm{R}\), where \(R\) is the value of \(\mathbf{O n}\)-state resistance. The default value is \(1 \mathrm{e}-61 / 0 \mathrm{hm}\).

\section*{Gate trigger voltage, Vgt}

Gate-cathode voltage threshold. The device turns on when the gate-cathode voltage is above this value. The default value is 1 V .

\section*{Gate turn-off voltage, Vgt_off}

Gate-cathode voltage threshold. The device turns off when the gate-cathode voltage is below this value. The default value is -1 V .

\section*{Holding current}

Current threshold. The device stays on when the current is above this value, even when the gate-cathode voltage falls below the gate trigger voltage. The default value is 1 A .

For more information, see GTO.

When you select Ideal Semiconductor Switch, parameters for the Ideal Semiconductor Switch block appear.

\section*{Additional Ideal Semiconductor Switch Parameters}

\section*{On-state resistance}

Anode-cathode resistance when the device is on. The default value is \(0.0011 / 0 \mathrm{hm}\).

\section*{Off-state conductance}

Anode-cathode conductance when the device is off. The value must be less than \(1 / R\), where \(R\) is the value of \(\mathbf{O n}\)-state resistance. The default value is \(1 \mathrm{e}-61 / 0 \mathrm{hm}\).

\section*{Threshold voltage, Vth}

Gate-cathode voltage threshold. The device turns on when the gate-cathode voltage is above this value. The default value is 6 V .

For more information, see Ideal Semiconductor Switch.

When you select IGBT, parameters for the IGBT block appear.

\section*{Additional IGBT Parameters}

\section*{Forward voltage, Vf}

Minimum voltage required across the collector and emitter block ports for the gradient of the diode i-v characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of On-state resistance. The default value is 0.8 V .

\section*{On-state resistance}

Collector-emitter resistance when the device is on. The default value is 0.0010 hm .

\section*{Off-state conductance}

Collector-emitter conductance when the device is off. The value must be less than \(1 / R\), where \(R\) is the value of \(\mathbf{O n}\)-state resistance. The default value is \(1 \mathrm{e}-61 / 0 \mathrm{hm}\).

\section*{Threshold voltage, Vth}

Gate-emitter voltage at which the device turns on. The default value is 6 V .
For more information, see IGBT.

When you select MOSFET, parameters for the MOSFET block appear.

\section*{Additional MOSFET Parameters}

\section*{On-state resistance, R_DS(on)}

Drain-source resistance when the device is on. The default value is 0.0010 hm .

\section*{Off-state conductance}

Drain-source conductance when the device is off. The value must be less than \(1 / R\), where \(R\) is the value of \(\mathbf{O n}\)-state resistance. The default value is \(1 \mathrm{e}-61 / 0 \mathrm{hm}\).

\section*{Threshold voltage, Vth}

Gate-source voltage threshold. The device turns on when the gate-source voltage is above this value. The default value is 6 V .

For more information, see MOSFET.

When you select Thyristor, parameters for the Thyristor block appear.

\section*{Additional Thyristor Parameters}

\section*{Forward voltage, Vf}

Forward voltage at which the device turns on. The default value is 0.8 V .

\section*{On-state resistance}

Anode-cathode resistance when the device is on. The default value is 0.0010 hm .

\section*{Off-state conductance}

Anode-cathode conductance when the device is off. The value must be less than \(1 / R\), where \(R\) is the value of \(\mathbf{O n}\)-state resistance. The default value is \(1 \mathrm{e}-61 / 0 \mathrm{hm}\).

\section*{Gate trigger voltage, Vgt}

Gate-cathode voltage threshold. The device turns on when the gate-cathode voltage is above this value. The default value is 1 V .

\section*{Holding current}

Current threshold. The device stays on when the current is above this value, even when the gate-cathode voltage falls below the gate trigger voltage. The default value is 1 A .

For more information, see Thyristor.

\section*{Protection Diodes Tab}

\section*{Integral protection diode}

Integral protection diode for each switching device. The default value is None.
The diodes you can select are:
- Protection diode with no dynamics
- Protection diode with charge dynamics

When you select Protection diode with no dynamics, additional parameters appear.

\section*{Additional Parameters for Protection Diode with No Dynamics}

\section*{Forward voltage}

Minimum voltage required across the + and - block ports for the gradient of the diode \(I-V\) characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of \(\mathbf{O n}\) resistance. The default value is 0.8 V .

\section*{On resistance}

Rate of change of voltage versus current above the Forward voltage. The default value is 0.0010 hm .

\section*{Off conductance}

Conductance of the reverse-biased diode. The default value is \(1 \mathrm{e}-51 / 0 \mathrm{hm}\).
For more information on these parameters, see Diode.

When you select Protection diode with charge dynamics, additional parameters appear.

\section*{Additional Parameters for Protection Diode with Charge Dynamics}

\section*{Forward voltage}

Minimum voltage required across the + and - block ports for the gradient of the diode \(I-V\) characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of \(\mathbf{O n}\) resistance. The default value is 0.8 V .

\section*{On resistance}

Rate of change of voltage versus current above the Forward voltage. The default value is 0.0010 hm .

\section*{Off conductance}

Conductance of the reverse-biased diode. The default value is \(1 \mathrm{e}-51 / 0 \mathrm{hm}\).

\section*{Junction capacitance}

Diode junction capacitance. The default value is 50 nF .

\section*{Peak reverse current, iRM}

Peak reverse current measured by an external test circuit. This value must be less than zero. The default value is -235 A .

\section*{Initial forward current when measuring iRM}

Initial forward current when measuring peak reverse current. This value must be greater than zero. The default value is 300 A .

\section*{Rate of change of current when measuring iRM}

Rate of change of current when measuring peak reverse current. This value must be less than zero. The default value is \(-50 \mathrm{~A} / \mu \mathrm{s}\).

\section*{Reverse recovery time parameterization}

Determines how you specify reverse recovery time in the block. The default value is Specify reverse recovery time directly.

If you select Specify stretch factor or Specify reverse recovery charge, you specify a value that the block uses to derive the reverse recovery time. For more information on these options, see "Alternatives to Specifying trr Directly" on page 1254.

\section*{Reverse recovery time, trr}

Interval between the time when the current initially goes to zero (when the diode turns off) and the time when the current falls to less than \(10 \%\) of the peak reverse current. The default value is \(15 \mu \mathrm{~s}\).

This parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery time directly.

The value of the Reverse recovery time, trr parameter must be greater than the value of the Peak reverse current, iRM parameter divided by the value of the Rate of change of current when measuring iRM parameter.

\section*{Reverse recovery time stretch factor}

Value that the block uses to calculate Reverse recovery time, trr. This value must be greater than 1 . The default value is 3 .

This parameter is visible only if you set Reverse recovery time parameterization to Specify stretch factor.

Specifying the stretch factor is an easier way to parameterize the reverse recovery time than specifying the reverse recovery charge. The larger the value of the stretch factor, the longer it takes for the reverse recovery current to dissipate.

\section*{Reverse recovery charge, Qrr}

Value that the block uses to calculate Reverse recovery time, trr. Use this parameter if the data sheet for your diode device specifies a value for the reverse recovery charge instead of a value for the reverse recovery time.

The reverse recovery charge is the total charge that continues to dissipate when the
diode turns off. The value must be less than \(-\frac{i^{2}{ }_{R M}}{2 a}\),
where:
- \(i_{R M}\) is the value specified for Peak reverse current, iRM.
- \(a\) is the value specified for Rate of change of current when measuring iRM.

The default value is \(1500 \mu \mathrm{As}\).
The parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery charge.

For more information on these parameters, see Commutation Diode.

\section*{Snubbers Tab}

\section*{Snubber}

Snubber for each switching device. The default value is None.

\section*{Snubber resistance}

Snubber resistance. This parameter is visible only if you set Snubber to RC snubber. The default value is 0.10 hm .

\section*{Snubber capacitance}

Snubber capacitance. This parameter is visible only if you set Snubber to RC snubber. The default value is \(1 \mathrm{e}-7 \mathrm{~F}\).

\section*{Ports}

The block has the following ports:
G
Vector input port associated with the gate terminals of the switching devices. Connect this port to a Six-Pulse Gate Multiplexer block.

Expandable three-phase port
\(+\)
Electrical conserving port associated with the DC positive terminal

Electrical conserving port associated with the DC negative terminal

\author{
See Also \\ Average-Value Inverter | Average-Value Rectifier | Rectifier | Six-Pulse Gate Multiplexer | Three-Level Converter \\ \section*{Topics} \\ "Expand and Collapse Three-Phase Ports on a Block" \\ Introduced in R2013b
}

\section*{Coupled Lines}

Magnetically couple three-phase lines
Library: Simscape / Simscape Components / Passive Devices

\section*{Description}

The Coupled Lines block models three magnetically coupled lines. Each line has a selfinductance, series resistance, and parallel conductance. In addition, there is a mutual inductance and mutual resistance between each pair of lines.

Use this block when the magnetic coupling in a three-phase network is nonnegligible. These effects are most prominent when:
- The lines are parallel and close together.
- The self-inductances of the lines are high.
- The AC frequency of the network is high.

To model magnetic coupling of a single pair of lines, use the Coupled Lines (Pair) block. To model capacitive coupling between the lines, use the Transmission Line block.

\section*{Equivalent Circuit}

The equivalent circuit shows the coupling between two arbitrary phases \(i\), and \(j\). The block models the magnetic coupling using such an equivalent circuit between each of the three phases \(a, b\), and \(c\).

Here:
- \(R_{i}\) and \(R_{j}\) are the series resistances of lines \(i\) and \(j\), respectively.
- \(L_{i}\) and \(L_{j}\) are the self-inductances of lines \(i\) and \(j\), respectively.
- \(R_{m}\) is the mutual resistance between the two lines. You can use this parameter to account for losses in a common return path.
- \(L_{m, i j}\) is the mutual inductance between lines \(i\) and \(j\), respectively.
- \(G_{i}\) and \(G_{j}\) are the leakage conductances of lines \(i\) and \(j\), respectively.
- \(V_{i}\) and \(V_{j}\) are voltage drops across lines \(i\) and \(j\), respectively.
- \(I_{i}\) and \(I_{j}\) are the currents through the resistors \(R_{i}-R_{m}\) and \(R_{j}-R_{m}\), respectively.

\section*{Equations}

The defining equation for this block is:
\[
V=\left[\begin{array}{ccc}
R_{a} & R_{m} & R_{m} \\
R_{m} & R_{b} & R_{m} \\
R_{m} & R_{m} & R_{c}
\end{array}\right] I+\left[\begin{array}{ccc}
L_{a} & L_{m, a b} & L_{m, a c} \\
L_{m, a b} & L_{b} & L_{m, b c} \\
L_{m, a c} & L_{m, b c} & L_{c}
\end{array}\right] \frac{d I}{d t},
\]
where:
\[
\begin{gathered}
V=\left[\begin{array}{l}
V_{a} \\
V_{b} \\
V_{c}
\end{array}\right], \\
I=\left[\begin{array}{l}
I_{a} \\
I_{b} \\
I_{c}
\end{array}\right] .
\end{gathered}
\]
\(I_{a}, I_{b}\), and \(I_{c}\) are, in general, not equal to the currents in lines \(a, b\), and \(c\). These terminal currents make up the vector:
\[
I_{\text {total }}=I+\left[\begin{array}{ccc}
G_{a} & 0 & 0 \\
0 & G_{b} & 0 \\
0 & 0 & G_{c}
\end{array}\right] V .
\]

\section*{Inductive Coupling}

To quantify the strength of the coupling between the two lines, you can use a coupling factor or coefficient of coupling \(k\). The coupling factor relates the mutual inductance to the line self-inductances:
\[
L_{m, i j}=k \sqrt{L_{i} L_{j}} .
\]

This coupling factor must fall in the range \(-1<k<1\), where a negative coupling factor indicates a reversal in orientation of one of the coils. The magnitude of \(k\) indicates:
- \(|k|=0\)
- There is no magnetic coupling between the two lines.
- \(0<|k|<0.5\) - The two lines are loosely coupled and mutual magnetic effects are small.
- \(0.5 \leq|k|<1\) - The two lines are strongly coupled and mutual magnetic effects are large.

\section*{Mutual Resistance}

If the three lines share a common return path, you can model the resistance of this return path using the Mutual resistance parameter \(R_{m}\). This workflow is equivalent to setting the Mutual resistance to zero and explicitly modeling the return path resistance \(R_{m}\), as shown in this diagram.

If the three lines do not share a common return path, set the mutual resistance parameter to zero and model each of the return resistances explicitly.

\section*{Ports}

\section*{Conserving}

\section*{~1 - Line 1 positive terminal electrical}

Expandable three-phase electrical conserving port associated with the positive terminals of lines \(a, b\), and \(c\). To use this composite port, right-click the block and select Simscape > Block choices > Composite three-phase port.

\section*{~2 - Line 1 negative terminal \\ electrical}

Expandable three-phase electrical conserving port associated with the negative terminals of lines \(a, b\), and \(c\). To use this composite port, right-click the block and select Simscape > Block choices > Composite three-phase port.

\section*{a1 - Line a positive terminal}
electrical
Electrical conserving port associated with the positive terminal of line \(a\). To use this expanded port, right-click the block and select Simscape > Block choices > Expanded three-phase port.

\section*{a2 - Line a negative terminal \\ electrical}

Electrical conserving port associated with the negative terminal of line \(a\). To use this expanded port, right-click the block and select Simscape > Block choices > Expanded three-phase port.

\section*{b1 - Line b positive terminal}
electrical
Electrical conserving port associated with the positive terminal of line \(b\). To use this expanded port, right-click the block and select Simscape > Block choices > Expanded three-phase port.

\section*{b2 - Line b negative terminal \\ electrical}

Electrical conserving port associated with the negative terminal of line \(b\). To use this expanded port, right-click the block and select Simscape > Block choices > Expanded three-phase port.

\section*{c1 - Line c positive terminal electrical}

Electrical conserving port associated with the positive terminal of line \(c\). To use this expanded port, right-click the block and select Simscape > Block choices > Expanded three-phase port.

\section*{c2 - Line c negative terminal \\ electrical}

Electrical conserving port associated with the negative terminal of line \(c\). To use this expanded port, right-click the block and select Simscape > Block choices > Expanded three-phase port.

\section*{Parameters}

\section*{Main}

\section*{Parameterization - Line impedance parameterization}

Balanced impedance (default)|General impedance
Specify how to parameterize the impedance of the three lines:
Balanced impedance
Specify the same series resistance, series inductance, and parallel leakage conductance for all lines.

\section*{General impedance}

Specify the series resistance, series inductance, and parallel leakage conductance separately for each line.

\section*{Line a inductance - Line a self-inductance}

1e-3 H (default)
Self-inductance of line \(a\). This value must be greater than zero.

\section*{Dependencies}

To enable this parameter, set Parameterization to General impedance.

\section*{Line b inductance - Line bself-inductance} 1e-3 H (default)

Self-inductance of line \(b\). This value must be greater than zero.

\section*{Dependencies}

To enable this parameter, set Parameterization to General impedance.

\section*{Line c inductance - Line c self-inductance \\ 1e-3 H (default)}

Self-inductance of line \(c\). This value must be greater than zero.

\section*{Dependencies}

To enable this parameter, set Parameterization to General impedance.

\section*{Line inductance - Self-inductance}

1e-3 H (default)
Self-inductance of lines \(a, b\), and \(c\). This value must be greater than zero.

\section*{Dependencies}

To enable this parameter, set Parameterization to Balanced impedance.

\section*{Line a-b mutual inductance - Mutual inductance between a-b 3e-4 H (default)}

Mutual inductance between lines \(a\) and \(b\). If you know the coupling factor, set this value to \(k \sqrt{L_{a} L_{b}}\). To have a physically realizable mutual inductance, this value must satisfy:
\[
-\sqrt{L_{a} L_{b}}<L_{m, a b}<\sqrt{L_{a} L_{b}} .
\]

\section*{Dependencies}

To enable this parameter, set Parameterization to General impedance.

\section*{Line b-c mutual inductance - Mutual inductance between b-c 3e-4 H (default)}

Mutual inductance between lines \(b\) and \(c\). If you know the coupling factor, set this value to \(k \sqrt{L_{b} L_{c}}\). To have a physically realizable mutual inductance, this value must satisfy:
\[
-\sqrt{L_{b} L_{c}}<L_{m, b c}<\sqrt{L_{b} L_{c}} .
\]

\section*{Dependencies}

To enable this parameter, set Parameterization to General impedance.

\section*{Line a-c mutual inductance - Mutual inductance between a-c}

3e-4 H (default)

Mutual inductance between lines \(a\) and \(c\). If you know the coupling factor, set this value to \(k \sqrt{L_{a} L_{c}}\). To have a physically realizable mutual inductance, this value must satisfy:
\[
-\sqrt{L_{a} L_{c}}<L_{m, a c}<\sqrt{L_{a} L_{c}} .
\]

\section*{Dependencies}

To enable this parameter, set Parameterization to General impedance.

\section*{Mutual inductance - Mutual inductance}

\section*{3e-4 H (default)}

Mutual inductance between each pair of lines. If you know the coupling factor, set this value to \(k L\), where \(L\) is the series inductance of each of the lines. To have a physically realizable mutual inductance, this value must satisfy:
\[
-L<L_{m}<L .
\]

\section*{Dependencies}

To enable this parameter, set Parameterization to Balanced impedance.

\section*{Resistance}

Line a resistance - Line a series resistance
0.001 Ohm (default)

Series resistance of line \(a\). This value must be greater than or equal to zero.

\section*{Dependencies}

To enable this parameter, set Parameterization to General impedance.

\section*{Line b resistance - Line beries resistance}
0.001 Ohm (default)

Series resistance of line \(b\). This value must be greater than or equal to zero.

\section*{Dependencies}

To enable this parameter, set Parameterization to General impedance.

\section*{Line c resistance - Line c series resistance \\ 0.001 Ohm (default)}

Series resistance of line \(c\). This value must be greater than or equal to zero.

\section*{Dependencies}

To enable this parameter, set Parameterization to General impedance.

\section*{Line resistance - Series resistance}
0.001 Ohm (default)

Series resistance of lines \(a, b\), and \(c\). This value must be greater than or equal to zero.

\section*{Dependencies}

To enable this parameter, set Parameterization to Balanced impedance.

\section*{Mutual resistance - Mutual resistance}

\section*{0 Ohm (default)}

Mutual resistance between each pair of lines. This value must be greater than or equal to zero. Use this value to account for losses in a common return path.

\section*{Line a leakage conductance - Line a parallel leakage conductance 1e-9 1/Ohm (default)}

Parallel leakage conductance of line \(a\). This value must be greater than or equal to zero.

\section*{Dependencies}

To enable this parameter, set Parameterization to General impedance.

\section*{Line b leakage conductance - Line b parallel leakage conductance 1e-9 1/0hm (default)}

Parallel leakage conductance of line \(b\). This value must be greater than or equal to zero.

\section*{Dependencies}

To enable this parameter, set Parameterization to General impedance.

\section*{Line c leakage conductance - Line c parallel leakage conductance}

1e-9 1/Ohm (default)

Parallel leakage conductance of line \(a\). This value must be greater than or equal to zero.

\section*{Dependencies}

To enable this parameter, set Parameterization to General impedance.

\section*{Line leakage conductance - Parallel leakage conductance 1e-9 1/0hm (default)}

Parallel leakage conductance of lines \(a, b\), and \(c\). This value must be greater than or equal to zero.

\section*{Dependencies}

To enable this parameter, set Parameterization to Balanced impedance.

\section*{See Also}

Coupled Lines (Pair)

\author{
Introduced in R2018a
}

\section*{Coupled Lines (Pair)}

Magnetically couple two lines
Library: Simscape / Simscape Components / Passive Devices / Fundamental Components

\section*{Description}

The Coupled Lines (Pair) block models two magnetically coupled lines. Each line has a self-inductance, series resistance, and parallel conductance. In addition, there is a mutual inductance and mutual resistance between the two lines.

Use this block when the magnetic coupling between the two lines is nonnegligible. These effects are most prominent when:
- The lines are parallel and close together.
- The self-inductances of the lines are high.
- The AC frequency of the network is high.

To model magnetic coupling of a three-phase line, use the Coupled Lines block.

\section*{Equivalent Circuit}

The figure shows the equivalent circuit for a pair of coupled lines.

Here:
- \(R_{1}\) and \(R_{2}\) are the series resistances of lines 1 and 2 , respectively.
- \(L_{1}\) and \(L_{2}\) are the self-inductances of lines 1 and 2 , respectively.
- \(R_{m}\) is the mutual resistance between the two lines. You can use this parameter to account for losses in a common return path.
- \(L_{m}\) is the mutual inductance between the two lines.
- \(G_{1}\) and \(G_{2}\) are the leakage conductances of lines 1 and 2, respectively.
- \(V_{1}\) and \(V_{2}\) are voltage drops across lines 1 and 2, respectively.
- \(I_{1}\) and \(I_{2}\) are the currents through the resistors \(R_{1}-R_{m}\) and \(R_{2}-R_{m}\), respectively.

\section*{Equations}

The defining equation for this block is:
\[
V=\left[\begin{array}{cc}
R_{1} & R_{m} \\
R_{m} & R_{2}
\end{array}\right] I+\left[\begin{array}{cc}
L_{1} & L_{m} \\
L_{m} & L_{2}
\end{array}\right] \frac{d I}{d t},
\]
where:
\[
V=\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]
\]
\[
I=\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right] .
\]
\(I_{1}\) and \(I_{2}\) are, in general, not equal to the currents in line 1 and line 2 . These terminal currents make up the vector:
\[
I_{\text {total }}=I+\left[\begin{array}{cc}
G_{1} & 0 \\
0 & G_{2}
\end{array}\right] V .
\]

\section*{Inductive Coupling}

To quantify the strength of the coupling between the two lines, you can use a coupling factor or coefficient of coupling \(k\). The coupling factor relates the mutual inductance to the line self-inductances:
\[
L_{m}=k \sqrt{L_{1} L_{2}} .
\]

This coupling factor must fall in the range \(-1<k<1\), where a negative coupling factor indicates a reversal in orientation of one of the coils. The magnitude of \(k\) indicates:
- \(|k|=0\)
- There is no magnetic coupling between the two lines.
- \(0<|k|<0.5\)
- The two lines are loosely coupled and mutual magnetic effects are small.
- \(0.5 \leq|k|<1\)
- The two lines are strongly coupled and mutual magnetic effects are large.

\section*{Mutual Resistance}

If the two lines share a common return path, you can model the resistance of this return path using the Mutual resistance parameter. This workflow is equivalent to setting the Mutual resistance to zero and explicitly modeling the return path resistance \(R_{m}\), as shown in this diagram.

If the two lines do not share a common return path, set the mutual resistance parameter to zero and model each of the return resistances explicitly.

\section*{Ports}

\section*{Conserving}

\section*{1+ - Line 1 positive terminal} electrical

Electrical conserving port associated with the positive terminal of line 1.

\section*{1- - Line 1 negative terminal electrical}

Electrical conserving port associated with the negative terminal of line 1.

\section*{2+ - Line 2 positive terminal} electrical

Electrical conserving port associated with the positive terminal of line 2.

\section*{2- - Line 2 negative terminal \\ electrical}

Electrical conserving port associated with the negative terminal of line 2.

\section*{Parameters}

\section*{Parameters}

\section*{Parameterization - Line impedance parameterization}

Balanced impedance (default) |General impedance
Specify how to parameterize the impedance of the two lines:
Balanced impedance
Specify the same series resistance, series inductance, and parallel leakage conductance for both lines.

\section*{General impedance}

Specify the series resistance, series inductance, and parallel leakage conductance separately for each line.

\section*{Line 1 inductance - Line 1 self-inductance}

\section*{1e-3 H (default)}

Self-inductance of line 1. This value must be greater than zero.

\section*{Dependencies}

To enable this parameter, set Parameterization to General impedance.

\section*{Line 2 inductance - Line \(\mathbf{2}\) self-inductance} 1e-3 H (default)

Self-inductance of line 2. This value must be greater than zero.

\section*{Dependencies}

To enable this parameter, set Parameterization to General impedance.

\section*{Line inductance - Self-inductance \\ 1e-3 H (default)}

Self-inductance of line 1 and line 2 . This value must be greater than zero.

\section*{Dependencies}

To enable this parameter, set Parameterization to Balanced impedance.

\section*{Mutual inductance - Mutual inductance between lines \\ 3e-4 H (default)}

Mutual inductance between line 1 and line 2. If you know the coupling factor, set this value to \(k \sqrt{L_{1} L_{2}}\). To have a physically realizable mutual inductance, this value must satisfy:
\[
-\sqrt{L_{1} L_{2}}<L_{m}<\sqrt{L_{1} L_{2}} .
\]

\section*{Line 1 resistance - Line 1 series resistance}
0.001 Ohm (default)

Series resistance of line 1. This value must be greater than or equal to zero.

\section*{Dependencies}

To enable this parameter, set Parameterization to General impedance.

\section*{Line 2 resistance - Line \(\mathbf{2}\) series resistance}
0.001 Ohm (default)

Series resistance of line 2 . This value must be greater than or equal to zero.

\section*{Dependencies}

To enable this parameter, set Parameterization to General impedance.

\section*{Line resistance - Series resistance}
0.001 Ohm (default)

Series resistance of line 1 and line 2. This value must be greater than or equal to zero.

\section*{Dependencies}

To enable this parameter, set Parameterization to Balanced impedance.

\section*{Mutual resistance - Mutual resistance between lines}

\section*{0 Ohm (default)}

Mutual resistance between line 1 and line 2. This value must be greater than or equal to zero. Use this value to account for losses in a common return path.

\section*{Line 1 leakage conductance - Line 1 parallel leakage conductance 1e-9 1/0hm (default)}

Parallel leakage conductance of line 1. This value must be greater than or equal to zero.

\section*{Dependencies}

To enable this parameter, set Parameterization to General impedance.

\section*{Line 2 leakage conductance - Line 2 parallel leakage conductance} 1e-9 1/0hm (default)

Parallel leakage conductance of line 2. This value must be greater than or equal to zero.

\section*{Dependencies}

To enable this parameter, set Parameterization to General impedance.

\section*{Line leakage conductance - Parallel leakage conductance 1e-9 1/0hm (default)}

Parallel leakage conductance of line 1 and line 2 . This value must be greater than or equal to zero.

\section*{Dependencies}

To enable this parameter, set Parameterization to Balanced impedance.

\section*{See Also}

Coupled Lines
Introduced in R2018a

\section*{Current Sensor}

Measure phase currents in three-phase system

\section*{Library}

Sensors

\section*{Description}

The Current Sensor block represents an ideal three-phase current sensor. The block measures each of the three currents flowing from port \(\sim 1\) to port \(\sim 2\) and outputs a single three-element, physical signal vector. Each element of the physical signal output vector is proportional to the current in its respective phase.

\section*{Ports}

The block has the following ports:
~1
Expandable three-phase port.
\(\sim 2\)
Expandable three-phase port.
I
Three-element physical signal vector output port associated with the phase currents.

\section*{See Also}

\section*{Topics}
"Expand and Collapse Three-Phase Ports on a Block"
Introduced in R2013b

\section*{Current Source}

Ideal three-phase current source

\section*{Library}

\section*{Sources}

\section*{Description}

The Current Source block models an ideal three-phase current source that maintains sinusoidal currents of the specified magnitude through its terminals, independent of the voltage across the source.

The output current is defined by the following equations:
\[
\begin{aligned}
& I_{0}=\sqrt{2} i_{\text {phase_rms }} \\
& i_{a}=I_{0} \sin (2 \pi f t+\varphi) \\
& i_{b}=I_{0} \sin \left(2 \pi f t+\varphi-120^{\circ}\right) \\
& i_{c}=I_{0} \sin \left(2 \pi f t+\varphi+120^{\circ}\right),
\end{aligned}
\]
where:
- \(I_{0}\) is the peak phase current.
- \(i_{\text {phase_rms }}\) is the RMS phase current.
- \(i_{\mathrm{a}}, i_{\mathrm{b}}, i_{\mathrm{c}}\) are the respective phase currents.
- \(f\) is the frequency.
- \(\varphi\) is the phase shift.
- \(t\) is the time.

The arrow indicates the positive direction of the current flow. The source has a wye configuration, and port n provides a connection to the center of the wye. Port ~ is an expandable three-phase port representing the three phases, \(\mathrm{a}, \mathrm{b}\), and c .

\section*{Parameters}

\section*{Current (phase RMS)}

RMS phase current. The default value is \(100 /\) sqrt(2), or 70.7107, A.

\section*{Phase shift}

Phase shift in angular units. The default value is 0 deg .

\section*{Frequency}

Current frequency, specified in Hz or units directly convertible to Hz (where Hz is defined as \(1 / \mathrm{s}\)). For example, kHz and MHz are valid units, but rad/s is not. The default value is 60 Hz .

\section*{Ports}

The block has the following ports:

Expandable three-phase port
n
Electrical conserving port associated with the center of the wye

\section*{See Also}

\author{
Voltage Source
}

\author{
Topics \\ "Expand and Collapse Three-Phase Ports on a Block" \\ Introduced in R2013b
}

\section*{DC Current Controller}

Discrete-time PI-based DC current control
Library: Simscape / Power Systems / Simscape Components / Control / General Machine Control

\section*{Description}

The DC Current Controller block implements a discrete-time proportional-integral (PI) DC voltage controller. The block can implement zero cancellation in the feedforward path. To avoid saturation of the integral gain, the block can implement anti-windup gain.

\section*{Equations}

The equation that the DC Current Controller block uses to calculate the reference voltage is
\[
v_{r e f}=\left(K_{p}+K_{i} \frac{T_{s} z}{z-1}\right)\left(i_{r e f}-i\right),
\]
where:
- \(v_{r e f}\) is the reference voltage.
- \(K_{p}\) is the proportional gain.
- \(K_{i}\) is the integral gain.
- \(T_{s}\) is the sample time.
- \(i_{r e f}\) is the reference current.
- \(i\) is the measured current.

The PI control calculation yields a zero in the closed-loop transfer function. To cancel the zero, the block uses this discrete-time zero-cancellation transfer function:
\[
G_{Z C}(z)=\frac{\frac{T_{s} K_{i}}{K_{p}}}{z+\left(\frac{T_{s}-\frac{K_{p}}{K_{i}}}{\frac{K_{p}}{K_{i}}}\right)} .
\]

To avoid saturation of the integrator output, the block uses an anti-windup mechanism. The integrator gain is then equal to
\[
K_{i}+K_{a w}\left(v_{\text {ref_sat }}-v_{\text {ref_unsat }}\right),
\]
where:
- \(K_{a w}\) is the anti-windup gain.
- \(v_{\text {ref_sat }}\) is the saturated reference voltage signal, which the block calculates as
\[
v_{\text {ref_sat }}=\min \left(\max \left(v_{\text {ref_unsat }}, v_{\min }\right), v_{\max }\right),
\]
where:
- \(v_{\text {ref_unsat }}\) is the unsaturated reference voltage signal.
- \(v_{\min }\) is the lower limit for the output voltage. For positive voltage only, \(v_{\text {min }}=0\). For positive and negative voltage, \(v_{\text {min }}=-v_{\text {max }}\)
- \(v_{\max }\) is the upper limit for the output voltage.

\section*{Ports}

\section*{Input}

\section*{iRef - Reference current \\ scalar}

Desired output current for the plant.
Data Types: single | double

\section*{i - Measured current}
scalar
Measured current for the plant.
Data Types: single | double
\(\mathbf{v}_{\text {max }}\) - Maximum DC voltage
scalar

Maximum DC output voltage for the plant.
Data Types: single| double
Reset - External reset
scalar
External reset signal (rising edge) for the integrator.
Data Types: single | double

\section*{Output}

\section*{vRef - Reference DC voltage}
scalar
Desired DC output voltage for the plant.
Data Types: single | double

\section*{Parameters}

\section*{Proportional gain - Controller proportional gain, \(\boldsymbol{K}_{\boldsymbol{p}}\)}

1 (default) | positive scalar
Proportional gain, \(K_{p}\), of the controller.

\section*{Integral gain - Integral gain, \(\boldsymbol{K}_{\boldsymbol{i}}\)}

5 (default) | positive scalar
Integral gain, \(K_{i}\), of the controller.

\section*{Anti-windup gain - Anti-windup gain, \(\boldsymbol{K}_{\text {aw }}\)}

1 (default) | positive scalar
Anti-windup gain, \(K_{a w}\), of the controller.

\section*{Voltage limitation - Negative voltage restriction}

Positive and negative voltage (default)|Positive voltage only
Allow for both positive and negative DC voltage output or limit the output to positive DC voltage.

\section*{Sample time (-1 for inherited) - Block sample time -1 (default) | positive scalar}

Time, in s, between consecutive block executions. During execution, the block produces outputs and, if appropriate, updates its internal state. For more information, see "What Is Sample Time?" (Simulink) and "Specify Sample Time" (Simulink).

If this block is inside a triggered subsystem, inherit the sample time by setting this parameter to -1. If this block is in a continuous variable-step model, specify the sample time explicitly using a positive scalar.

\section*{Dependencies}

If you set Sample time (-1 for inherited) to -1 and select the Enable zero cancellation option, the Discretization sample time parameter becomes visible.

\section*{Discretization sample time - Sample time for discretization}
0.001 (default) | positive scalar

Time, in s, between consecutive discretizations. Discretization is required for zero cancellation.

\section*{Dependencies}

This parameter is only visible when both these conditions are met:
- Sample time is set to - 1 .
- Enable zero cancellation is selected.

\section*{Enable zero cancellation - Feedforward zero cancellation} off (default) | on

Option to use zero cancellation on the feedforward path.

\section*{Dependencies}

If you select the Enable zero cancellation option and set Sample time (-1 for inherited) to -1 , the Discretization sample time parameter becomes visible.

\author{
See Also \\ DC Voltage Controller | DC-DC Voltage Controller | PWM Generator \\ Introduced in R2018a
}

\section*{DC Voltage Controller}

Discrete-time PI-based DC voltage control with feedforward zero cancellation and antiwindup gain
Library: Simscape / Power Systems / Simscape Components / Control / General Machine Control

\section*{Description}

The DC Voltage Controller block implements discrete-time PI-based DC voltage control. The block can implement zero cancellation in the feedforward path. To avoid saturation of the integral gain, the block can implement anti-windup gain.

\section*{Equations}

The equation that the DC Voltage Controller block uses to calculate the control signal is
\[
\text { control }=\left(K_{p}+K_{i} \frac{T_{s} z}{z-1}\right)\left(v_{\text {ref }}-v\right),
\]
where:
- control is the control signal, which is expressed as a duty cycle or a current.
- \(K_{p}\) is the proportional gain.
- \(K_{i}\) is the integral gain.
- \(T_{s}\) is the sample time.
- \(v_{r e f}\) is the reference voltage.
- \(v\) is the measured voltage.

The PI control calculation yields a zero in the closed-loop transfer function. To cancel the zero, the block uses this discrete-time zero-cancellation transfer function:
\[
G_{Z C}(z)=\frac{\frac{T_{s} K_{i}}{K_{p}}}{z+\left(\frac{T_{s}-\frac{K_{p}}{K_{i}}}{\frac{K_{p}}{K_{i}}}\right)} .
\]

To avoid saturation of the integrator output, the block uses an anti-windup mechanism. The integrator gain is then equal to
\[
K_{i}+K_{a w}\left(\text { control }_{\text {sat }}-\text { control }_{\text {unsat }}\right)
\]
where:
- \(K_{a w}\) is the anti-windup gain.
- control \({ }_{\text {sat }}\) is the saturated control signal, which the block calculates as
control \(_{\text {sat }}=\min \left(\max \left(\right.\right.\) control \(_{\text {unsat }}\), control \(\left._{\text {min }}\right)\), control \(\left._{\text {max }}\right)\),
where:
- control \({ }_{\text {unsat }}\) is the unsaturated control signal.
- control min is the lower limit for the control signal.
- \(v_{\max }\) is the upper limit for the control signal.

\section*{Ports}

\section*{Input}

\section*{vRef - Reference DC voltage}
scalar
Desired DC output voltage for the plant.
Data Types: single | double

\section*{v - Measured DC voltage}
scalar
Measured DC output voltage for the plant.
Data Types: single \| double

\section*{Reset - External reset}
scalar
External reset signal (rising edge) for the integrator.
Data Types: single | double

\section*{Output}

\section*{Control - Control signal \\ scalar}

Control signal, control, expressed as a duty cycle or a current.
Data Types: single| double

\section*{Parameters}

\section*{Proportional gain - Proportional gain, \(\boldsymbol{K}_{\boldsymbol{p}}\)}

\section*{0.1 (default) | positive scalar}

Proportional gain, \(K_{p}\), of the controller.
```

Integral gain - Integral gain, 首
50 (default) | positive scalar

```

Integral gain, \(K_{i}\), of the controller.

\section*{Anti-windup gain - Anti-windup gain, \(K_{\text {aw }}\)}

1 (default) | positive scalar
Anti-windup gain, \(K_{a w}\), of the controller.

\section*{Control action upper limit - Upper limit for the control signal, control \({ }_{\text {max }}\)} 1 (default) | positive scalar

Upper limit for the Control output signal. The value must be greater than the value of the Control action lower limit parameter.

\section*{Control action lower limit - Lower limit for the control signal, control \({ }_{\text {min }}\) 0 (default) | non-negative scalar}

Lower limit for the Control output signal.

\section*{Sample time (-1 for inherited) - Block sample time} -1 (default) | positive scalar

Time, in s, between consecutive block executions. During execution, the block produces outputs and, if appropriate, updates its internal state. For more information, see "What Is Sample Time?" (Simulink) and "Specify Sample Time" (Simulink).

If this block is inside a triggered subsystem, inherit the sample time by setting this parameter to -1. If this block is in a continuous variable-step model, specify the sample time explicitly using a positive scalar.

Discretization sample time - Sample time for discretization
0.001 (default) | positive scalar

Time, in s, between consecutive discretizations.

\section*{Time constant voltage filter - DC voltage filter time constant, \(\boldsymbol{\tau}\) 0.001 (default) | positive scalar}

Time constant, \(\tau\), for the DC voltage filter.

\section*{Dependencies}

The Time constant voltage filter parameter is only visible when the Filter DC voltage checkbox is selected.

\section*{Enable zero cancellation - Feedforward zero cancellation off (default) | on}

Option to use zero cancellation on the feedforward path.

\section*{Dependencies}

If you select the Enable zero cancellation option and set Sample time (-1 for inherited) to -1 , the Discretization sample time parameter becomes visible.
```

Filter DC voltage - DC voltage filter option
on (default) | off

```

To enable the filter on voltage measurement path, select the checkbox. To disable the filter, clear the check box.

\section*{Dependencies}

The Time constant voltage filter parameter is only visible when the Filter DC voltage check box is selected.

\section*{See Also}

\section*{Blocks}

DC Current Controller | DC-DC Voltage Controller

Introduced in R2018a

\section*{DC-DC Voltage Controller}

Discrete-time PI-based DC-DC voltage control with feedforward and anti-windup gain Library: Simscape / Power Systems / Simscape Components / Control / Converter Control

\section*{Description}

The DC-DC Voltage Controller block implements discrete-time proportional-integral (PI) DC-DC voltage control with feedforward, FF. The feedforward input optimizes the transient response. The block can output a duty cycle or a current control signal. To avoid saturation of the integral gain, the block can implement anti-windup gain.

\section*{Equations}

The equation that the DC-DC Voltage Controller block uses to calculate the control signal is
\[
\text { control }=\left(K_{p}+K_{i} \frac{T_{s} z}{z-1}\right)\left(v_{\text {ref }}-v\right)+F F,
\]
where:
- control is the control signal, expressed as a duty cycle or a current.
- \(K_{p}\) is the proportional gain.
- \(K_{i}\) is the integral gain.
- \(T_{s}\) is the sample time.
- \(v_{\text {ref }}\) is the reference voltage.
- \(v\) is the measured voltage.
- \(F F\) is the feedforward input.

To avoid saturation of the integrator output, the block uses an anti-windup mechanism. The integrator gain is then equal to
\[
K_{i}+K_{a w}\left(\text { control }_{\text {sat }}-\text { control }_{\text {unsat }}\right)
\]
where:
- \(K_{a w}\) is the anti-windup gain.
- control \({ }_{\text {sat }}\) is the saturated control signal, which the block calculates as control \(_{\text {sat }}=\min \left(\max \left(\right.\right.\) control \(_{\text {unsat }}\), control \(\left._{\text {min }}\right)\), control \(\left._{\text {max }}\right)\),
where:
- control \({ }_{\text {unsat }}\) is the unsaturated control signal.
- control \(_{\text {min }}\) is the lower limit for the control signal.
- control \(_{\text {max }}\) is the upper limit for the control signal.

\section*{Ports}

\section*{Input}

\section*{vRef - Reference DC voltage}
scalar
Desired DC output voltage for the plant.
Data Types: single | double
v - Measured DC voltage
scalar
Measured DC output voltage for the plant.
Data Types: single | double
FF - Feedforward
scalar
Feedforward term.
Data Types: single | double

\section*{Reset - External reset \\ scalar}

External reset signal (rising edge) for the integrator.
Data Types: single | double

\section*{Output}

\section*{Control - Control signal}
scalar
Control signal, control, expressed as a duty cycle or a current.
Data Types: single | double

\section*{Parameters}

\section*{Proportional gain - Proportional gain, \(\boldsymbol{K}_{\boldsymbol{p}}\)} 0.1 (default) | positive scalar

Proportional gain, \(K_{p}\), of the controller.
```

Integral gain - Integral gain, 首
50 (default) | positive scalar

```

Integral gain, \(K_{i}\), of the controller.

\section*{Anti-windup gain - Anti-windup gain, \(\boldsymbol{K}_{\text {aw }}\)}

\section*{1 (default) | positive scalar}

Anti-windup gain, \(K_{a w}\), of the controller.

\section*{Control action upper limit - Upper limit for the control signal, control \({ }_{\text {max }}\)}

1 (default) | positive scalar
Upper limit for the Control output signal. The value must be greater than the value of the Control action lower limit parameter.

\section*{Control action lower limit - Lower limit for the control signal, control \({ }_{\text {min }}\) 0 (default) | non-negative scalar}

Lower limit for the Control output signal.

\section*{Sample time (-1 for inherited) - Block sample time} -1 (default) | positive scalar

Time, in s, between consecutive block executions. During execution, the block produces outputs and, if appropriate, updates its internal state. For more information, see "What Is Sample Time?" (Simulink) and "Specify Sample Time" (Simulink).

If this block is inside a triggered subsystem, inherit the sample time by setting this parameter to -1. If this block is in a continuous variable-step model, specify the sample time explicitly using a positive scalar.

Time constant voltage filter - DC voltage filter time constant, \(\boldsymbol{\tau}\) 0.001 (default) | positive scalar

Time constant, \(\tau\), for the DC voltage filter.

\section*{Dependencies}

The Time constant voltage filter parameter is only visible when the Filter DC voltage checkbox is selected.

\section*{Filter DC voltage - DC voltage filter option \\ on (default) | off}

To enable the filter on voltage measurement path, select the checkbox. To disable the filter, clear the check box.

\section*{Dependencies}

The Time constant voltage filter parameter is only visible when the Filter DC voltage check box is selected.

\section*{See Also}

\section*{Blocks}

DC Current Controller | DC Voltage Controller

\section*{Introduced in R2018a}

\section*{Delta Reference}

Reference point for delta-connected network

\section*{Library}

Connections

\section*{Description}

In a Simscape Power Systems Simscape Components model, connect a Delta Reference block to any part of the three-phase system that is connected in a delta winding configuration. The block provides a reference point for the delta winding, representing the center of the line-line vector voltage triangle. The software calculates absolute node voltages relative to the voltage at this reference point.

For example, suppose you model a transmission system that consists of a generator connected in a wye configuration, a wye-delta transformer, a delta-wye transformer, and a load connected in wye. Connect a Delta Reference block to the part of the circuit between the two transformers.

\section*{Ports}

The block has the following ports:

Expandable three-phase port

\section*{See Also}

\section*{Topics}
"Expand and Collapse Three-Phase Ports on a Block"

Introduced in R2013b

\section*{Delta1-Delta1-Wye Transformer}

Linear nonideal delta1-delta1-wye transformer with three-limb core

\section*{Library}

Simscape / Power Systems / Simscape Components / Passive Devices / Transformers

\section*{Description}

The Delta1-Delta1-Wye Transformer block models a linear, nonideal transformer with a three-limb core, in which the primary windings are configured in a delta connection and there are delta secondary windings and wye secondary windings. The delta voltages lag the wye voltages by 30 degrees, hence the name 1 o'clock delta. The block includes linear winding leakage and linear core magnetization effects.

The figure shows the equivalent circuit diagram for the delta1-delta1-wye transformer.

- \(\mathrm{R}_{\mathrm{w} 1}\) is the primary winding resistance.
- \(L_{11}\) is the primary leakage reactance.
- \(\mathrm{R}_{\mathrm{w} 2}\) is the delta secondary winding resistance.
- \(\mathrm{L}_{12}\) is the delta secondary leakage reactance.
- \(\mathrm{R}_{\mathrm{w} 3}\) is the wye secondary winding resistance.
- \(L_{13}\) is the wye secondary leakage reactance.
- \(R_{m}\) is the shunt magnetizing resistance.
- \(\mathrm{L}_{\mathrm{m}}\) is the shunt magnetizing reactance.

\section*{Display Options}

You can display the transformer per-unit base values in the MATLAB command window using the block context menu. To display the values, right-click the block and select

\section*{Power Systems > Display Base Values.}

\section*{Variables}

Use the Variables settings to specify the priority and initial target values for the block variables before simulation. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape) .

Unlike block parameters, variables do not have conditional visibility. The Variables settings include all the existing block variables. If a variable is not used in the set of equations corresponding to the selected block configuration, the values specified for this variable are ignored.

\section*{Parameters}
- "Main Tab" on page 1-312
- "Impedances Tab" on page 1-313

\section*{Main Tab}

\section*{Rated apparent power}

Apparent power flowing through the transformer when operating at rated capacity. The default value is \(100 \mathrm{e} 6 \mathrm{~V} * \mathrm{~A}\).

\section*{Primary rated voltage}

RMS line voltage applied to the primary winding under normal operating conditions. The default value is 4160 V .

\section*{Delta secondary rated voltage}

RMS line voltage applied to the delta secondary winding under normal operating conditions. The default value is 24 e 3 V .

\section*{Wye secondary rated voltage}

RMS line voltage applied to the wye secondary winding under normal operating conditions. The default value is 24 e 3 V .

\section*{Rated electrical frequency}

Rated or nominal frequency of the AC network to which the transformer is connected. The default value is 60 Hz .

\section*{Impedances Tab}

Parameters in this tab are expressed in per-unit (pu). For more information, see "Per-Unit System of Units".

\section*{Primary winding resistance (pu)}

Power loss in the primary winding. The default value is 0.01 .

\section*{Primary leakage reactance (pu)}

Magnetic flux loss in the primary winding. The default value is 0.001 .

\section*{Delta secondary winding resistance (pu)}

Power loss in the delta secondary winding. The default value is 0.01 .

\section*{Delta secondary leakage reactance (pu)}

Magnetic flux loss in the delta secondary winding. The default value is 0.001 .

\section*{Wye secondary winding resistance (pu)}

Power loss in the wye secondary winding. The default value is 0.01 .

\section*{Wye secondary leakage reactance (pu)}

Magnetic flux loss in the wye secondary winding. The default value is 0.001 .

\section*{Shunt magnetizing resistance (pu)}

Magnetic losses in transformer core. The default value is 500 .

\section*{Shunt magnetizing reactance (pu)}

Magnetic effects of the transformer core when operating in its linear region. The default value is 500 .

\section*{Ports}

The block has the following ports:
\(\sim 1\)
Expandable three-phase port for primary winding
\(\sim 2\)
Expandable three-phase port for delta secondary winding ~3

Expandable three-phase port for wye secondary winding n3

Electrical conserving port associated with the wye secondary winding neutral point

\author{
See Also \\ Delta-Delta Transformer | Delta11-Delta11-Wye Transformer | Wye-Delta1 Transformer | Wye-Delta1-Wye Transformer | Wye-Delta11 Transformer | Wye-Delta11-Wye Transformer | Wye-Wye Transformer | Zigzag-Delta1-Wye Transformer | Zigzag-Delta11-Wye Transformer
}

\section*{Topics}
"Custom Zigzag Transformer"
"Push-Pull Buck Converter in Continuous Conduction Mode"
"Push-Pull Buck Converter in Discontinuous Conduction Mode"

\section*{Introduced in R2013b}

\section*{Delta11-Delta11-Wye Transformer}

Linear nonideal delta11-delta11-wye transformer with three-limb core

\section*{Library}

Simscape / Power Systems / Simscape Components / Passive Devices / Transformers

\section*{Description}

The Delta11-Delta11-Wye Transformer block models a linear, nonideal transformer with a three-limb core, in which the primary windings are configured in a delta connection and there are delta secondary windings and wye secondary windings. The delta voltages lead the wye voltages by 30 degrees, hence the name 11 o'clock delta. The block includes linear winding leakage and linear core magnetization effects.

The figure shows the equivalent circuit diagram for the delta11-delta11-wye transformer.

- \(\mathrm{R}_{\mathrm{w} 1}\) is the primary winding resistance.
- \(\mathrm{L}_{11}\) is the primary leakage reactance.
- \(R_{w 2}\) is the delta secondary winding resistance.
- \(L_{l 2}\) is the delta secondary leakage reactance.
- \(\mathrm{R}_{\mathrm{w} 3}\) is the wye secondary winding resistance.
- \(L_{13}\) is the wye secondary leakage reactance.
- \(\mathrm{R}_{\mathrm{m}}\) is the shunt magnetizing resistance.
- \(\mathrm{L}_{\mathrm{m}}\) is the shunt magnetizing reactance.

\section*{Display Options}

You can display the transformer per-unit base values in the MATLAB command window using the block context menu. To display the values, right-click the block and select

\section*{Power Systems > Display Base Values.}

\section*{Variables}

Use the Variables settings to specify the priority and initial target values for the block variables before simulation. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape) .

Unlike block parameters, variables do not have conditional visibility. The Variables settings include all the existing block variables. If a variable is not used in the set of equations corresponding to the selected block configuration, the values specified for this variable are ignored.

\section*{Parameters}
- "Main Tab" on page 1-317
- "Impedances Tab" on page 1-318

\section*{Main Tab}

\section*{Rated apparent power}

Apparent power flowing through the transformer when operating at rated capacity. The default value is 100 e 6 V * A .

\section*{Primary rated voltage}

RMS line voltage applied to the primary winding under normal operating conditions. The default value is 4160 V .

\section*{Delta secondary rated voltage}

RMS line voltage applied to the delta secondary winding under normal operating conditions. The default value is 24 e 3 V .

\section*{Wye secondary rated voltage}

RMS line voltage applied to the wye secondary winding under normal operating conditions. The default value is 24 e 3 V .

\section*{Rated electrical frequency}

Rated or nominal frequency of the AC network to which the transformer is connected. The default value is 60 Hz .

\section*{Impedances Tab}

Parameters in this tab are expressed in per-unit (pu). For more information, see "Per-Unit System of Units".

\section*{Primary winding resistance (pu)}

Power loss in the primary winding. The default value is 0.01 .

\section*{Primary leakage reactance (pu)}

Magnetic flux loss in the primary winding. The default value is 0.001 .

\section*{Delta secondary winding resistance (pu)}

Power loss in the delta secondary winding. The default value is 0.01 .

\section*{Delta secondary leakage reactance (pu)}

Magnetic flux loss in the delta secondary winding. The default value is 0.001 .

\section*{Wye secondary winding resistance (pu)}

Power loss in the wye secondary winding. The default value is 0.01 .

\section*{Wye secondary leakage reactance (pu)}

Magnetic flux loss in the wye secondary winding. The default value is 0.001 .

\section*{Shunt magnetizing resistance (pu)}

Magnetic losses in transformer core. The default value is 500.

\section*{Shunt magnetizing reactance (pu)}

Magnetic effects of the transformer core when operating in its linear region. The default value is 500 .

\section*{Ports}

The block has the following ports:
\(\sim 1\)
Expandable three-phase port for primary winding
\(\sim 2\)
Expandable three-phase port for delta secondary winding ~3

Expandable three-phase port for wye secondary winding n3

Electrical conserving port associated with the wye secondary winding neutral point

\author{
See Also \\ Delta-Delta Transformer | Delta1-Delta1-Wye Transformer | Wye-Delta1 Transformer | Wye-Delta1-Wye Transformer | Wye-Delta11 Transformer | Wye-Delta11-Wye Transformer | Wye-Wye Transformer | Zigzag-Delta1-Wye Transformer | Zigzag-Delta11-Wye Transformer
}

\section*{Topics}
"Custom Zigzag Transformer"
"Push-Pull Buck Converter in Continuous Conduction Mode"
"Push-Pull Buck Converter in Discontinuous Conduction Mode"

\section*{Introduced in R2013b}

\section*{Delta-Connected Load}

Three-phase load wired in delta configuration

\section*{Library}

Passive Devices

\section*{Description}

The Delta-Connected Load block models a three-phase load wired in a delta configuration. Each limb of the load can include any combination of a resistor (R), capacitor (C), and inductor (L), connected in series or in parallel.

You can specify values for the R, L, and C components directly in terms of resistance, inductance, and capacitance, or by rated powers at a rated voltage and frequency.
- If you parameterize the block directly in terms or R, L, and C values, then for initialization provide a three-element row vector of initial voltages for a capacitor, and a three-element row vector of initial currents for an inductor.
- If you parameterize the block in terms of rated powers, then specify initial conditions in terms of an initial voltage, initial voltage phase, and initial frequency. For example, if the load is connected directly to a three-phase voltage source, then the initial conditions are identical to the source values for RMS line voltage, frequency, and phase shift. To specify zero initial voltage magnitude, set the initial voltage to 0 .

For certain combinations of \(\mathrm{R}, \mathrm{L}\), and C , for some circuit topologies, specify parasitic resistance or conductance values that help the simulation to converge numerically. These parasitic terms ensure that an inductor has a small parallel resistive path and that a
capacitor has a small series resistance. When you parameterize the block in terms of rated powers, the rated power values do not account for these small parasitic terms. The rated powers represent only the \(\mathrm{R}, \mathrm{L}\), and C values of the load itself.

\section*{Parameters}
- "Main Tab" on page 1-321
- "Parasitics Tab" on page 1-322
- "Initial Conditions Tab" on page 1-323

\section*{Main Tab}

\section*{Parameterization}

Select one of these values:
- Specify by rated power - Specify values for the R, L, and C components by rated powers at a rated voltage and frequency. This is the default.
- Specify component values directly - Specify values for the R, L, and C components directly in terms of resistance, inductance, and capacitance.

Switching the Parameterization value resets the Component structure value. Select the component parameterization option first, and then the component structure. If you later switch the Parameterization value, check the Component structure value and reselect it, if necessary.

\section*{Component structure}

Select the desired combination of a resistor (R), capacitor (C), and inductor (L), connected in series or in parallel. The default is R , resistor.

\section*{Rated voltage}

Voltage for which load powers are specified. This parameter is visible only when you specify values by rated power. The default value is 2.4 e 4 V .

\section*{Real power}

Total real power dissipated by three-phase load when supplied at the rated voltage. This parameter is visible only when you specify values by rated power and select a component structure that includes a resistor. The value must be greater than 0 . The default value is 1000 W .

\section*{Rated electrical frequency}

Frequency for which reactive load powers are specified. This parameter is visible only when you specify values by rated power. The default value is 60 Hz .

\section*{Inductive reactive power}

Total inductive reactive power taken by the three-phase load when supplied at the rated voltage. This parameter is visible only when you specify values by rated power and select a component structure that includes an inductor. The value must be greater than 0 . The default value is \(100 \mathrm{~V} * \mathrm{~A}\).

\section*{Capacitive reactive power}

Total capacitive reactive power taken by the three-phase load when supplied at the rated voltage. This parameter is visible only when you specify values by rated power and select a component structure that includes a capacitor. The value must be less than 0 . The default value is \(-100 \mathrm{~V} * \mathrm{~A}\).

\section*{Resistance}

The resistance of each of the load limbs. This parameter is visible only when you specify component values directly and select a component structure that includes a resistor. The default value is 10 hm .

\section*{Inductance}

Inductance of each of the load limbs. This parameter is visible only when you specify component values directly and select a component structure that includes an inductor. The default value is 0.001 H .

\section*{Capacitance}

Capacitance in each of the load limbs. This parameter is visible only when you specify component values directly and select a component structure that includes a capacitor. The default value is \(1 e-6 \mathrm{~F}\).

\section*{Parasitics Tab}

\section*{Parasitic series resistance}

Represents small parasitic effects. The parameter value corresponds to the series resistance value added to all instances of capacitors in the load. The default value is 1e-60hm.

\section*{Parasitic parallel conductance}

Represents small parasitic effects. The parameter value corresponds to the parallel conductance value added across all instances of inductors in the load. The default value is \(1 \mathrm{e}-61 / 0 \mathrm{hm}\).

\section*{Initial Conditions Tab}

\section*{Terminal voltage magnitude}

Expected initial RMS line voltage at the load. This parameter is visible only when you specify values by rated power. The default value is 2.4 e 4 V .

\section*{Terminal voltage angle}

Expected initial phase of the voltage at the load. This parameter is visible only when you specify values by rated power. The default value is 0 deg.

\section*{Frequency}

Expected initial frequency at the load. This parameter is visible only when you specify values by rated power. The default value is 60 Hz .

\section*{Initial inductor current [Ia Ib Ic]}

Initial current in the a, b, and c phase inductors, respectively. This parameter is visible only when you specify component values directly and select a component structure that includes an inductor. The default value is [0 0 0 0 A.

\section*{Initial capacitor voltage [Va Vb Vc]}

Initial voltage across the \(\mathrm{a}, \mathrm{b}\), and c phase capacitors, respectively. This parameter is visible only when you specify component values directly and select a component structure that includes a capacitor. The default value is [0 0 0] V.

\section*{Block Parameterization}

The following two tables list the block parameters for each Component structure, based on the selected Parameterization option:
- Specify by rated power
- Specify component values directly

Specify by Rated Power
\begin{tabular}{|c|c|c|c|}
\hline Component Structure & Main Tab & Parasitics Tab & Initial Conditions Tab \\
\hline R & Rated voltage Real power & None & None \\
\hline L & \begin{tabular}{l}
Rated voltage \\
Rated electrical frequency \\
Inductive reactive power
\end{tabular} & Parasitic parallel conductance & \begin{tabular}{l}
Terminal voltage magnitude \\
Terminal voltage angle \\
Frequency
\end{tabular} \\
\hline C & \begin{tabular}{l}
Rated voltage \\
Rated electrical frequency \\
Capacitive reactive power
\end{tabular} & Parasitic series resistance & \begin{tabular}{l}
Terminal voltage magnitude \\
Terminal voltage angle \\
Frequency
\end{tabular} \\
\hline Series RL & \begin{tabular}{l}
Rated voltage \\
Rated electrical frequency \\
Real power \\
Inductive reactive power
\end{tabular} & Parasitic parallel conductance & \begin{tabular}{l}
Terminal voltage magnitude \\
Terminal voltage angle \\
Frequency
\end{tabular} \\
\hline Series RC & \begin{tabular}{l}
Rated voltage \\
Rated electrical frequency \\
Real power \\
Capacitive reactive power
\end{tabular} & None & \begin{tabular}{l}
Terminal voltage magnitude \\
Terminal voltage angle \\
Frequency
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Component Structure & Main Tab & Parasitics Tab & Initial Conditions Tab \\
\hline Series LC & \begin{tabular}{l}
Rated voltage \\
Rated electrical frequency \\
Inductive reactive power \\
Capacitive reactive power
\end{tabular} & Parasitic parallel conductance & \begin{tabular}{l}
Terminal voltage magnitude \\
Terminal voltage angle \\
Frequency
\end{tabular} \\
\hline Series RLC & \begin{tabular}{l}
Rated voltage \\
Rated electrical frequency \\
Real power \\
Inductive reactive power \\
Capacitive reactive power
\end{tabular} & Parasitic parallel conductance & \begin{tabular}{l}
Terminal voltage magnitude \\
Terminal voltage angle \\
Frequency
\end{tabular} \\
\hline Parallel RL & \begin{tabular}{l}
Rated voltage \\
Rated electrical frequency \\
Real power \\
Inductive reactive power
\end{tabular} & None & \begin{tabular}{l}
Terminal voltage magnitude \\
Terminal voltage angle \\
Frequency
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Component Structure & Main Tab & Parasitics Tab & Initial Conditions Tab \\
\hline Parallel RC & \begin{tabular}{l}
Rated voltage \\
Rated electrical frequency \\
Real power \\
Capacitive reactive power
\end{tabular} & Parasitic series resistance & \begin{tabular}{l}
Terminal voltage magnitude \\
Terminal voltage angle \\
Frequency
\end{tabular} \\
\hline Parallel LC & \begin{tabular}{l}
Rated voltage \\
Rated electrical frequency \\
Inductive reactive power \\
Capacitive reactive power
\end{tabular} & Parasitic series resistance & \begin{tabular}{l}
Terminal voltage magnitude \\
Terminal voltage angle \\
Frequency
\end{tabular} \\
\hline Parallel RLC & \begin{tabular}{l}
Rated voltage \\
Rated electrical frequency \\
Real power \\
Inductive reactive power \\
Capacitive reactive power
\end{tabular} & Parasitic series resistance & \begin{tabular}{l}
Terminal voltage magnitude \\
Terminal voltage angle \\
Frequency
\end{tabular} \\
\hline
\end{tabular}

Specify Component Values Directly
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
Component \\
Structure
\end{tabular} & Main Tab & Parasitics Tab & \begin{tabular}{l}
Initial Conditions \\
Tab
\end{tabular} \\
\hline R & Resistance & None & None \\
\hline L & Inductance & \begin{tabular}{l}
Parasitic parallel \\
conductance
\end{tabular} & \begin{tabular}{l}
Initial inductor \\
current [Ia Ib Ic]
\end{tabular} \\
\hline C & Capacitance & \begin{tabular}{l}
Parasitic series \\
resistance
\end{tabular} & \begin{tabular}{l}
Initial capacitor \\
voltage [Va Vb Vc]
\end{tabular} \\
\hline Series RL & Resistance & \begin{tabular}{l}
Parasitic parallel \\
conductance
\end{tabular} & \begin{tabular}{l}
Initial inductor \\
current [Ia Ib Ic]
\end{tabular} \\
\hline Series RC & Resistance & None & \begin{tabular}{l}
Initial capacitor \\
voltage [Va Vb Vc]
\end{tabular} \\
\hline Capacitance & Inductance & \begin{tabular}{l}
Parasitic parallel \\
conductance
\end{tabular} & \begin{tabular}{l}
Initial inductor \\
current [Ia Ib Ic]
\end{tabular} \\
\hline Series RLC & Resistance & \begin{tabular}{l}
Parasitic parallel \\
conductance
\end{tabular} & \begin{tabular}{l}
Initial capacitor \\
voltage [Va Vb Vc] \\
current [Ia Ib Ic]
\end{tabular} \\
\hline Inductance \\
Capacitance
\end{tabular}\(\quad\) Resistance \begin{tabular}{l}
Inductance
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
Component \\
Structure
\end{tabular} & Main Tab & Parasitics Tab & \begin{tabular}{l}
Initial Conditions \\
Tab
\end{tabular} \\
\hline Parallel RLC & Resistance & \begin{tabular}{l}
Parasitic series \\
resistance
\end{tabular} & \begin{tabular}{l}
Initial inductor \\
current [Ia Ib Ic] \\
Inductance \\
Capacitance
\end{tabular}
\end{tabular}

\section*{Ports}

The block has one expandable three-phase port, \(\sim\).

\section*{See Also}

RLC | Wye-Connected Load

\section*{Topics}
"Three-Phase Asynchronous Wind Turbine Generator"
"Expand and Collapse Three-Phase Ports on a Block"

\section*{Introduced in R2013b}

\section*{Delta-Delta Transformer}

Linear nonideal delta-delta transformer with three-limb core

\section*{Library}

Simscape / Power Systems / Simscape Components / Passive Devices / Transformers

\section*{Description}

The Delta-Delta Transformer block models a linear, nonideal transformer with a threelimb core, in which both the primary and the secondary windings are configured in a delta connection. The block includes linear winding leakage and linear core magnetization effects.

The figure shows the equivalent circuit diagram for the delta-delta transformer.

- \(R_{w 1}\) is the primary winding resistance.
- \(\mathrm{L}_{11}\) is the primary leakage reactance.
- \(\mathrm{R}_{\mathrm{w} 2}\) is the secondary winding resistance.
- \(L_{12}\) is the secondary leakage reactance.
- \(\mathrm{R}_{\mathrm{m}}\) is the shunt magnetizing resistance.
- \(\mathrm{L}_{\mathrm{m}}\) is the shunt magnetizing reactance.

\section*{Display Options}

You can display the transformer per-unit base values in the MATLAB command window using the block context menu. To display the values, right-click the block and select Power Systems > Display Base Values.

\section*{Variables}

Use the Variables settings to specify the priority and initial target values for the block variables before simulation. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape) .

Unlike block parameters, variables do not have conditional visibility. The Variables settings include all the existing block variables. If a variable is not used in the set of equations corresponding to the selected block configuration, the values specified for this variable are ignored.

\section*{Parameters}
- "Main Tab" on page 1-331
- "Impedances Tab" on page 1-331

\section*{Main Tab}

\section*{Rated apparent power}

Apparent power flowing through the transformer when operating at rated capacity. The default value is 100 e 6 V *A.

\section*{Primary rated voltage}

RMS line voltage applied to the primary winding under normal operating conditions. The default value is 4160 V .

\section*{Secondary rated voltage}

RMS line voltage applied to the secondary winding under normal operating conditions. The default value is 24 e 3 V .

\section*{Rated electrical frequency}

Rated or nominal frequency of the AC network to which the transformer is connected. The default value is 60 Hz .

\section*{Impedances Tab}

Parameters in this tab are expressed in per-unit (pu). For more information, see "Per-Unit System of Units".

\section*{Primary winding resistance (pu)}

Power loss in the primary winding. The default value is 0.01 .

\section*{Primary leakage reactance (pu)}

Magnetic flux loss in the primary winding. The default value is 0.001 .

\section*{Secondary winding resistance (pu)}

Power loss in the secondary winding. The default value is 0.01 .

\section*{Secondary leakage reactance (pu)}

Magnetic flux loss in the secondary winding. The default value is 0.001 .

\section*{Shunt magnetizing resistance (pu)}

Magnetic losses in transformer core. The default value is 500.

\section*{Shunt magnetizing reactance (pu)}

Magnetic effects of the transformer core when operating in its linear region. The default value is 500 .

\section*{Ports}

The block has the following ports:
~1
Expandable three-phase port for primary winding
\(\sim 2\)
Expandable three-phase port for secondary winding

\section*{See Also}

Delta1-Delta1-Wye Transformer | Delta11-Delta11-Wye Transformer | Wye-Delta1 Transformer | Wye-Delta1-Wye Transformer | Wye-Delta11 Transformer | Wye-Delta11Wye Transformer | Wye-Wye Transformer | Zigzag-Delta1-Wye Transformer | Zigzag-Delta11-Wye Transformer

\section*{Topics}
"Custom Zigzag Transformer"
"Push-Pull Buck Converter in Continuous Conduction Mode"

\section*{"Push-Pull Buck Converter in Discontinuous Conduction Mode"}

\section*{Introduced in R2013b}

\section*{Diode}

Piecewise linear diode

\section*{Library}

Semiconductors / Fundamental Components

\section*{Description}

The Diode block models a piecewise linear diode.
If the voltage across the diode exceeds the value specified in the block Forward voltage parameter, then the diode behaves like a linear resistor plus a series voltage source. The value of the On resistance parameter specifies the resistance of the linear resistor.

If the voltage across the diode is less than the forward voltage, the diode behaves like a linear resistor with low conductance specified by the value of the Off conductance parameter.

When forward biased, the series voltage source is given by
\[
V=V_{f}\left(1-R_{\text {on }} G_{\text {off }}\right),
\]
where:
- \(V\) is the voltage supplied by the series voltage source.
- \(V_{f}\) is the forward voltage.
- \(R_{o n}\) is the on resistance.
- \(G_{\text {off }}\) is the off conductance.

The \(R_{\text {on }}{ }^{*} G_{\text {off }}\) term ensures that the diode current is exactly zero when the voltage across it is zero.

The figure shows a typical I-V characteristic for a diode device.

\section*{Modeling Variants}

The block provides a thermal modeling variant. To select a variant, right-click the block in your model. From the context menu, select Simscape > Block choices, and then one of these variants:
- No thermal port - This variant does not simulate heat generation in the device. This variant is the default.
- Show thermal port - This variant contains a thermal port that allows you to model the heat that conduction losses generate. For numerical efficiency, the thermal state does not affect the electrical behavior of the block. The thermal port is hidden by default. When you select a thermal variant of the block, the thermal port appears.

\section*{Ports}

\section*{\(+\)}

Electrical conserving port associated with the diode positive terminal

Electrical conserving port associated with the diode negative terminal

\section*{H}

Thermal conserving port. The thermal port is optional and is hidden by default. To enable this port, select a variant that includes a thermal port.

\section*{Parameters}

\section*{Forward voltage}

Minimum voltage required across the + and - block ports for the gradient of the diode \(I-V\) characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of On resistance. The default value is 0.8 V .

\section*{On resistance}

Rate of change of voltage versus current above the Forward voltage. The default value is 0.0010 hm .

\section*{Off conductance}

Conductance of the reverse-biased diode. The default value is \(1 \mathrm{e}-51 / 0 \mathrm{hm}\).

\section*{Number of series diodes}

The number of diodes connected in series between the + and - block ports. Each diode has the Forward voltage, On resistance, and Off conductance that you specify. The default value is 1 .

\section*{Number of parallel diodes}

The number of parallel diodes, or number of parallel paths formed by seriesconnected diodes, between the + and - block ports. Each diode has the Forward voltage, On resistance, and Off conductance that you specify. The default value is 1.

\section*{See Also}

Commutation Diode | GTO | IGBT | Ideal Semiconductor Switch | MOSFET | Thyristor

\section*{Topics}
"Quantifying IGBT Thermal Losses"
"Simulate Thermal Losses in Semiconductors"

\section*{Introduced in R2013b}

\section*{Discrete PI Controller}

Discrete-time PI controller with external anti-windup input
Library: Simscape / Power Systems / Simscape Components / Control / General Control

\section*{Description}

The Discrete PI Controller block implements discrete PI control with external anti-windup input.

This diagram is the equivalent circuit for the controller with external anti-windup input.

\section*{Equations}

The Discrete PI Controller block calculates the control signal using the backward Euler discretization method:
\[
u(k)=\left[K_{p}+\left(K_{i}+d u(k) K_{a w}\right) \frac{T_{s} z}{z-1}\right] \mathrm{e}(\mathrm{k})
\]
where
- \(u\) is the control signal.
- \(K_{p}\) is the proportional gain coefficient.
- \(K_{i}\) is the integral gain coefficient.
- \(K_{a w}\) is the anti-windup gain coefficient.
- \(T_{s}\) is the sampling period.
- \(e\) is the error signal.

To prevent excessive overshoot, the block can use back calculation to implement an external anti-windup mechanism. It inputs \(d u(k)\), the difference between the saturated control signal, \(u^{\text {sat }}(k)\), and the calculated unsaturated control signal, \(u(k)\). It then multiplies the difference by the anti-windup coefficient and adds the amplified signal from the integral gain.

\section*{Ports}

\section*{Input}

\section*{e-Error signal}

\section*{scalar}

Error signal, \(e(k)\), obtained as the difference between the reference, \(r(k)\), and measurement, \(y(k)\), signals.

Data Types: single | double
du - Control signal saturation
scalar

Difference, \(d u(k)\), between the saturated \(u^{\wedge} \operatorname{sat}(k)\) and the unsaturated control signals, \(u(k)\). If \(d u(k)\) is zero, the anti-windup is disabled.

Description
Data Types: single | double

\section*{Reset - Integrator gain reset}
scalar
External reset (rising edge) signal for the integrator.
Data Types: single | double

\section*{Output}

\section*{u - Control signal}
scalar
Control signal, \(u(k)\).
Data Types: single | double

\section*{Parameters}

\section*{Proportional gain \(\boldsymbol{-} \boldsymbol{K}_{\boldsymbol{p}}\) \\ 1 (default) | positive scalar}

Proportional gain, \(K_{p}\), of the PI controller.
Integral gain - \(\boldsymbol{K}_{\boldsymbol{i}}\)
1 (default) | positive scalar
Integral gain, \(K_{i}\), of the PI controller.

\section*{Anti-windup gain \(\boldsymbol{-} K_{\text {aw }}\)}

1 (default) | positive scalar
Anti-windup gain, \(K_{a w}\), of the PI controller.

\footnotetext{
Integrator initial condition - Initial integrator value
0 (default) | scalar
}

Value of the integrator at simulation start time.

\section*{Sample time (-1 for inherited) - Sampling interval}
-1 (default) | default value or a positive number
Time interval between samples. If the block is inside a triggered subsystem, inherit the sample time by setting this parameter to -1. If this block is in a continuous variable-step model, specify the sample time explicitly. For more information, see "What Is Sample Time?" (Simulink) and "Specify Sample Time" (Simulink).

\section*{References}
[1] Åström, K. and T. Hägglund. Advanced PID Control. Research Triangle Park, NC: ISA, 2005.

\section*{See Also}

\section*{Blocks}

Discrete PI Controller with Integral Anti-Windup

\section*{Introduced in R2017b}

\section*{Discrete PI Controller with Integral AntiWindup}

Discrete-time PI control with integral anti-windup
Library: Simscape / Power Systems / Simscape Components / Control / General Control

\section*{Description}

The Discrete PI Controller with Integral Anti-Windup block implements discrete PI control with internal anti-windup. The figure shows the equivalent circuit for the controller with internal anti-windup.

\section*{Equations}

The block calculates the control signal using the backward Euler discretization method:
\[
\begin{aligned}
& u(k)=\operatorname{sat}\left(K_{p} \mathrm{e}(\mathrm{k})+\operatorname{sat}\left(K_{i} \frac{T_{s} z}{z-1} \mathrm{e}(\mathrm{k}), \mathrm{A}, \mathrm{~B}\right), A, B\right), \\
& \operatorname{sat}(x, A, B)=\min (\max (x, \mathrm{~A}), B),
\end{aligned}
\]
where:
- \(u\) is the control signal.
- \(K_{p}\) is the proportional gain coefficient.
- \(e\) is the error signal.
- \(K_{i}\) is the integral gain coefficient.
- \(T_{s}\) is the sampling period.
- \(A\) is the lower limit for saturation.
- \(B\) is the upper limit for saturation.

\section*{Ports}

\section*{Input}

\section*{e - Error signal}

\section*{scalar}

Error signal, \(e(k)\), obtained as the difference between the reference, \(r(k)\), and measurement \(y(k)\) signals.

Data Types: single | double

\section*{Reset - Integrator gain reset}
scalar
External reset (rising edge) signal for the integrator.
Data Types: single | double

\section*{Output}

\section*{u - Control signal}
scalar
Control signal, \(u(k)\).
Data Types: single | double

\section*{Parameters}

\section*{Proportional gain \(\boldsymbol{-} \boldsymbol{K}_{\boldsymbol{p}}\)}

1 (default) | positive scalar
Proportional gain, \(K_{p}\), of the PI controller.

\section*{Integral gain - \(\boldsymbol{K}_{\boldsymbol{i}}\)}

1 (default) | positive scalar
Integral gain, \(K_{i}\), of the PI controller.

\section*{Upper saturation limit - B}

5 (default) | scalar greater than the value of the Lower saturation limit parameter
Upper limit, \(B\), of the output for the PI controller.

\section*{Lower saturation limit - A}
- 5 (default) | scalar

Upper limit, \(A\), of the output for the PI controller.

\section*{Integrator initial condition - Initial integrator value \\ 0 (default) | scalar}

Value of the integrator at simulation start time.

\section*{Sample time (-1 for inherited) - Sampling interval}
- 1 (default) | default value or a positive number

Time interval between samples. If the block is inside a triggered subsystem, inherit the sample time by setting this parameter to -1. If this block is in a continuous variable-step
model, specify the sample time explicitly. For more information, see "What Is Sample Time?" (Simulink) and "Specify Sample Time" (Simulink).

\section*{References}
[1] IEEE Recommended Practice for Excitation System Models for Power System Stability Studies. IEEE Std 421.5/D39. Piscataway, NJ: IEEE-SA, 2015.

\section*{See Also}

\section*{Blocks}

Discrete PI Controller

Introduced in R2017b

\section*{d-q Voltage Limiter}

Limit voltage in the rotor direct-quadrature reference frame
Library: Simscape / Power Systems / Simscape Components / Control / Protection

\section*{Description}

The d-q Voltage Limiter block implements a voltage limiter in the rotor direct-quadrature (d-q) reference frame.

\section*{Electrical Defining Equations}

The figure shows the circle that limits the \(d-q\) voltage vector.

That is,
\[
\sqrt{v_{d}^{2}+v_{q}^{2}} \leq V_{p h_{-} \max }
\]
where:
- \(v_{d}\) is the \(d\)-axis voltage.
- \(v_{q}\) is the \(q\)-axis voltage.
- \(V_{p h _m a x}\) is the maximum phase voltage.

Three cases of voltage limiting are possible:
- \(d\)-axis prioritization
- \(q\)-axis prioritization
- \(d-q\) equivalence

If one axis is prioritized over the other axis, the constrained or saturated voltages are defined as
\[
v_{1}^{\text {sat }}=\min \left(\max \left(v_{1}^{\text {unsat }},-V_{p h_{-} \max }\right), V_{p h_{-} \max }\right)
\]
and
\[
v_{2}^{\text {sat }}=\min \left(\max \left(v_{2}^{\text {unsat }},-V_{2_{-} \max }\right), V_{2_{-} \max }\right),
\]
where:
- \(v_{2_{-} \max }=\sqrt{\left(V_{p h_{-} \max }\right)^{2}-\left(v_{1}^{\text {sat }}\right)^{2}}\)
- \(v_{1}\) is voltage of the prioritized axis.
- \(v_{2}\) is voltage of the nonprioritized axis.

If neither axis is prioritized, the constrained voltages are defined as
\[
v_{d}^{\text {sat }}=\min \left(\max \left(v_{d}^{u n s a t},-V_{d_{-} \max }\right), V_{d_{-} \max }\right)
\]
and
\[
v_{q}^{s a t}=\min \left(\max \left(v_{q}^{u n s a t},-V_{q_{-} \max }\right), V_{q_{-} \max }\right),
\]
where:
\(V_{d_{-} \max }=\frac{V_{p h_{-} \max }\left|v_{d}^{\text {unsat }}\right|}{\sqrt{\left(v_{d}^{u n s a t}\right)^{2}+\left(v_{q}^{\text {unsat }}\right)^{2}}}\)
\(V_{q_{-} \max }=\frac{V_{p_{-} \max }\left|v_{q}^{u n s a t}\right|}{\sqrt{\left(v_{d}^{\text {unsat }}\right)^{2}+\left(v_{q}^{\text {unsat }}\right)^{2}}}\)

\section*{Ports}

\section*{Input}

\section*{vdRefUnsat \(-\mathbf{v}_{\boldsymbol{d}}{ }^{\text {unsat }}\)}
scalar
Unsaturated direct-axis reference voltage.
Example: Example
Data Types: single | double

\section*{VqRefUnsat \(\boldsymbol{v}_{\boldsymbol{q}}{ }^{\text {unsat }}\) scalar}

Unsaturated quadrature-axis reference voltage.
Example: Example
Data Types: single | double

\section*{VphMax \(\boldsymbol{V}_{\text {ph_max }}\)}
scalar
Maximum phase voltage.

\section*{Data Types: single | double}

\section*{Output}
```

vdRef - vod

```
scalar
Saturated direct-axis reference voltage.
Data Types: single | double
```

vqRef - vad
scalar

```

Saturated quadrature-axis reference voltage.

\section*{Example: Example}

Data Types: single | double

\section*{Parameters}

\section*{Axis prioritization - Prioritize the \(d\) - or \(q\) axis}

Q-axis (default)|D-axis|D-Q equivalence
Prioritize the direct-axis, the quadrature-axis, or neither axis.

\section*{Sample time (-1 for inherited) - Sampling interval}
- 1 (default) | default value or a positive number

Time interval between samples. If the block is inside a triggered subsystem, inherit the sample time by setting this parameter to -1. If this block is in a continuous variable-step model, specify the sample time explicitly. For more information, see "What Is Sample Time?" (Simulink) and "Specify Sample Time" (Simulink).

\author{
See Also
}

\section*{Simscape Blocks}

Voltage Source

\section*{Introduced in R2017b}

\section*{Eddy Current}

Model eddy current losses
Library: Simscape / Power Systems / Simscape Components / Passive Devices / Fundamental Components

\section*{Description}

The Eddy Current block models the effect of eddy currents by generating a magnetomotive force (MMF) that opposes changes in the magnetic flux. In addition, the block models parasitic effects using a series reluctance and a parallel leakage permeance.

Eddy currents in magnetic core materials are caused by time-varying magnetic fields. These changing field densities induce voltage potentials within the material, causing current to flow in closed loops. Such currents are usually undesired and cause heating of the magnetic material.

Use this block to add eddy current losses in the magnetic domain to a custom transformer or other magnetic component.

The eddy current component is sometimes referred to as magnetic inductance because it is the magnetic-domain analog to an inductor in the electrical domain.

\section*{Equations and Equivalent Circuit}

This is the equivalent magnetic circuit for the block, including the eddy current path (bottom) and parallel leakage path (top).

In the diagram:
- \(\Phi\) is the total flux at the terminals. This flux is the summation of the eddy current loop and the parallel leakage path.
- \(\Phi_{L}\) is the flux through the eddy current loop.

The block calculates the terminal MMF, \({ }^{F}\), and flux, \(\Phi\), as:
\[
\begin{gathered}
\mathrm{F}=G_{\text {eddy }} \frac{d \Phi_{L}}{d t}+\mathrm{R} \Phi_{L} \\
\Phi=\mathrm{FP}+\Phi_{L}
\end{gathered}
\]
where:
- \(G_{\text {eddy }}\) is the conductance of the eddy current loop.
- R is the parasitic series reluctance of the eddy current path.
- P is the parallel permeance.

Because the parasitic series reluctance and parallel permeance are lossless, the total dissipated power over the block is:
\[
P_{d i s s}=G_{\text {eddy }}\left(\frac{d \Phi_{L}}{d t}\right)^{2}
\]

\section*{Relating Transformer Electrical and Magnetic Models}

In the electrical domain, eddy current losses are modeled using a parallel resistance across the primary winding. This is the equivalent circuit for a nonideal two-winding transformer.

In the diagram:
- \(L_{p}\) and \(L_{s}\) are the self-inductances of the primary and secondary windings, respectively.
- \(L_{m}\) is the mutual inductance between the two windings.
- \(R_{m}\) is the mutual resistance between the two windings, caused by the eddy current losses.

This two-winding transformer can similarly be represented in the magnetic domain. This is the equivalent circuit.

In the diagram:
- \(\mathrm{R}_{p}\) and \(\mathrm{R}_{s}\) are the reluctances associated with the primary and secondary windings, respectively.
- \(\mathrm{R}_{g}\) is the reluctance associated with the magnetic coupling of the two windings.
- \(n\) is the turns ratio between the two windings.

The electrical- and magnetic-domain circuits are equivalent if:
\[
\begin{aligned}
& \mathrm{R}_{g}=\frac{n^{2}}{L_{m}} \\
& \mathrm{R}_{p}=\frac{n^{2}}{L_{p}} \\
& \mathrm{R}_{s}=\frac{1}{L_{s}}
\end{aligned}
\]
\[
G_{\text {eddy }}=\frac{n^{2}}{R_{m}}
\]

You can use these relationships to calculate the equivalent two-winding transformer properties for one domain from the other.

\section*{Ports}

\section*{Conserving}

\section*{N - North terminal \\ magnetic}

Magnetic conserving port associated with the north terminal of the block.

\section*{S - South terminal \\ magnetic}

Magnetic conserving port associated with the south terminal of the block.

\section*{Parameters}

\section*{Conductance of eddy current loop - Eddy current conductance 1 1/Ohm (default) | positive number}

Conductance, \(G_{\text {eddy }}\), of the eddy current loop. This component is the magnetic-domain analog of inductance in the electrical domain.

\section*{Parasitic series reluctance - Series reluctance}

\section*{1e-3 1/H (default) | nonnegative number}

Parasitic reluctance, \(R\), of the eddy current loop.
Parasitic parallel permeance - Parallel leakage permeance
1e-6 H (default) | nonnegative number

Parasitic permeance, P , of the parallel leakage path. To aid simulation convergence in some circuit topologies, set this parameter to a small value.

\section*{References}
[1] Brown, A. D., J. N. Ross, and K. G. Nichols. "Time-domain simulation of mixed nonlinear magnetic and electronic systems." IEEE Transactions on Magnetics. Vol. 37, Number 1, 2001, pp. 522-532.

\section*{See Also}

Coupled Lines (Pair) | Nonlinear Transformer

\section*{Introduced in R2018a}

\section*{Enabled Fault}

Signal-enabled single-phase, two-phase, or three-phase grounded or ungrounded fault

\section*{Library}

Passive Devices / Faults

\section*{Description}

The Enabled Fault models any permutation of a single-phase, two-phase, or three-phase grounded or ungrounded fault. You specify the fault activation threshold using the block Threshold parameter. An external control signal en enables the fault. The fault is active when en is greater than the threshold. The fault is inactive when en is less than or equal to the threshold.

You can set the Enabled Fault block to represent any of these permutations:
- Single-phase-to-ground fault (a-g, b-g, or c-g)
- Two-phase fault (a-b, b-c, or c-a)
- Two-phase-to-ground fault (a-b-g, b-c-g, or c-a-g)
- Three-phase fault (a-b-c)
- Three-phase-to-ground fault (a-b-c-g)

The figure shows the equivalent circuit diagram for the Enabled Fault block.

You can determine the resistance in the equivalent circuit using the equations in the table.
\begin{tabular}{|l|l|l|l|l|}
\hline Fault type & Value of \(\boldsymbol{R}_{\mathbf{a}}\) & Value of \(\boldsymbol{R}_{\mathbf{b}}\) & Value of \(\boldsymbol{R}_{\mathbf{c}}\) & Value of \(\boldsymbol{R}_{\boldsymbol{g}}\) \\
\hline None / inactive & \(\frac{1}{G_{p n}}\) & \(\frac{1}{G_{p n}}\) & \(\frac{1}{G_{p n}}\) & \begin{tabular}{l}
Infinity / open \\
circuit
\end{tabular} \\
\hline a-g & \(R_{p n}\) & \(\frac{1}{G_{p n}}\) & \(\frac{1}{G_{p n}}\) & \(R_{n g}\) \\
\hline b-g & \(\frac{1}{G_{p n}}\) & \(R_{p n}\) & \(\frac{1}{G_{p n}}\) & \(R_{n g}\) \\
\hline c-g & \(\frac{1}{G_{p n}}\) & \(\frac{1}{G_{p n}}\) & \(R_{p n}\) & \(R_{n g}\) \\
\hline a-b & \(R_{p n}\) & \(R_{p n}\) & \(\frac{1}{G_{p n}}\) & \begin{tabular}{l}
Infinity / open \\
circuit
\end{tabular} \\
\hline b-c & \(\frac{1}{G_{p n}}\) & \(R_{p n}\) & \(R_{p n}\) & \begin{tabular}{l}
Infinity / open \\
circuit
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Fault type & Value of \(\boldsymbol{R}_{\mathbf{a}}\) & Value of \(\boldsymbol{R}_{\mathbf{b}}\) & Value of \(\boldsymbol{R}_{\mathbf{c}}\) & Value of \(\boldsymbol{R}_{\boldsymbol{g}}\) \\
\hline c-a & \(R_{p n}\) & \(\frac{1}{G_{p n}}\) & \(R_{p n}\) & \begin{tabular}{l}
Infinity / open \\
circuit
\end{tabular} \\
\hline a-b-g & \(R_{p n}\) & \(R_{p n}\) & \(\frac{1}{G_{p n}}\) & \(R_{n g}\) \\
\hline b-c-g & \(\frac{1}{G_{p n}}\) & \(R_{p n}\) & \(R_{p n}\) & \(R_{n g}\) \\
\hline c-a-g & \(R_{p n}\) & \(\frac{1}{G_{p n}}\) & \(R_{p n}\) & \(R_{n g}\) \\
\hline a-b-c & \(R_{p n}\) & \(R_{p n}\) & \(R_{p n}\) & \begin{tabular}{l}
Infinity / open \\
circuit
\end{tabular} \\
\hline a-b-c-g & \(R_{p n}\) & \(R_{p n}\) & \(R_{p n}\) & \(R_{n g}\) \\
\hline
\end{tabular}
where:
- \(R_{a}\) is the resistance between the a-phase and the neutral point of a wye connection.
- \(R_{b}\) is the resistance between the b-phase and the neutral point of a wye connection.
- \(R_{c}\) is the resistance between the c-phase and the neutral point of a wye connection.
- \(R_{g}\) is the resistance between the neutral point of a wye connection and electrical reference.
- \(R_{p n}\) is the value of the Faulted phase-neutral resistance parameter.
- \(R_{n g}\) is the value of the Faulted neutral-ground resistance parameter.
- \(G_{p n}\) is the value of the Unfaulted phase-neutral conductance parameter.

\section*{Parameters}
- "Main Tab" on page 1-359
- "Parasitics Tab" on page 1-360

\section*{Main Tab}

\section*{Fault type}

Select one of the following:
- None - Specifies that the fault is not active. This is the default value.
- Single-phase to ground (a-g)
- Single-phase to ground (b-g)
- Single-phase to ground (c-g)
- Two-phase (a-b)
- Two-phase (b-c)
- Two-phase (c-a)
- Two-phase to ground (a-b-g)
- Two-phase to ground (b-c-g)
- Two-phase to ground (c-a-g)
- Three-phase (a-b-c)
- Three-phase to ground (a-b-c-g)

\section*{Faulted phase-neutral resistance}

Resistance between the phase connection and the neutral point when the fault is active. This parameter is visible if the Fault type parameter is set to anything other than None. The default value is \(1 \mathrm{e}-3 \mathrm{Ohm}\).

\section*{Faulted neutral-ground resistance}

Resistance between the neutral point and the electrical reference when fault is active. This parameter is visible if the Fault type parameter is set to any fault which includes a ground connection. The default value is 1e-3 0 hm .

\section*{Threshold}

Threshold for activating the fault. If the input en is above the value for the Threshold parameter, then the fault is active. If the input en is equal to or less than the value for the Threshold parameter, then the fault is not active. This parameter is visible if the Fault type parameter is set to anything other than None. The default value is 0 .

\section*{Parasitics Tab}

\section*{Unfaulted phase-neutral conductance}

Conductance between the phase connections and the neutral point when a phase is not involved in the fault. The default value is \(1 \mathrm{e}-61 / 0 \mathrm{hm}\).

\section*{Ports}

The block has the following ports:

Expandable three-phase port for connecting the fault to the system en

Physical signal scalar control input port for enabling the fault

\section*{See Also}

Time-Based Fault

\section*{Introduced in R2014a}

\section*{Filtered Derivative (Discrete or Continuous)}

Discrete-time or continuous-time filtered derivative
Library: Simscape / Power Systems / Simscape Components / Control / General Control

\section*{Description}

The Filtered Derivative (Discrete or Continuous) block implements a filtered derivative in conformance with IEEE 421.5-2016 \({ }^{[1]}\).

You can switch between continuous and discrete implementations of the derivative using the Sample time parameter.

\section*{Equations}

To configure the filtered derivative for continuous time, set the Sample time property to 0 . This representation is equivalent to the continuous transfer function:
\[
G(s)=\frac{K s}{T s+1},
\]
where:
- \(K\) is the gain.
- \(T\) is the time constant.

From the preceding transfer function, the derivative defining equations are:
\[
\left\{\begin{array}{l}
\dot{x}(t)=\frac{1}{T}(K u(t)-x(t)) \\
y(t)=\frac{1}{T}(K u(t)-x(t))
\end{array} x(0)=u_{0}, y(0)=0,\right.
\]
where:
- \(u\) is the block input.
- \(x\) is the state.
- \(y\) is the block output.
- \(t\) is the simulation time.
- \(u_{0}\) is the initial input to the block.

To configure the filtered derivative for discrete time, set the Sample time property to a positive, nonzero value, or to -1 to inherit the sample time from an upstream block. The discrete representation is equivalent to the transfer function:
\[
\left(\frac{K}{T}\right) \frac{z-1}{z+T_{s} / T-1},
\]
where:
- \(K\) is the gain.
- \(T\) is the time constant.
- \(T_{s}\) is the sample time.

From the discrete transfer function, the derivative equations are defined using the forward Euler method:
\[
\left\{\begin{array}{c}
x(n+1)=\left(1-\frac{T_{s}}{T}\right) x(n)+\left(\frac{T_{s}}{T}\right) u(n) \\
y(n)=\frac{K}{T}(u(n)-x(n))
\end{array}\right.
\]
where:
- \(u\) is the block input.
- \(x\) is the block state.
- \(y\) is the block output.
- \(n\) is the simulation time step.
- \(u_{0}\) is the initial input to the block.

\section*{Initial Conditions}

The block sets the state initial condition to the initial input, making the initial output zero.

\section*{Limiting the Output}

Limit the filtered derivative output by setting the Upper saturation limit and Lower saturation limit parameters to finite values.

Unlike other common blocks given in IEEE 421.5-2016, there is no difference between the windup and anti-windup saturation methods for the filtered derivative. The output can respond immediately to a reversal of the input sign when the output is saturated.

\section*{Ports}

\section*{Input}

\section*{u - Derivative input}
vector
Filtered derivative input signal. The block uses the input initial value to determine the state initial value.
Data Types: single | double

\section*{Output}

\section*{y - Derivative output}
vector
Filtered derivative output signal.
Data Types: single | double

\section*{Parameters}

\section*{Gain - Derivative gain}

1 (default) | positive number

Filtered derivative gain.

\section*{Time constant - Derivative time constant}
0.1 (default) | positive number

Filtered derivative time constant. For acceptable accuracy, set this value at least 10 times greater than the Sample time.

\section*{Upper saturation limit - Output upper limit inf (default) | real number}

Filtered derivative upper output limit. Set this to inf for an unsaturated upper limit.

\section*{Lower saturation limit - Output lower limit}
- inf (default) | real number

Filtered derivative lower output limit. Set this to -inf for an unsaturated lower limit.

\section*{Minimum sample time to time constant ratio - Discrete ratio 10 (default) | real number}

Minimum acceptable sample time to time constant ratio. As the sample time approaches the time constant, the accuracy of the block decreases. Use this parameter to set the tolerance of this ratio.

\section*{Sample time (-1 for inherited) - Sample time \\ - 1 (default) | positive number}

Filtered derivative sample time. Set this to 0 to implement a continuous derivative. Set this to -1 or a positive number to implement a discrete derivative. For acceptable accuracy, set this value at least 10 times smaller than the Time constant parameter.

\section*{References}
[1] IEEE. 2016. IEEE Recommended Practice for Excitation System Models for Power
System Stability Studies. IEEE Std 421.5-2016. Piscataway, NJ: IEEE-SA, 2016.

\section*{See Also}

\section*{Blocks}

Integrator (Discrete or Continuous) | Integrator with Wrapped State (Discrete or Continuous) | Lead-Lag (Discrete or Continuous) | Low-Pass Filter (Discrete or Continuous) | Washout (Discrete or Continuous)

Introduced in R2017b

\section*{Floating Neutral}

Floating neutral point for phases of three-phase system

\section*{Library}

Simscape / Power Systems / Simscape Components / Connections

\section*{Description}

The Floating Neutral block connects the individual phases of a three-phase system to form a floating neutral point.

Note If you want to create a neutral point that you can connect to other blocks, use the Neutral Port block. If you want to create a neutral point that is connected to ground, use the Grounded Neutral block.

\section*{Parameters}

\section*{Parasitic ground conductance}

Parasitic conductance to ground. A nonzero value is required for the simulation of some circuit topologies.

The default value is \(1 \mathrm{e}-121 / 0 \mathrm{hm}\).

\section*{Ports}

The block has the following ports:

Expandable three-phase port

\section*{See Also}

\author{
Simscape Blocks \\ Grounded Neutral | Neutral Port | Open Circuit
}

\section*{Topics}
"Asynchronous Machine Direct Torque Control"
"Asynchronous Machine Scalar Control"
"Electric Engine Dyno"
Introduced in R2013b

\section*{Foster Thermal Model}

Heat transfer through a semiconductor module

\section*{Library}

Semiconductors / Fundamental Components / Thermal

\section*{Description}

The Foster Thermal Model block represents heat transfer through a semiconductor module. The figure shows an equivalent circuit for a fourth-order Foster Thermal Model block. \(T_{j}\) is the junction temperature and \(T_{c}\) is the base plate temperature.

A Foster thermal model contains one or more instances of Foster thermal model elements. The figure shows an equivalent circuit for a Foster thermal model element.

The number of thermal elements is equal to the order of representation. For a first order model, use scalar block parameters. For an \(n\)th order model, use row vectors of length \(n\). Other terms that describe a Foster thermal model are:
- Partial fraction circuit
- Pi model

The defining equations for a first-order Foster thermal model element are:
\[
C_{\text {thermal }}=\frac{\tau}{R_{\text {thermal }}}
\]
and
\[
Q_{A B}=\frac{T_{A B}}{R_{\text {thermal }}}+C_{\text {thermal }} \frac{d T_{A B}}{d t},
\]
where:
- \(C_{\text {thermal }}\) is the thermal capacity.
- \(\tau\) is the thermal time constant.
- \(R_{\text {thermal }}\) is the thermal resistance.
- \(Q_{A B}\) is the heat flow through the material.
- \(T_{A B}\) is the temperature difference between the material layers.

\section*{Parameters}

\section*{Thermal resistance data}

Thermal resistance values, \(R_{\text {thermal }}\), of the semiconductor module, specified as a vector. The default value is [0.00160 .00430 .00130 .0014] K/W.

\section*{Thermal time constant data}

Thermal time constant values, \(\tau\), of the semiconductor module, specified as a vector. The default value is [0.00680 .0640 .322] s.

\section*{Ports}

The block has the following ports:
A
Thermal conserving port associated with the semiconductor junction.
B
Thermal conserving port associated with the base plate junction.

\section*{References}
[1] Schütze, T. AN2008-03: Thermal equivalent circuit models. Application Note. V1.0. Germany: Infineon Technologies AG, 2008.

\section*{See Also}
"Quantifying IGBT Thermal Losses" | Cauer Thermal Model Element | Thermal Resistor Introduced in R2016a

\section*{Four-Pulse Gate Multiplexer}

Combine four gate-pulse voltage signals into a single vector
Library: Simscape / Power Systems / Simscape Components / Semiconductors

\section*{Description}

The Four-Pulse Gate Multiplexer block multiplexes four separate voltage signals into a single vector. The vectorized signal can control the gates of four switching devices in a converter, such as a Four-Quadrant Chopper block.

\section*{Model}

Each of two model variants for the Four-Pulse Gate Multiplexer block corresponds to a Block choice option. To access the block choices, in the model window, right-click the block, and then use either of these methods:
- From the context menu, select Simscape > Block choices.
- On the Simulink Editor menu bar, select View > Property Inspector. In the Property Inspector window, click the value of the Block choice.

The model variants are:
- PS ports - Four-pulse gate multiplexer with physical signal ports. Select this default option to control switching device gates in a converter block using Simulink gatecontrol voltage signals. To multiplex and connect Simulink signals to the gate-control inport of a converter block:

1 Convert each voltage signal using a Simulink-PS Converter block.
2 Multiplex the converted gate signals into a single vector using the multiplexor block.

3 Connect the vector signal to the \(\mathbf{G}\) port of the converter.
- Electrical ports - Four-pulse gate multiplexer with electrical conserving ports. To control switching device gates in a converter block using Simscape Electronics blocks, select this option. The electrical ports include pairs of electrical connections. Each pair corresponds to the gate and cathode of a switching device in the connected converter block.

\section*{Ports}

\section*{Input}

\section*{G1 - Gate-control voltage signal 1}
physical signal
Physical signal port associated with the gate terminal of the first switching device in a connected converter block.

\section*{Dependencies}

This port only appears for the PS ports block choice.
Data Types: double

\section*{G2 - Gate-control voltage signal 2}

\section*{physical signal}

Physical signal port associated with the gate terminal of the second switching device in a connected converter block.

\section*{Dependencies}

This port only appears for the PS ports block choice.

\section*{Data Types: double}

\section*{G3 - Gate-control voltage signal 3}
physical signal
Physical signal port associated with the gate terminal of the third switching device in a connected converter block.

\section*{Dependencies}

This port only appears for the PS ports block choice.

\section*{Data Types: double}

\section*{G4 - Gate-control voltage signal 4 \\ physical signal}

Physical signal port associated with the gate terminal of the fourth switching device in a connected converter block.

\section*{Dependencies}

This port only appears for the PS ports block choice.

\section*{Data Types: double}

\section*{Conserving}

\section*{G1 - Gate-control voltage signal 1}
electrical
Electrical conserving port associated with the gate terminal of the first switching device in a connected converter block.

\section*{Dependencies}

This port only appears for the Electrical ports block choice.

\section*{a - A-phase AC reference point \\ electrical}

Electrical conserving port associated with the \(A\)-phase for the high-side switching device.
Dependencies
This port only appears for the Electrical ports block choice.

\section*{G2 - Gate-control voltage signal 2}

\section*{electrical}

Electrical conserving port associated with the gate terminal of the second switching device in a connected converter block.

\section*{Dependencies}

This port only appears for the Electrical ports block choice.

\section*{b-B-phase AC reference point \\ electrical}

Electrical conserving port associated with the \(B\)-phase for the high-side switching device.

\section*{Dependencies}

This port only appears for the Electrical ports block choice.

\section*{G3 - Gate-control voltage signal 3}

\section*{electrical}

Electrical conserving port associated with the gate terminal of the third switching device in a connected converter block.

\section*{Dependencies}

This port only appears for the Electrical ports block choice.

\section*{G4 - Gate-control voltage signal 4}

\section*{electrical}

Electrical conserving port associated with the gate terminal of the fourth switching device in a connected converter block.

\section*{Dependencies}

This port only appears for the Electrical ports block choice.

\section*{L - DC reference point}
electrical
Electrical conserving port associated with the DC negative connection for the low-side switching device.

\section*{Dependencies}

This port only appears for the Electrical ports block choice.

\section*{See Also}

Four-Quadrant Chopper | Six-Pulse Gate Multiplexer | Twelve-Pulse Gate Multiplexer | Two-Pulse Gate Multiplexer

\section*{Topics}

Switch Between Physical Signal and Electrical Ports

\section*{Introduced in R2018a}

\section*{Four-Quadrant Chopper}

Four-quadrant controlled DC-DC chopper
Library: Simscape / Power Systems / Simscape Components / Semiconductors

\section*{Description}

The Four-Quadrant Chopper block represents a four-quadrant controlled chopper for converting a fixed DC input to a variable DC output. The block contains two bridge arms. Each bridge arm each has two switching devices. Options for the type of switching devices are:
- GTO - Gate turn-off thyristor. For information on the I-V characteristic of the device, see GTO.
- Ideal semiconductor switch - For information on the I-V characteristic of the device, see Ideal Semiconductor Switch.
- IGBT - Insulated-gate bipolar transistor. For information on the I-V characteristic of the device, see IGBT.
- MOSFET - N-channel metal-oxide-semiconductor field-effect transistor. For information on the I-V characteristic of the device, see MOSFET.
- Thyristor - For information on the I-V characteristic of the device, see Thyristor.

The figures show the equivalent circuit and the operation for the block.

\section*{Protection}

The block contains an integral protection diode for each switching device. The integral diode protects the semiconductor device by providing a conduction path for reverse current. An inductive load can produce a high reverse-voltage spike when the semiconductor device suddenly switches off the voltage supply to the load.

To configure the internal protection diode block, use the Protection Diode parameters. This table shows how to set the Model dynamics parameter based on your goals.
\begin{tabular}{|l|l|l|}
\hline Goals & Value to Select & Integral Protection Diode \\
\hline Prioritize simulation speed. & \begin{tabular}{l}
Protection diode with \\
no dynamics
\end{tabular} & The Diode block \\
\hline \begin{tabular}{l}
Prioritize model fidelity by \\
precisely specifying reverse- \\
mode charge dynamics.
\end{tabular} & \begin{tabular}{l}
Protection diode with \\
charge dynamics
\end{tabular} & \begin{tabular}{l}
The Commutation Diode \\
block
\end{tabular} \\
\hline
\end{tabular}

You can also include a snubber circuit for each switching device. Snubber circuits contain a series-connected resistor and capacitor. They protect switching devices against high voltages that inductive loads produce when the device turns off the voltage supply to the load. Snubber circuits also prevent excessive rates of current change when a switching device turns on.

To include and configure a snubber circuit for each switching device, use the Snubbers parameters.

\section*{Gate Control}

To connect Simulink gate-control voltage signals to the gate ports of the internal switching devices:

1 Convert each voltage signal using a Simulink-PS Converter block.
2 Multiplex the converted gate signals into a single vector using a Four-Pulse Gate Multiplexer block.
3 Connect the vector signal to the \(\mathbf{G}\) port.

\section*{Ports}

\section*{Conserving}

\section*{G - Switching device gate control \\ electrical | vector}

Electrical conserving port associated with the gate terminals of the switching devices.
Data Types: double

\section*{1+ - Positive DC voltage 1}
electrical | scalar
Electrical conserving port associated with the positive terminal of the first DC voltage.
Data Types: double

\section*{1- - Negative DC voltage 1 \\ electrical | scalar}

Electrical conserving port associated with the negative terminal of the first DC voltage.
Data Types: double

\section*{2+ - Positive DC voltage 2}
electrical | scalar
Electrical conserving port associated with the positive terminal of the second DC voltage.
Data Types: double

\section*{2- - Negative DC voltage 2 \\ electrical | scalar}

Electrical conserving port associated with the negative terminal of the second DC voltage. Data Types: double

\section*{Parameters}

\section*{Switching Devices}

This table shows how the visibility of Switching Devices parameters depends on the Switching device that you select. To learn how to read the table, see "Parameter Dependencies" on page A-2.

\section*{Switching Devices Parameter Dependencies}
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{4}{|l|}{ Parameters and Options } & IGBT \\
\hline \begin{tabular}{l}
Switching device \\
\begin{tabular}{l}
Semiconducto \\
r Switch
\end{tabular}
\end{tabular} & GTO & MOSFET & Thyristor \\
\hline \begin{tabular}{l}
On-state \\
resistance
\end{tabular} & Forward voltage & Forward voltage & \begin{tabular}{l}
Drain-source on \\
resistance
\end{tabular} & Forward voltage \\
\hline \begin{tabular}{l}
Off-state \\
conductance
\end{tabular} & \begin{tabular}{l}
On-state \\
resistance
\end{tabular} & \begin{tabular}{l}
On-state \\
resistance
\end{tabular} & \begin{tabular}{l}
Off-state \\
conductance
\end{tabular} & \begin{tabular}{l}
On-state \\
resistance
\end{tabular} \\
\hline \begin{tabular}{l}
Threshold \\
voltage
\end{tabular} & \begin{tabular}{l}
Off-state \\
conductance
\end{tabular} & \begin{tabular}{l}
Off-state \\
conductance
\end{tabular} & \begin{tabular}{l}
Threshold \\
voltage
\end{tabular} & \begin{tabular}{l}
Off-state \\
conductance
\end{tabular} \\
\cline { 2 - 2 } & \begin{tabular}{l}
Gate trigger \\
voltage, Vgt
\end{tabular} & \begin{tabular}{l}
Threshold \\
voltage
\end{tabular} & & \begin{tabular}{l}
Gate trigger \\
voltage, Vgt
\end{tabular} \\
\cline { 2 - 2 } & \begin{tabular}{l}
Gate turn-off \\
voltage, Vgt_off
\end{tabular} & & \begin{tabular}{l}
Gate turn-off \\
voltage, Vgt_off
\end{tabular} \\
\cline { 2 - 2 } & Holding current
\end{tabular}

\section*{Switching device - Switch type \\ Ideal Semiconductor Switch (default)|GTO | IGBT | MOSFET | Thyristor}

Switching device type for the converter.

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{Forward voltage - Voltage}
0.8 Ohm (default) | scalar

For the different switching device types, the Forward voltage is taken as:
- GTO - Minimum voltage required across the anode and cathode block ports for the gradient of the device I-V characteristic to be \(1 / R_{o n}\), where \(R_{o n}\) is the value of \(\mathbf{O n}\)-state resistance
- IGBT - Minimum voltage required across the collector and emitter block ports for the gradient of the diode I-V characteristic to be \(1 / R_{o n}\), where \(R_{\text {on }}\) is the value of \(\mathbf{O n}\)-state resistance
- Thyristor - Minimum voltage required for the device to turn on

Dependencies
See the Switching Devices Parameter Dependencies table.

\section*{On-state resistance - Resistance}
0.001 Ohm (default) | scalar

For the different switching device types, the On-state resistance is taken as:
- GTO - Rate of change of voltage versus current above the forward voltage
- Ideal semiconductor switch - Anode-cathode resistance when the device is on
- IGBT - Collector-emitter resistance when the device is on
- Thyristor - Anode-cathode resistance when the device is on

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{Drain-source on resistance - Resistance}
0.001 Ohm (default) | scalar

Resistance between the drain and the source, which also depends on the gate-to-source voltage.

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{Off-state conductance - Conductance}

1e-5 1/Ohm (default) | scalar

Conductance when the device is off. The value must be less than \(1 / R\), where \(R\) is the value of \(O n\)-state resistance.

For the different switching device types, the \(\mathbf{O n}\)-state resistance is taken as:
- GTO - Anode-cathode conductance
- Ideal semiconductor switch - Anode-cathode conductance
- IGBT - Collector-emitter conductance
- MOSFET - Drain-source conductance
- Thyristor - Anode-cathode conductance

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{Threshold voltage - Voltage threshold 6 V (default) | scalar}

Gate voltage threshold. The device turns on when the gate voltage is above this value. For the different switching device types, the device voltage of interest is:
- Ideal semiconductor switch - Gate-emitter voltage
- IGBT - Gate-cathode voltage
- MOSFET - Gate-source voltage

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{Gate trigger voltage, Vgt - Voltage threshold}

1 V (default) | scalar
Gate-cathode voltage threshold. The device turns on when the gate-cathode voltage is above this value.

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{Gate turn-off voltage, Vgt_off - Voltage threshold}
- 1 V (default) | scalar

Gate-cathode voltage threshold. The device turns off when the gate-cathode voltage is below this value.

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{Holding current - Current threshold}

\section*{1 A (default) | scalar}

Gate current threshold. The device stays on when the current is above this value, even when the gate-cathode voltage falls below the gate trigger voltage.

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{Protection Diode}

The visibility of Protection Diode parameters depends on how you configure the protection diode Model dynamics and Reverse recovery time parameterization parameters. To learn how to read this table, see "Parameter Dependencies" on page A2.

\section*{Protection Diode Parameter Dependencies}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Parameters and Options } \\
\hline \multicolumn{1}{|l|}{ Model dynamics } \\
\hline \begin{tabular}{l}
Protection diode with \\
no dynamics
\end{tabular} & Protection diode with charge dynamics \\
\hline Forward voltage & Forward voltage \\
\hline On resistance & On resistance \\
\hline Off conductance & Off conductance \\
\cline { 2 - 4 } & Junction capacitance \\
\cline { 2 - 4 } & Peak reverse current, iRM \\
\cline { 2 - 4 } & Initial forward current when measuring iRM \\
\hline & Rate of change of current when measuring iRM \\
\cline { 2 - 4 } & Reverse recovery time parameterization \\
\cline { 2 - 4 } & \begin{tabular}{l}
Specify stretch \\
factor
\end{tabular} & \begin{tabular}{l}
Speci fy reverse \\
recovery time \\
directly
\end{tabular} \\
\hline & \begin{tabular}{l}
Specify reverse \\
recovery charge
\end{tabular} \\
\cline { 2 - 4 } & \begin{tabular}{l}
Reverse recovery \\
time stretch factor
\end{tabular} & \begin{tabular}{l}
Reverse recovery \\
time, trr
\end{tabular} \\
\hline
\end{tabular}

\section*{Model dynamics - Diode model}

Protection diode with no dynamics (default)|Protection diode with
charge dynamics
Diode type. The options are:
- Diode with no dynamics - Select this option to prioritize simulation speed using the Diode block.
- Diode with charge dynamics - Select this option to prioritize model fidelity in terms of reverse mode charge dynamics using the Commutation Diode block.

\section*{Dependencies}

See the Protection Diode Parameter Dependencies table.

\section*{Forward voltage - Voltage}
0.8 V (default) | scalar

Minimum voltage required across the positive and negative block ports for the gradient of the diode I-V characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of \(\mathbf{O n}\) resistance.

On resistance - Resistance
0.001 Ohm (default) | scalar

Rate of change of voltage versus current above the Forward voltage.

\section*{Off conductance - Conductance}

1e-5 1/0hm (default) | scalar
Conductance of the reverse-biased diode.

\section*{Junction capacitance - Capacitance}

50 nF (default) | scalar
Diode junction capacitance.

\section*{Dependencies}

See the Protection Diode Parameter Dependencies table.
Peak reverse current, iRM - Current
-235 A (default) | scalar less than 0
Peak reverse current measured by an external test circuit.

\section*{Dependencies}

See the Protection Diode Parameter Dependencies table.

\section*{Initial forward current when measuring iRM - Current 300 A (default) | scalar greater than 0}

Initial forward current when measuring peak reverse current. This value must be greater than zero.

\section*{Dependencies}

See the Protection Diode Parameter Dependencies table.
```

Rate of change of current when measuring iRM - Current change rate - 50 A/us (default) | scalar

```

Rate of change of current when measuring peak reverse current.

\section*{Dependencies}

See the Protection Diode Parameter Dependencies table.

\section*{Reverse recovery time parameterization - Recovery-time model}

Specify stretch factor (default)|Specify reverse recovery time directly |Specify reverse recovery charge

Model for parameterizing the recovery time. When you select Specify stretch factor or Specify reverse recovery charge, you can specify a value that the block uses to derive the reverse recovery time. For more information on these options, see "Alternatives to Specifying trr Directly" on page 1-254.

\section*{Dependencies}

See the Protection Diode Parameter Dependencies table.

\section*{Reverse recovery time stretch factor - Stretch factor}

3 (default) | scalar greater than 1
Value that the block uses to calculate Reverse recovery time, trr. Specifying the stretch factor is an easier way to parameterize the reverse recovery time than specifying the reverse recovery charge. The larger the value of the stretch factor, the longer it takes for the reverse recovery current to dissipate.

\section*{Dependencies}

See the Protection Diode Parameter Dependencies table.

\section*{Reverse recovery time, trr - Time}

15 us (default) | scalar
Interval between the time when the current initially goes to zero (when the diode turns off) and the time when the current falls to less than 10 percent of the peak reverse current.

The value of the Reverse recovery time, trr parameter must be greater than the value of the Peak reverse current, iRM parameter divided by the value of the Rate of change of current when measuring iRM parameter.

\section*{Dependencies}

See the Protection Diode Parameter Dependencies table.

\section*{Reverse recovery charge, Qrr - Charge} 1500 s*uA (default) | scalar

Value that the block uses to calculate Reverse recovery time, trr. Use this parameter if the data sheet for your diode device specifies a value for the reverse recovery charge instead of a value for the reverse recovery time.

The reverse recovery charge is the total charge that continues to dissipate when the diode turns off. The value must be less than \(-\frac{i^{2}{ }_{\text {RM }}}{2 a}\), where:
- \(i_{R M}\) is the value specified for Peak reverse current, iRM.
- \(a\) is the value specified for Rate of change of current when measuring iRM.

Dependencies
See the Protection Diode Parameter Dependencies table.

\section*{Snubbers}

The table summarizes the Snubbers parameter dependencies. To learn how to read the table, see "Parameter Dependencies" on page A-2.

Snubbers Parameter Dependencies
\begin{tabular}{|l|l|}
\hline Snubbers Parameter Dependencies \\
\hline Snubber & RC Snubber \\
\hline \multirow{3}{|l|}{ None } & Snubber resistance \\
\cline { 2 - 3 } & Snubber capacitance \\
\hline
\end{tabular}

\section*{Snubber - Snubber model \\ None (default) | RC snubber}

Switching device snubber.

\section*{Dependencies}

See the Snubbers Parameter Dependencies table.

\section*{Snubber resistance - Resistance}

\subsection*{0.1 Ohm (default) | scalar}

Resistance of the switching device snubber.

\section*{Dependencies}

See the Snubbers Parameter Dependencies table.

\section*{Snubber capacitance - Capacitance \\ 1e-7 (default) | F | scalar}

Capacitance of the switching device snubber.

\section*{Dependencies}

See the Snubbers Parameter Dependencies table.

\section*{References}
[1] Trzynadlowski, A. M. Introduction to Modern Power Electronics, 2nd Edition. Hoboken, NJ: John Wiley \& Sons Inc., 2010.

\section*{See Also}

Four-Pulse Gate Multiplexer | Two-Quadrant Chopper
Introduced in R2018a

\section*{Grounded Neutral}

Ground connection for phases of three-phase system

\section*{Library}

Connections

\section*{Description}

The Grounded Neutral block connects the phases of a three-phase system to ground.

Note If you want to connect the neutral point of the three-phase system to other blocks, use the Neutral Port block instead. If you want to create a floating neutral point, use the Floating Neutral block.

\section*{Ports}

The block has the following ports:

Expandable three-phase port

\section*{See Also}

\section*{Simscape Blocks}

Floating Neutral | Neutral Port | Open Circuit

\section*{Topics}
"Three-Phase Custom Synchronous Machine"
"Three-Phase Three-Level PWM Generator"
"Three-Phase Bridge Cycloconverter"

\section*{Introduced in R2013b}

\section*{GTO}

Gate Turn-Off Thyristor

\section*{Library}

Semiconductors / Fundamental Components

\section*{Description}

The GTO block models a gate turn-off thyristor (GTO). The I-V characteristic of a GTO is such that if the gate-cathode voltage exceeds the specified gate trigger voltage, the GTO turns on. If the gate-cathode voltage falls below the specified gate turn-off voltage value, or if the load current falls below the specified holding-current value, the device turns off .

In the on state, the anode-cathode path behaves like a linear diode with forward-voltage drop, \(V_{f}\), and on-resistance, \(R_{o n}\).

In the off state, the anode-cathode path behaves like a linear resistor with a low off-state conductance value, \(G_{\text {off }}\).

The defining Simscape equations for the block are:
```

if ((v > Vf)\&\&((G>Vgt)||(i>Ih)))\&\&(G>Vgt_off)
i == (v - Vf*(1-Ron*Goff))/Ron;
else
i == v*Goff;
end

```
where:
- \(v\) is the anode-cathode voltage.
- \(V f\) is the forward voltage.
- \(G\) is the gate voltage.
- Vgt is the gate trigger voltage.
- \(i\) is the anode-cathode current.
- Ih is the holding current.
- Vgt_off is the gate turn-off voltage.
- Ron is the on-state resistance.
- Goff is the off-state conductance.

Using the Integral Diode tab of the block dialog box, you can include an integral cathodeanode diode. A GTO that includes an integral cathode-anode diode is known as an asymmetrical GTO (A-GTO) or reverse-conducting GTO (RCGTO). An integral diode protects the semiconductor device by providing a conduction path for reverse current. An inductive load can produce a high reverse-voltage spike when the semiconductor device suddenly switches off the voltage supply to the load.

The table shows you how to set the Integral protection diode parameter based on your goals.
\begin{tabular}{|l|l|l|}
\hline Goal & Value to Select & Block Behavior \\
\hline Prioritize simulation speed. & \begin{tabular}{l}
Protection diode with \\
no dynamics
\end{tabular} & \begin{tabular}{l}
The block includes an \\
integral copy of the Diode \\
block. To parameterise the \\
internal Diode block, use the \\
Protection parameters.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Goal & Value to Select & Block Behavior \\
\hline \begin{tabular}{l}
Precisely specify reverse- \\
mode charge dynamics.
\end{tabular} & \begin{tabular}{l}
Protection diode with \\
charge dynamics
\end{tabular} & \begin{tabular}{l}
The block includes an \\
integral copy of the \\
Commutation Diode block. \\
To parameterise the internal \\
Commutation Diode block, \\
use the Protection \\
parameters.
\end{tabular} \\
\hline
\end{tabular}

\section*{Modeling Variants}

The block provides four modeling variants. To select the desired variant, right-click the block in your model. From the context menu, select Simscape > Block choices, and then one of these variants:
- PS Control Port - Contains a physical signal port that is associated with the gate terminal. This variant is the default.
- Electrical Control Port - Contains an electrical conserving port that is associated with the gate terminal.
- PS Control Port | Thermal Port - Contains a thermal port and a physical signal port that is associated with the gate terminal.
- Electrical Control Port | Thermal Port - Contains a thermal port and an electrical conserving port that is associated with the gate terminal.

The variants of this block without the thermal port do not simulate heat generation in the device.

The variants with the thermal port allow you to model the heat that switching events and conduction losses generate. For numerical efficiency, the thermal state does not affect the electrical behavior of the block. The thermal port is hidden by default. To enable the thermal port, select a thermal block variant.

\section*{Thermal Loss Equations}

The figure shows an idealized representation of the output voltage, \(V_{\text {out }}\), and the output current, \(I_{\text {out }}\), of the semiconductor device. The interval shown includes the entire \(n\)th switching cycle, during which the block turns off and then on.

When the semiconductor turns on during the \(n\)th switching cycle, the amount of thermal energy that the device dissipates increments by a discrete amount. If you select Voltage, current, and temperature for the Thermal loss dependent on parameter, the equation for the incremental change is
\[
E_{\text {on }(n)}=\frac{V_{\text {off }(n)}}{V_{o f f} \text { _data }} f c n\left(T, I_{\text {on }(n-1)}\right),
\]
where:
- \(E_{\text {on(n) }}\) is the switch-on loss at the \(n\)th switch-on event.
- \(V_{\text {off(}(n)}\) is the off-state output voltage, \(V_{\text {out }}\) just before the device switches on during the \(n\)th switching cycle.
- \(V_{\text {off_data }}\) is the Off-state voltage for losses data parameter value.
- \(T\) is the device temperature.
- \(I_{o n(n-1)}\) is the on-state output current, \(I_{o u t}\), just before the device switches off during the cycle that precedes the nth switching cycle.

The function \(f c n\) is a 2-D lookup table with linear interpolation and linear extrapolation:
where:
- \(T_{j_{-} d a t a}\) is the Temperature vector, \(\mathbf{T j}\) parameter value.
- \(I_{\text {out_data }}\) is the Output current vector, Iout parameter value.
- \(E_{\text {on_data }}\) is the Switch-on loss, Eon=fen(Tj,Iout) parameter value.

If you select Voltage and current for the Thermal loss dependent on parameter, when the semiconductor turns on during the \(n\)th switching cycle, the equation that the block uses to calculate the incremental change in the discrete amount of thermal energy that the device dissipates is
\[
E_{\text {on }(n)}=\left(\frac{V_{\text {off }(n)}}{V_{\text {off_data }}}\right)\left(\frac{I_{\text {on }(n-1)}}{I_{\text {out_scalar }}}\right)\left(E_{\text {on_scalar })}\right.
\]
where:
- \(I_{\text {out_scalar }}\) is the Output current, Iout parameter value.
- \(E_{\text {on_scalar }}\) is the Switch-on loss parameter value.

When the semiconductor turns off during the \(n\)th switching cycle, the amount of thermal energy that the device dissipates increments by a discrete amount. If you select Voltage, current, and temperature for the Thermal loss dependent on parameter, the equation for the incremental change is
\[
E_{o f f(n)}=\frac{V_{o f f(n)}}{V_{o f f_{-} \text {data }}} f c n\left(T, I_{o n(n)}\right),
\]
where:
- \(E_{\text {off(} n)}\) is the switch-off loss at the \(n\)th switch-off event.
- \(V_{\text {off(n) }}\) is the off-state output voltage, \(V_{\text {out }}\), just before the device switches on during the \(n\)th switching cycle.
- \(V_{\text {off_data }}\) is the Off-state voltage for losses data parameter value.
- \(T\) is the device temperature.
- \(I_{o n(n)}\) is the on-state output current, \(I_{o u t}\), just before the device switches off during the \(n\)th switching cycle.

The function \(f c n\) is a 2-D lookup table with linear interpolation and linear extrapolation:
\[
E=\text { tablelookup }\left(T_{j_{-}} \text {data }, I_{\text {out_data }}, E_{\text {off_data }}, T, I_{\text {on }(n)}\right),
\]
where:
- \(T_{j_{-} \text {data }}\) is the Temperature vector, \(\mathbf{T j}\) parameter value.
- \(I_{\text {out_data }}\) is the Output current vector, Iout parameter value.
- \(E_{\text {off_data }}\) is the Switch-off loss, \(\mathbf{E o f f}=\mathbf{f e n}(\mathbf{T j}, I o u t)\) parameter value.

If you select Voltage and current for the Thermal loss dependent on parameter, when the semiconductor turns off during the \(n\)th switching cycle, the equation that the block uses to calculate the incremental change in the discrete amount of thermal energy that the device dissipates is
\[
E_{\text {off }(n)}=\left(\frac{V_{\text {off }(n)}}{V_{\text {off_data }}}\right)\left(\frac{I_{\text {on }(n-1)}}{I_{\text {out_scalar }}}\right)\left(E_{\text {off_scalar }}\right)
\]
where:
- \(I_{\text {out_scalar }}\) is the Output current, Iout parameter value.
- \(E_{\text {off_scalar }}\) is the Switch-off loss parameter value.

If you select Voltage, current, and temperature for the Thermal loss
dependent on parameter, then, for both the on state and the off state, the heat loss due to electrical conduction is
\[
E_{\text {conduction }}=\int f c n\left(T, I_{\text {out }}\right) d t,
\]
where:
- \(E_{\text {conduction }}\) is the heat loss due to electrical conduction.
- \(T\) is the device temperature.
- \(I_{\text {out }}\) is the device output current.

The function \(f c n\) is a 2-D lookup table:
\[
Q_{\text {conduction }}=\operatorname{tablelookup}\left(T_{j_{-} \text {data }}, I_{\text {out_data }}, I_{\text {out_data_repmat }} * V_{\text {on_data }}, T, I_{\text {out }}\right),
\]
where:
- \(T_{j_{-} \text {data }}\) is the Temperature vector, \(\mathbf{T j}\) parameter value.
- \(I_{\text {out_data }}\) is the Output current vector, Iout parameter value.
- \(I_{\text {out_data_repmat }}\) is a matrix that contains length, \(T_{j_{-} \text {data }}\), copies of \(I_{\text {out_data }}\).
- \(V_{\text {on_data }}\) is the \(\mathbf{O n}\)-state voltage, Von=fcn(Tj,Iout) parameter value.

If you select Voltage and current for the Thermal loss dependent on parameter, then, for both the on state and the off state, the heat loss due to electrical conduction is
where \(V_{\text {on_scalar }}\) is the \(\mathbf{O n}\)-state voltage parameter value.

The block uses the Energy dissipation time constant parameter to filter the amount of heat flow that the block outputs. The filtering allows the block to:
- Avoid discrete increments for the heat flow output
- Handle a variable switching frequency

The filtered heat flow is
\[
Q=\frac{1}{\tau}\left(\sum_{i=1}^{n} E_{\text {on }(i)}+\sum_{i=1}^{n} E_{\text {off }(i)}+E_{\text {conduction }}-\int Q d t\right)
\]
where:
- \(Q\) is the heat flow from the component.
- \(\tau\) is the Energy dissipation time constant parameter value.
- \(n\) is the number of switching cycles.
- \(E_{\text {on(i) }}\) is the switch-on loss at the \(i\) th switch-on event.
- \(E_{\text {off(i) }}\) is the switch-off loss at the \(i\) th switch-off event.
- \(E_{\text {conduction }}\) is the heat loss due to electrical conduction.
- \(\int Q d t\) is the total heat previously dissipated from the component.

\section*{Ports}

The figure shows the block port names.

G
Port associated with the gate terminal. You can set the port to either a physical signal or electrical port.
A
Electrical conserving port associated with the anode terminal.
K
Electrical conserving port associated with the cathode terminal.
H
Thermal conserving port. The thermal port is optional and is hidden by default. To enable this port, select a variant that includes a thermal port.

\section*{Parameters}
- "Main Tab" on page 1-399
- "Integral Diode Tab" on page 1-399
- "Thermal Model Tab" on page 1-402

\section*{Main Tab}

\section*{Forward voltage, Vf}

Minimum voltage required across the anode and cathode block ports for the gradient of the device I-V characteristic to be \(1 / \mathrm{R}_{\text {on }}\), where \(\mathrm{R}_{\text {on }}\) is the value of On-state resistance. The default value is 0.8 V .

\section*{On-state resistance}

Rate of change of voltage versus current above the forward voltage. The default value is 0.0010 hm .

\section*{Off-state conductance}

Anode-cathode conductance when the device is off. The value must be less than \(1 / R\), where \(R\) is the value of \(\mathbf{O n}\)-state resistance. The default value is \(1 \mathrm{e}-51 / 0 \mathrm{hm}\).

\section*{Gate trigger voltage, Vgt}

Gate-cathode voltage threshold. The device turns on when the gate-cathode voltage is above this value. The default value is 1 V .

\section*{Gate turn-off voltage, Vgt_off}

Gate-cathode voltage threshold. The device turns off when the gate-cathode voltage is below this value. The default value is -1 V .

\section*{Holding current}

Current threshold. The device stays on when the current is above this value, even when the gate-cathode voltage falls below the gate trigger voltage. The default value is 1 A .

\section*{Integral Diode Tab}

\section*{Integral protection diode}

Block integral protection diode. The default value is None.
The diodes you can select are:
- Protection diode with no dynamics
- Protection diode with charge dynamics

When you select Protection diode with no dynamics, additional parameters appear.

\section*{Additional Parameters for Protection diode with no dynamics}

\section*{Forward voltage}

Minimum voltage required across the + and - block ports for the gradient of the diode I-V characteristic to be \(1 / R_{\text {on }}\), where \(R_{o n}\) is the value of On resistance. The default value is 0.8 V .

\section*{On resistance}

Rate of change of voltage versus current above the Forward voltage. The default value is 0.0010 hm .

\section*{Off conductance}

Conductance of the reverse-biased diode. The default value is le-5 \(1 / 0 \mathrm{hm}\).
For more information on these parameters, see Diode.

When you select Protection diode with charge dynamics, additional parameters appear.

\section*{Additional Parameters for Protection diode with charge dynamics}

\section*{Forward voltage}

Minimum voltage required across the + and - block ports for the gradient of the diode I-V characteristic to be \(1 / R_{o n}\), where \(R_{o n}\) is the value of On resistance. The default value is 0.8 V .

\section*{On resistance}

Rate of change of voltage versus current above the Forward voltage. The default value is 0.0010 hm .

\section*{Off conductance}

Conductance of the reverse-biased diode. The default value is le-5 \(1 / 0 \mathrm{hm}\).

\section*{Junction capacitance}

Diode junction capacitance. The default value is 50 nF .

\section*{Peak reverse current, iRM}

Peak reverse current measured by an external test circuit. This value must be less than zero. The default value is -235 A .

\section*{Initial forward current when measuring iRM}

Initial forward current when measuring peak reverse current. This value must be greater than zero. The default value is 300 A .

\section*{Rate of change of current when measuring iRM}

Rate of change of current when measuring peak reverse current. This value must be less than zero. The default value is \(-50 \mathrm{~A} / \mu \mathrm{s}\).

\section*{Reverse recovery time parameterization}

Determines how you specify reverse recovery time in the block. The default value is Specify reverse recovery time directly.

If you select Specify stretch factor or Specify reverse recovery charge, you specify a value that the block uses to derive the reverse recovery time. For more information on these options, see "Alternatives to Specifying trr Directly" on page 1254.

\section*{Reverse recovery time, trr}

Interval between the time when the current initially goes to zero (when the diode turns off) and the time when the current falls to less than \(10 \%\) of the peak reverse current. The default value is \(15 \mu \mathrm{~s}\).

This parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery time directly.

The value of the Reverse recovery time, trr parameter must be greater than the value of the Peak reverse current, iRM parameter divided by the value of the Rate of change of current when measuring iRM parameter.

\section*{Reverse recovery time stretch factor}

Value that the block uses to calculate Reverse recovery time, trr. This value must be greater than 1. The default value is 3 .

This parameter is visible only if you set Reverse recovery time parameterization to Specify stretch factor.

Specifying the stretch factor is an easier way to parameterize the reverse recovery time than specifying the reverse recovery charge. The larger the value of the stretch factor, the longer it takes for the reverse recovery current to dissipate.

\section*{Reverse recovery charge, Qrr}

Value that the block uses to calculate Reverse recovery time, trr. Use this parameter if the data sheet for your diode device specifies a value for the reverse recovery charge instead of a value for the reverse recovery time.

The reverse recovery charge is the total charge that continues to dissipate when the
diode turns off. The value must be less than \(-\frac{i^{2}{ }_{R M}}{2 a}\),
where:
- \(i_{R M}\) is the value specified for Peak reverse current, iRM.
- \(a\) is the value specified for Rate of change of current when measuring iRM.

The default value is \(1500 \mu \mathrm{As}\).
The parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery charge.

For more information on these parameters, see Commutation Diode.

\section*{Thermal Model Tab}

The Thermal Model tab is enabled only when you select a block variant that includes a thermal port.

\section*{Thermal loss dependent on}

Select a parameterization method. The option that you select determines which other parameters are enabled. Options are:
- Voltage and current - Use scalar values to specify the output current, switch-on loss, switch-off loss, and on-state voltage data.
- Voltage, current, and temperature - Use vectors to specify the output current, switch-on loss, switch-off loss, on-state voltage, and temperature data. This is the default parameterization method.

\section*{Off-state voltage for losses data}

The output voltage of the device during the off state. This is the blocking voltage at which the switch-on loss and switch-off loss data are defined. The default value is 300 V.

\section*{Energy dissipation time constant}

Time constant used to average the switch-on losses, switch-off losses, and conduction losses. This value is equal to the period of the minimum switching frequency. The default value is \(1 \mathrm{e}-4 \mathrm{~s}\).

\section*{Additional Parameters for Parameterizing by Voltage, Current, and Temperature}

\section*{Temperature vector, \(\mathbf{T j}\)}

Temperature values at which the switch-on loss, switch-off loss, and on-state voltage are specified. Specify this parameter using a vector quantity. The default value is [298.15398 .15] K.

\section*{Output current vector, Iout}

Output currents for which the switch-on loss, switch-off- loss and on-state voltage are defined. The first element must be zero. Specify this parameter using a vector quantity. The default value is [01050100200400600] A.

\section*{Switch-on loss, Eon=fen(Tj,Iout)}

Energy dissipated during a single switch on event. This parameter is defined as a function of temperature and final on-state output current. Specify this parameter using a vector quantity. The default value is [\(02.9 \mathrm{e}-40.001430 .00286\) \(0.005710 .013140 .02286 ; 05.7 e-40.002630 .005140 .010290 .02057\) 0.03029] J.

\section*{Switch-off loss, Eoff=fen(Tj,Iout)}

Energy dissipated during a single switch-off event. This parameter is defined as a function of temperature and final on-state output current. Specify this parameter using a vector quantity. The default value is [0 2.1e-4 0.00107 0.00214 \(0.004290 .0098599999999999990 .01714 ; 04.3 \mathrm{e}-40.001970 .00386\) 0.00771 0.01543 0.02271] J.

\section*{On-state voltage, Von=fen(Tj,Iout)}

Voltage drop across the device while it is in a triggered conductive state.. This parameter is defined as a function of temperature and final on-state output current. Specify this parameter using a vector quantity. The default value is [0 1.11.3 \(1.451 .752 .252 .7 ; 011.151 .351 .72 .353\)] V.

\section*{Additional Parameters for Parameterizing by Voltage and Current}

\section*{Output current, Iout}

Output currents for which the switch-on loss, switch-off loss, and on-state voltage are defined. The first element must be zero. Specify this parameter using a scalar quantity. The default value is 600 A .

\section*{Switch-on loss}

Energy dissipated during a single switch-on event. This parameter is defined as a function of temperature and final on-state output current. Specify this parameter using a scalar quantity. The default value is 0.02286 J .

\section*{Switch-off loss}

Energy dissipated during a single switch-off event. This parameter is defined as a function of temperature and final on-state output current. Specify this parameter using a scalar quantity. The default value is 0.01714 J .

\section*{On-state voltage}

Voltage drop across the block while it is in a triggered conductive state. This parameter is defined as a function of temperature and final on-state output current. Specify this parameter using a scalar quantity. The default value is 2.7 V .

\section*{See Also}

Commutation Diode | Diode | IGBT | Ideal Semiconductor Switch | MOSFET | Thyristor

\section*{Topics}
"Quantifying IGBT Thermal Losses"
"Simulate Thermal Losses in Semiconductors"
"Switch Between Physical Signal and Electrical Ports"

\section*{Introduced in R2013b}

\section*{Hybrid Excitation Synchronous Machine}

Hybrid excitation synchronous machine with three-phase wye-wound stator Library: Simscape / Power Systems / Simscape Components / Machines / Permanent Magnet Rotor

\section*{Description}

The Hybrid Excitation Synchronous Machine block represents a hybrid excitation synchronous machine with a three-phase wye-wound stator. Permanent magnets and excitation windings provide the machine excitation. The figure shows the equivalent electrical circuit for the stator and rotor windings.

\section*{Motor Construction}

The diagram shows the motor construction with a single pole-pair on the rotor. For the axes convention, when rotor mechanical angle \(\theta_{r}\) is zero, the \(a\)-phase and permanent magnet fluxes are aligned. The block supports a second rotor axis definition for which rotor mechanical angle is defined as the angle between the \(a\)-phase magnetic axis and the rotor \(q\)-axis.

\section*{Equations}

Voltages across the stator windings are defined by
\[
\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right]=\left[\begin{array}{ccc}
R_{s} & 0 & 0 \\
0 & R_{S} & 0 \\
0 & 0 & R_{s}
\end{array}\right]\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right]+\left[\begin{array}{c}
\frac{d \psi_{a}}{d t} \\
\frac{d \psi_{b}}{d t} \\
\frac{d \psi_{c}}{d t}
\end{array}\right],
\]
where:
- \(v_{a}, v_{b}\), and \(v_{c}\) are the individual phase voltages across the stator windings.
- \(R_{s}\) is the equivalent resistance of each stator winding.
- \(i_{a}, i_{b}\), and \(i_{c}\) are the currents flowing in the stator windings.
-
\(\frac{d \psi_{a}}{d t}, \frac{d \psi_{b}}{d t}\), and \(\frac{d \psi_{c}}{d t}\) are the rates of change of magnetic flux in each stator winding.
The voltage across the field winding is expressed as
\[
v_{f}=R_{f} i_{f}+\frac{d \psi_{f}}{d t}
\]
where:
- \(v_{f}\) is the individual phase voltage across the field winding.
- \(R_{f}\) is the equivalent resistance of the field winding.
- \(i_{f}\) is the current flowing in the field winding.
- \(\frac{d \psi_{f}}{d t}\) is the rate of change of magnetic flux in the field winding.

The permanent magnet, excitation winding, and the three star-wound stator windings contribute to the flux linking each winding. The total flux is defined by
\[
\left[\begin{array}{l}
\psi_{a} \\
\psi_{b} \\
\psi_{c}
\end{array}\right]=\left[\begin{array}{lll}
L_{a a} & L_{a b} & L_{a c} \\
L_{b a} & L_{b b} & L_{b c} \\
L_{c a} & L_{c b} & L_{c c}
\end{array}\right]\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right]+\left[\begin{array}{l}
\psi_{a m} \\
\psi_{b m} \\
\psi_{c m}
\end{array}\right]+\left[\begin{array}{c}
L_{a m f} \\
L_{b m f} \\
L_{c m f}
\end{array}\right] i_{f},
\]
where:
- \(\psi_{a}, \psi_{b}\), and \(\psi_{c}\) are the total fluxes linking each stator winding.
- \(L_{a a}, L_{b b}\), and \(L_{c c}\) are the self-inductances of the stator windings.
- \(L_{a b}, L_{a c}, L_{b a}, L_{b c}, L_{c a}\), and \(L_{c b}\) are the mutual inductances of the stator windings.
- \(\psi_{a m}, \psi_{b m}\), and \(\psi_{c m}\) are the magnetization fluxes linking the stator windings.
- \(L_{a m f}, L_{b m f}\), and \(L_{c m f}\) are the mutual inductances of the field winding.

The inductances in the stator windings are functions of rotor electrical angle and are defined by
\[
\begin{aligned}
& \theta_{e}=N \theta_{r}, \\
& L_{a a}=L_{s}+L_{m} \cos \left(2 \theta_{e}\right), \\
& L_{b b}=L_{s}+L_{m} \cos \left(2\left(\theta_{e}-2 \pi / 3\right)\right), \\
& L_{c c}=L_{s}+L_{m} \cos \left(2\left(\theta_{e}+2 \pi / 3\right)\right), \\
& L_{a b}=L_{b a}=-M_{s}-L_{m} \cos \left(2\left(\theta_{e}+\pi / 6\right)\right), \\
& L_{b c}=L_{c b}=-M_{s}-L_{m} \cos \left(2\left(\theta_{e}+\pi / 6-2 \pi / 3\right)\right), \\
& L_{c a}=L_{a c}=-M_{s}-L_{m} \cos \left(2\left(\theta_{r}+\pi / 6+2 \pi / 3\right)\right),
\end{aligned}
\]
where:
- \(N\) is the number of rotor pole pairs.
- \(\theta_{r}\) is the rotor mechanical angle.
- \(\theta_{e}\) is the rotor electrical angle.
- \(L_{s}\) is the stator self-inductance per phase. This value is the average self-inductance of each of the stator windings.
- \(L_{m}\) is the stator inductance fluctuation. This value is the amplitude of the fluctuation in self-inductance and mutual inductance with changing rotor angle.
- \(M_{s}\) is the stator mutual inductance. This value is the average mutual inductance between the stator windings.

The magnetization flux linking winding, \(a-a^{\prime}\) is a maximum when \(\theta_{r}=0^{\circ}\) and zero when \(\theta_{r}\) \(=90^{\circ}\). Therefore:
\[
\begin{aligned}
& \psi_{m}=\left[\begin{array}{l}
\psi_{a m} \\
\psi_{b m} \\
\psi_{c m}
\end{array}\right]=\left[\begin{array}{c}
\psi_{m} \cos \theta_{r} \\
\psi_{m} \cos \left(\theta_{r}-2 \pi / 3\right) \\
\psi_{m} \cos \left(\theta_{r}+2 \pi / 3\right)
\end{array}\right], \\
& L_{m f}=\left[\begin{array}{c}
L_{a m f} \\
L_{b m f} \\
L_{c m f}
\end{array}\right]=\left[\begin{array}{c}
L_{m f} \cos \theta_{r} \\
L_{m f} \cos \left(\theta_{r}-2 \pi / 3\right) \\
L_{m f} \cos \left(\theta_{r}+2 \pi / 3\right)
\end{array}\right],
\end{aligned}
\]
and
\[
\Psi_{f}=L_{f} i_{f}+L_{m f}^{T}\left[\begin{array}{c}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right],
\]
where:
- \(\psi_{m}\) is the linked motor flux.
- \(L_{m f}\) is the mutual field armature inductance.
- \(\psi_{f}\) is the flux linking the field winding.
- \(L_{f}\) is the field winding inductance.
- \(\left[L_{m f}\right]^{T}\) is the transform of the \(L_{m f}\) vector, that is,
\[
\left[L_{m f}\right]^{T}=\left[\begin{array}{c}
L_{a m f} \\
L_{b m f} \\
L_{c m f}
\end{array}\right]^{T}=\left[\begin{array}{lll}
L_{a m f} & L_{b m f} & L_{c m f}
\end{array}\right] .
\]

\section*{Simplified Equations}

Applying the Park transformation to the block electrical defining equations produces an expression for torque that is independent of rotor angle.

The Park transformation is defined by
\[
P=2 / 3\left[\begin{array}{ccc}
\cos \theta_{e} & \cos \left(\theta_{e}-2 \pi / 3\right) & \cos \left(\theta_{e}+2 \pi / 3\right) \\
-\sin \theta_{e} & -\sin \left(\theta_{e}-2 \pi / 3\right) & -\sin \left(\theta_{e}+2 \pi / 3\right) \\
0.5 & 0.5 & 0.5
\end{array}\right] .
\]

Applying the Park transformation to the first two electrical defining equations produces equations that define the block behavior:
\[
\begin{aligned}
& v_{d}=R_{s} i_{d}+L_{d} \frac{d i_{d}}{d t}+L_{m f} \frac{d i_{f}}{d t}-N \omega i_{q} L_{q}, \\
& v_{q}=R_{s} i_{q}+L_{q} \frac{d i_{q}}{d t}+N \omega\left(i_{d} L_{d}+\psi_{m}+i_{f} L_{m f}\right), \\
& v_{0}=R_{s} i_{0}+L_{0} \frac{d i_{0}}{d t}, \\
& v_{f}=R_{f} i_{f}+L_{f} \frac{d i_{f}}{d t}+\frac{3}{2} L_{m f} \frac{d i_{d}}{d t}, \\
& T=\frac{3}{2} N\left(i_{q}\left(i_{d} L_{d}+\psi_{m}+i_{f} L_{m f}\right)-i_{d} i_{q} L_{q}\right),
\end{aligned}
\]
and
\[
J \frac{d \omega}{d t}=T=T_{L}-B_{m} \omega .
\]
where:
- \(v_{d}, v_{q}\), and \(v_{0}\) are the \(d\)-axis, \(q\)-axis, and zero-sequence voltages. These voltages are defined by
\[
\left[\begin{array}{l}
v_{d} \\
v_{q} \\
v_{0}
\end{array}\right]=P\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right] .
\]
- \(i_{d}, i_{q}\), and \(i_{0}\) are the \(d\)-axis, \(q\)-axis, and zero-sequence currents, defined by
\[
\left[\begin{array}{l}
i_{d} \\
i_{q} \\
i_{0}
\end{array}\right]=P\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right] .
\]
- \(L_{d}\) is the stator \(d\)-axis inductance. \(L_{d}=L_{s}+M_{s}+3 / 2 L_{m}\).
- \(\omega\) is the mechanical rotational speed.
- \(L_{q}\) is the stator \(q\)-axis inductance. \(L_{q}=L_{s}+M_{s}-3 / 2 L_{m}\).
- \(L_{0}\) is the stator zero-sequence inductance. \(L_{0}=L_{s}-2 M_{s}\).
- \(T\) is the rotor torque. For the Hybrid Excitation Synchronous Machine block, torque flows from the machine case (block conserving port \(\mathbf{C}\)) to the machine rotor (block conserving port \(\mathbf{R}\)).
- \(J\) is the rotor inertia.
- \(T_{L}\) is the load torque.
- \(B_{m}\) is the rotor damping.

\section*{Assumptions}

The block assumes that the flux distribution is sinusoidal.

\section*{Variables}

Use the Variables settings to specify the priority and initial target values for the block variables before simulation. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape) .

Unlike block parameters, variables do not have conditional visibility. The Variables settings include all the existing block variables. If a variable is not used in the set of equations corresponding to the selected block configuration, the values specified for this variable are ignored.

\section*{Ports}

\section*{Conserving}

R - Machine rotor
mechanical rotational
Mechanical rotational conserving port associated with the machine rotor.

\section*{C - Machine case}
mechanical rotational
Mechanical rotational conserving port associated with the machine case.

\section*{~ - Three-phase composite \\ electrical}

Expandable three-phase port associated with the stator windings.
n - Neutral phase
electrical
Electrical conserving port associated with the neutral phase.

\section*{fd+ - Field winding positive terminal}
electrical
Electrical conserving port associated with the field winding positive terminal.
fd- - Field winding negative terminal
electrical
Electrical conserving port associated with the field winding negative terminal.

\section*{Parameters}

\section*{Main}

Number of pole pairs - Rotor pole pairs
6 (default) | integer

Number of permanent magnet pole pairs on the rotor.

\section*{Permanent magnet flux linkage - Flux linkage} 0.09 Wb (default) | positive integer

Peak permanent magnet flux linkage for any of the stator windings.

\section*{Stator parameterization - Parameterization method Specify Ld, Lq and L0 (default)|Specify Ls, Lm, and Ms}

Method for parameterizing the stator.

\section*{Dependencies}

Selecting Specify Ld, Lq and L0 enables these parameters:
- Stator d-axis inductance, Ld
- Stator q-axis inductance, Lq
- Stator zero-sequence inductance, L0

Selecting Specify Ls, Lm, and Ms enables these parameters:
- Stator self-inductance per phase, Ls
- Stator inductance fluctuation, \(\mathbf{L m}\)
- Stator mutual inductance, Ms

Stator d-axis inductance, Ld - Inductance
0.0031 H (default)

Direct-axis inductance of the machine stator.

\section*{Dependencies}

To enable this parameter, set Stator parameterization to Specify Ld, Lq and L0.

\section*{Stator q-axis inductance, Lq - Inductance 0.0045 H (default)}

Quadrature-axis inductance of the machine stator.

\section*{Dependencies}

To enable this parameter, set Stator parameterization to Specify Ld, Lq and L0.

\section*{Stator zero-sequence inductance, L0 - Inductance 0.0006 H (default)}

Zero-axis inductance for the machine stator.

\section*{Dependencies}

To enable this parameter, set Stator parameterization to Specify Ld, Lq and L0.
Stator self-inductance per phase, Ls - Inductance
0.0027 H (default)

Average self-inductance of the three stator windings.

\section*{Dependencies}

To enable this parameter, set Stator parameterization to Specify Ls, Lm, and Ms.

\section*{Stator inductance fluctuation, Lm - Inductance -0.0005 H (default)}

Amplitude of the fluctuation in self-inductance and mutual inductance with the rotor angle.

\section*{Dependencies}

To enable this parameter, set Stator parameterization to Specify Ls, Lm, and Ms.

\section*{Stator mutual inductance, Ms - Inductance 0.0011 H (default)}

Average mutual inductance between the stator windings.

\section*{Dependencies}

To enable this parameter, set Stator parameterization to Specify Ls, Lm, and Ms.
```

Field winding inductance, Lf - Inductance
0.06 H (default)

```

Inductance of the field winding.
Mutual field armature inductance, Lmf - Inductance 0.0067 H (default)

Armature-field mutual inductance.

\section*{Stator resistance per phase, Rs - Resistance \\ 0.7 Ohm (default)}

Resistance of each of the stator windings.

\section*{Field winding resistance, Rf - Resistance}
2.85 Ohm (default)

Resistance of the field winding.

\section*{Zero sequence - Option to neglect zero-sequence terms \\ Include (default) | Exclude}

Option to neglect zero-sequence terms. Choices are:
- Include - Include zero-sequence terms. To prioritize model fidelity, use this default setting. Using this option results in an error for simulations that use the Partitioning solver. For more information, see "Increase Simulation Speed Using the Partitioning Solver" (Simscape).
- Exclude - Exclude zero-sequence terms. To prioritize simulation speed for desktop simulation or real-time deployment, select this option.

\section*{Rotor angle definition - Angle}

Angle between the a-phase magnetic axis and the d-axis (default)|Angle between the a-phase magnetic axis and the \(q\)-axis

Reference point for the rotor angle measurement. If you select the default value, the rotor and \(a\)-phase fluxes are aligned for a zero-rotor angle. Otherwise, an \(a\)-phase current generates the maximum torque value for a zero-rotor angle.

\section*{Mechanical}

\section*{Rotor inertia - Inertia}
0.01 kg*m^2 (default)

Inertia of the rotor attached to mechanical translational port \(\mathbf{R}\).

\section*{Rotor Damping - Damping}
\(0 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})\) (default)

Rotary damping.

\section*{References}
[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.
[2] Mbayed, R. Analysis of Faulted Power Systems. Hoboken, NJ: Wiley-IEEE Press, 1995.
[3] Anderson, P. M. Contribution to the Control of the Hybrid Excitation Synchronous Machine for Embedded Applications. Universite de Cergy Pontoise, 2012.
[4] Luo, X. and T. A. Lipo. "A Synchronous/Permanent Magnet Hybrid AC Machine." IEEE Transactions of Energy Conversion. Vol. 15, No 2 (2000), pp. 203-210.

\section*{See Also}

Brushless DC Motor | Permanent Magnet Synchronous Motor | Switched Reluctance Machine | Synchronous Machine Field Circuit (SI) | Synchronous Machine Field Circuit (pu) | Synchronous Machine Measurement | Synchronous Reluctance Machine

\section*{Introduced in R2017b}

\section*{Ideal Semiconductor Switch}

Ideal Semiconductor Switch

\section*{Library}

Semiconductors / Fundamental Components

\section*{Description}

The Ideal Semiconductor Switch block models an ideal semiconductor switching device.
The figure shows a typical i-v characteristic for an ideal semiconductor switch.

If the gate-cathode voltage exceeds the specified threshold voltage, the ideal semiconductor switch is in the on state. Otherwise the device is in the off state.

In the on state, the anode-cathode path behaves like a linear resistor with on-resistance \(R_{\text {on }}\).

In the off state, the anode-cathode path behaves like a linear resistor with a low off-state conductance \(G_{\text {off }}\).

Using the Integral Diode tab of the block dialog box, you can include an integral cathodeanode diode. An integral diode protects the semiconductor device by providing a conduction path for reverse current. An inductive load can produce a high reverse-voltage spike when the semiconductor device suddenly switches off the voltage supply to the load.

The table shows you how to set the Integral protection diode parameter based on your goals.
\begin{tabular}{|l|l|l|}
\hline Goal & Value to Select & Block Behavior \\
\hline Prioritize simulation speed. & \begin{tabular}{l}
Protection diode with \\
no dynamics
\end{tabular} & \begin{tabular}{l}
The block includes an \\
integral copy of the Diode \\
block. To parameterise the \\
internal Diode block, use the \\
Protection parameters.
\end{tabular} \\
\hline \begin{tabular}{l}
Precisely specify reverse- \\
mode charge dynamics.
\end{tabular} & \begin{tabular}{l}
Protection diode with \\
charge dynamics
\end{tabular} & \begin{tabular}{l}
The block includes an \\
integral copy of the \\
Commutation Diode block. \\
To parameterise the internal \\
Commutation Diode block, \\
use the Protection \\
parameters.
\end{tabular} \\
\hline
\end{tabular}

\section*{Parameters}
- "Main Tab" on page 1-418
- "Integral Diode Tab" on page 1-419

\section*{Main Tab}

\section*{On-state resistance}

Anode-cathode resistance when the device is on. The default value is 0.0010 hm .

\section*{Off-state conductance}

Anode-cathode conductance when the device is off. The value must be less than \(1 / R\), where \(R\) is the value of \(\mathbf{O n}\)-state resistance. The default value is \(1 \mathrm{e}-61 / 0 \mathrm{hm}\).

\section*{Threshold voltage, Vth}

Gate-cathode voltage threshold. The device turns on when the gate-cathode voltage is above this value. The default value is 0.5 V .

\section*{Integral Diode Tab}

\section*{Integral protection diode}

Specify whether the block includes an integral protection diode. The default value is None.

If you want to include an integral protection diode, there are two options:
- Protection diode with no dynamics
- Protection diode with charge dynamics

When you select Protection diode with no dynamics, additional parameters appear.

\section*{Additional Parameters for Protection diode with no dynamics}

\section*{Forward voltage}

Minimum voltage required across the + and - block ports for the gradient of the diode \(I-V\) characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of \(\mathbf{O n}\) resistance. The default value is 0.8 V .

\section*{On resistance}

Rate of change of voltage versus current above the Forward voltage. The default value is 0.0010 hm .

\section*{Off conductance}

Conductance of the reverse-biased diode. The default value is \(1 \mathrm{e}-51 / 0 \mathrm{hm}\).
For more information on these parameters, see Diode.

When you select Protection diode with charge dynamics, additional parameters appear.

\section*{Additional Parameters for Protection diode with charge dynamics}

\section*{Forward voltage}

Minimum voltage required across the + and - block ports for the gradient of the diode I-V characteristic to be \(1 / R_{o n}\), where \(R_{\text {on }}\) is the value of \(O\) n resistance. The default value is 0.8 V .

\section*{On resistance}

Rate of change of voltage versus current above the Forward voltage. The default value is 0.0010 hm .

\section*{Off conductance}

Conductance of the reverse-biased diode. The default value is \(1 \mathrm{e}-51 / 0 \mathrm{hm}\).

\section*{Junction capacitance}

Diode junction capacitance. The default value is 50 nF .

\section*{Peak reverse current, iRM}

Peak reverse current measured by an external test circuit. This value must be less than zero. The default value is -235 A.

\section*{Initial forward current when measuring iRM}

Initial forward current when measuring peak reverse current. This value must be greater than zero. The default value is 300 A .

\section*{Rate of change of current when measuring iRM}

Rate of change of current when measuring peak reverse current. This value must be less than zero. The default value is \(-50 \mathrm{~A} / \mu \mathrm{s}\).

\section*{Reverse recovery time parameterization}

Determines how you specify reverse recovery time in the block. The default value is Specify reverse recovery time directly.

If you select Specify stretch factor or Specify reverse recovery charge, you specify a value that the block uses to derive the reverse recovery time. For more information on these options, see "Alternatives to Specifying trr Directly" on page 1254.

\section*{Reverse recovery time, trr}

Interval between the time when the current initially goes to zero (when the diode turns off) and the time when the current falls to less than \(10 \%\) of the peak reverse current. The default value is \(15 \mu \mathrm{~s}\).

This parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery time directly.

The value of the Reverse recovery time, trr parameter must be greater than the value of the Peak reverse current, iRM parameter divided by the value of the Rate of change of current when measuring iRM parameter.

\section*{Reverse recovery time stretch factor}

Value that the block uses to calculate Reverse recovery time, trr. This value must be greater than 1 . The default value is 3 .

This parameter is visible only if you set Reverse recovery time parameterization to Specify stretch factor.

Specifying the stretch factor is an easier way to parameterize the reverse recovery time than specifying the reverse recovery charge. The larger the value of the stretch factor, the longer it takes for the reverse recovery current to dissipate.

\section*{Reverse recovery charge, Qrr}

Value that the block uses to calculate Reverse recovery time, trr. Use this parameter if the data sheet for your diode device specifies a value for the reverse recovery charge instead of a value for the reverse recovery time.

The reverse recovery charge is the total charge that continues to dissipate when the diode turns off. The value must be less than \(-\frac{i^{2}{ }_{R M}}{2 a}\), where:
- \(i_{R M}\) is the value specified for Peak reverse current, iRM.
- \(a\) is the value specified for Rate of change of current when measuring iRM.

The default value is \(1500 \mu \mathrm{As}\).
The parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery charge.

For more information on these parameters, see Commutation Diode.

\section*{Ports}

This figure shows the block port names.

G
Port associated with the gate terminal. You can set the port to either a physical signal or electrical port.

A
Electrical conserving port associated with the anode terminal.
K
Electrical conserving port associated with the cathode terminal.

\section*{See Also}

\section*{Topics}
"Switch Between Physical Signal and Electrical Ports"

\section*{Introduced in R2013b}

\section*{IGBT}

\author{
Insulated-Gate Bipolar Transistor
}

\section*{Library}

Semiconductors / Fundamental Components

\section*{Description}

The IGBT block models an insulated-gate bipolar transistor (IGBT). The I-V characteristic of an IGBT is such that if the gate-emitter voltage exceeds the specified threshold voltage, \(V_{t h}\), the IGBT is in the on state. Otherwise, the device is in the off state.

In the on state, the collector-emitter path behaves like a linear diode with forward-voltage drop, \(V_{f}\), and on-resistance, \(R_{o n}\).

In the off state, the collector-emitter path behaves like a linear resistor with a low offstate conductance value, \(G_{o f f}\).

The defining Simscape equations for the block are:
```

if (v>Vf)\&\&(G>Vth)
i == (v - Vf*(1-Ron*Goff))/Ron;
else
i == v*Goff;
end

```
where:
- \(v\) is the collector-emitter voltage.
- \(V f\) is the forward voltage.
- \(G\) is the gate-emitter voltage.
- Vth is the threshold voltage.
- \(i\) is the collector-emitter current.
- Ron is the on-state resistance.
- Goff is the off-state conductance.

\section*{Integral Protection Diode Option}

Using the Integral Diode tab of the block dialog box, you can include an integral emittercollector diode. An integral diode protects the semiconductor device by providing a conduction path for reverse current. An inductive load can produce a high reverse-voltage spike when the semiconductor device suddenly switches off the voltage supply to the load.

Set the Integral protection diode parameter based on your goal.
\begin{tabular}{|l|l|l|}
\hline Goal & Value to Select & Block Behavior \\
\hline Prioritize simulation speed. & \begin{tabular}{l}
Protection diode with \\
no dynamics
\end{tabular} & \begin{tabular}{l}
The block includes an \\
integral copy of the Diode \\
block. To parameterise the \\
internal Diode block, use the \\
Protection parameters.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Goal & Value to Select & Block Behavior \\
\hline \begin{tabular}{l}
Precisely specify reverse- \\
mode charge dynamics.
\end{tabular} & \begin{tabular}{l}
Protection diode with \\
charge dynamics
\end{tabular} & \begin{tabular}{l}
The block includes an \\
integral copy of the \\
Commutation Diode block. \\
To parameterise the internal \\
Commutation Diode block, \\
use the Protection \\
parameters.
\end{tabular} \\
\hline
\end{tabular}

\section*{Modeling Variants}

The block provides four modeling variants. To select the desired variant, right-click the block in your model. From the context menu, select Simscape > Block choices, and then one of these variants:
- PS Control Port - Contains a physical signal port that is associated with the gate terminal. This variant is the default.
- Electrical Control Port - Contains an electrical conserving port that is associated with the gate terminal.
- PS Control Port | Thermal Port - Contains a thermal port and a physical signal port that is associated with the gate terminal.
- Electrical Control Port | Thermal Port - Contains a thermal port and an electrical conserving port that is associated with the gate terminal.

The variants of this block without the thermal port do not simulate heat generation in the device.

The variants with the thermal port allow you to model the heat that switching events and conduction losses generate. For numerical efficiency, the thermal state does not affect the electrical behavior of the block. The thermal port is hidden by default. To enable the thermal port, select a thermal block variant.

\section*{Thermal Loss Equations}

The figure shows an idealized representation of the output voltage, \(V_{\text {out }}\), and the output current, \(I_{\text {out }}\), of the semiconductor device. The interval shown includes the entire \(n\)th switching cycle, during which the block turns off and then on.

When the semiconductor turns on during the \(n\)th switching cycle, the amount of thermal energy that the device dissipates increments by a discrete amount. If you select Voltage, current, and temperature for the Thermal loss dependent on parameter, the equation for the incremental change is
\[
E_{\text {on }(n)}=\frac{V_{\text {off }(n)}}{V_{o f f} \text { _data }} f c n\left(T, I_{\text {on }(n-1)}\right),
\]
where:
- \(E_{o n(n)}\) is the switch-on loss at the \(n\)th switch-on event.
- \(V_{\text {off(}(n)}\) is the off-state output voltage, \(V_{\text {out }}\) just before the device switches on during the \(n\)th switching cycle.
- \(V_{\text {off_data }}\) is the Off-state voltage for losses data parameter value.
- \(T\) is the device temperature.
- \(I_{o n(n-1)}\) is the on-state output current, \(I_{o u t}\), just before the device switches off during the cycle that precedes the nth switching cycle.

The function \(f c n\) is a 2-D lookup table with linear interpolation and linear extrapolation:
\[
E=\text { tablelookup }\left(T_{j_{-}} \text {data }, I_{\text {out_data }}, E_{\text {on_data } \left., T, I_{\text {on }(n-1)}\right), ~, ~}^{\text {and }}\right.
\]
where:
- \(T_{j_{-} \text {data }}\) is the Temperature vector, \(\mathbf{T j}\) parameter value.
- \(I_{\text {out_data }}\) is the Output current vector, Iout parameter value.
- \(E_{\text {on_data }}\) is the Switch-on loss, Eon=fcn(Tj,Iout) parameter value.

If you select Voltage and current for the Thermal loss dependent on parameter, when the semiconductor turns on during the \(n\)th switching cycle, the equation that the block uses to calculate the incremental change in the discrete amount of thermal energy that the device dissipates is
\[
E_{\text {on }(n)}=\left(\frac{V_{\text {off }(n)}}{V_{\text {off_data }}}\right)\left(\frac{I_{\text {on }(n-1)}}{I_{\text {out_scalar }}}\right)\left(E_{\text {on_scalar })}\right.
\]
where:
- \(I_{\text {out_scalar }}\) is the Output current, Iout parameter value.
- \(E_{\text {on_scalar }}\) is the Switch-on loss parameter value.

When the semiconductor turns off during the \(n\)th switching cycle, the amount of thermal energy that the device dissipates increments by a discrete amount. If you select Voltage, current, and temperature for the Thermal loss dependent on parameter, the equation for the incremental change is
\[
E_{o f f(n)}=\frac{V_{o f f(n)}}{V_{o f f_{-} \text {data }}} f c n\left(T, I_{o n(n)}\right),
\]
where:
- \(E_{\text {off(} n)}\) is the switch-off loss at the \(n\)th switch-off event.
- \(V_{\text {off(n) }}\) is the off-state output voltage, \(V_{\text {out }}\), just before the device switches on during the \(n\)th switching cycle.
- \(V_{\text {off_data }}\) is the Off-state voltage for losses data parameter value.
- \(T\) is the device temperature.
- \(I_{o n(n)}\) is the on-state output current, \(I_{o u t}\), just before the device switches off during the \(n\)th switching cycle.

The function \(f c n\) is a 2-D lookup table with linear interpolation and linear extrapolation:
\[
E=\text { tablelookup }\left(T_{j_{-}} \text {data }, I_{\text {out_data }}, E_{\text {off_data }}, T, I_{\text {on }(n)}\right),
\]
where:
- \(T_{j_{-} \text {data }}\) is the Temperature vector, \(\mathbf{T j}\) parameter value.
- \(I_{\text {out_data }}\) is the Output current vector, Iout parameter value.
- \(E_{\text {off_data }}\) is the Switch-off loss, \(\mathbf{E o f f}=\mathbf{f e n}(\mathbf{T j}, I o u t)\) parameter value.

If you select Voltage and current for the Thermal loss dependent on parameter, when the semiconductor turns off during the \(n\)th switching cycle, the equation that the block uses to calculate the incremental change in the discrete amount of thermal energy that the device dissipates is
\[
E_{\text {off }(n)}=\left(\frac{V_{\text {off }(n)}}{V_{\text {off_data }}}\right)\left(\frac{I_{\text {on }(n-1)}}{I_{\text {out_scalar }}}\right)\left(E_{\text {off_scalar }}\right)
\]
where:
- \(I_{\text {out_scalar }}\) is the Output current, Iout parameter value.
- \(E_{\text {off_scalar }}\) is the Switch-off loss parameter value.

If you select Voltage, current, and temperature for the Thermal loss
dependent on parameter, then, for both the on state and the off state, the heat loss due to electrical conduction is
\[
E_{\text {conduction }}=\int f c n\left(T, I_{\text {out }}\right) d t,
\]
where:
- \(E_{\text {conduction }}\) is the heat loss due to electrical conduction.
- \(T\) is the device temperature.
- \(I_{\text {out }}\) is the device output current.

The function \(f c n\) is a 2-D lookup table:
\[
Q_{\text {conduction }}=\operatorname{tablelookup}\left(T_{j_{-} \text {data }}, I_{\text {out_data }}, I_{\text {out_data_repmat }} * V_{\text {on_data }}, T, I_{\text {out }}\right),
\]
where:
- \(T_{j_{-} \text {data }}\) is the Temperature vector, \(\mathbf{T j}\) parameter value.
- \(I_{\text {out_data }}\) is the Output current vector, Iout parameter value.
- \(I_{\text {out_data_repmat }}\) is a matrix that contains length, \(T_{j_{-} \text {data }}\), copies of \(I_{\text {out_data }}\).
- \(V_{\text {on_data }}\) is the \(\mathbf{O n}\)-state voltage, Von=fcn(Tj,Iout) parameter value.

If you select Voltage and current for the Thermal loss dependent on parameter, then, for both the on state and the off state, the heat loss due to electrical conduction is
where \(V_{\text {on_scalar }}\) is the \(\mathbf{O n}\)-state voltage parameter value.

The block uses the Energy dissipation time constant parameter to filter the amount of heat flow that the block outputs. The filtering allows the block to:
- Avoid discrete increments for the heat flow output
- Handle a variable switching frequency

The filtered heat flow is
\[
Q=\frac{1}{\tau}\left(\sum_{i=1}^{n} E_{\text {on }(i)}+\sum_{i=1}^{n} E_{\text {off }(i)}+E_{\text {conduction }}-\int Q d t\right)
\]
where:
- \(Q\) is the heat flow from the component.
- \(\tau\) is the Energy dissipation time constant parameter value.
- \(n\) is the number of switching cycles.
- \(E_{\text {on(i) }}\) is the switch-on loss at the \(i\) th switch-on event.
- \(E_{\text {off(i) }}\) is the switch-off loss at the \(i\) th switch-off event.
- \(E_{\text {conduction }}\) is the heat loss due to electrical conduction.
- \(\int Q d t\) is the total heat previously dissipated from the component.

\section*{Ports}

The figure shows the block port names.

G
Port associated with the gate terminal. You can set the port to either a physical signal or electrical port

C
Electrical conserving port associated with the collector terminal
E
Electrical conserving port associated with the emitter terminal
H
Thermal conserving port. The thermal port is optional and is hidden by default. To enable this port, select a variant that includes a thermal port.

\section*{Parameters}
- "Main Tab" on page 1-431
- "Integral Diode Tab" on page 1-431
- "Thermal Model Tab" on page 1-434

\section*{Main Tab}

\section*{Forward voltage, Vf}

Minimum voltage required across the collector and emitter block ports for the gradient of the diode I-V characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of On-state resistance. The default value is 0.8 V .

\section*{On-state resistance}

Collector-emitter resistance when the device is on. The default value is 0.0010 hm .

\section*{Off-state conductance}

Collector-emitter conductance when the device is off. The value must be less than \(1 / R\), where \(R\) is the value of \(\mathbf{O n}\)-state resistance. The default value is \(1 \mathrm{e}-51 / 0 \mathrm{hm}\).

\section*{Threshold voltage, Vth}

Gate-emitter voltage at which the device turns on. The default value is 6 V .

\section*{Integral Diode Tab}

\section*{Integral protection diode}

Block integral protection diode. The default value is None.
The diodes you can select are:
- Protection diode with no dynamics
- Protection diode with charge dynamics

When you select Protection diode with no dynamics, additional parameters appear.

\section*{Additional Parameters for Protection diode with no dynamics}

\section*{Forward voltage}

Minimum voltage required across the + and - block ports for the gradient of the diode \(I-V\) characteristic to be \(1 / R_{o n}\), where \(R_{\text {on }}\) is the value of \(\mathbf{O n}\) resistance. The default value is 0.8 V .

\section*{On resistance}

Rate of change of voltage versus current above the Forward voltage. The default value is 0.0010 hm .

\section*{Off conductance}

Conductance of the reverse-biased diode. The default value is \(1 \mathrm{e}-51 / 0 \mathrm{hm}\).
For more information on these parameters, see Diode.

When you select Protection diode with charge dynamics, additional parameters appear.

\section*{Additional Parameters for Protection diode with charge dynamics}

\section*{Forward voltage}

Minimum voltage required across the + and - block ports for the gradient of the diode I-V characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of \(O n\) resistance. The default value is 0.8 V .

\section*{On resistance}

Rate of change of voltage versus current above the Forward voltage. The default value is 0.0010 hm .

\section*{Off conductance}

Conductance of the reverse-biased diode. The default value is \(1 \mathrm{e}-51 / 0 \mathrm{hm}\).

\section*{Junction capacitance}

Diode junction capacitance. The default value is 50 nF .

\section*{Peak reverse current, iRM}

Peak reverse current measured by an external test circuit. This value must be less than zero. The default value is -235 A .

\section*{Initial forward current when measuring iRM}

Initial forward current when measuring peak reverse current. This value must be greater than zero. The default value is 300 A .

\section*{Rate of change of current when measuring iRM}

Rate of change of current when measuring peak reverse current. This value must be less than zero. The default value is \(-50 \mathrm{~A} / \mu \mathrm{s}\).

\section*{Reverse recovery time parameterization}

Determines how you specify reverse recovery time in the block. The default value is Specify reverse recovery time directly.

If you select Specify stretch factor or Specify reverse recovery charge, you specify a value that the block uses to derive the reverse recovery time. For more information on these options, see "Alternatives to Specifying trr Directly" on page 1254.

\section*{Reverse recovery time, trr}

Interval between the time when the current initially goes to zero (when the diode turns off) and the time when the current falls to less than \(10 \%\) of the peak reverse current. The default value is \(15 \mu \mathrm{~s}\).

This parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery time directly.

The value of the Reverse recovery time, trr parameter must be greater than the value of the Peak reverse current, iRM parameter divided by the value of the Rate of change of current when measuring iRM parameter.

\section*{Reverse recovery time stretch factor}

Value that the block uses to calculate Reverse recovery time, trr. This value must be greater than 1. The default value is 3 .

This parameter is visible only if you set Reverse recovery time parameterization to Specify stretch factor.

Specifying the stretch factor is an easier way to parameterize the reverse recovery time than specifying the reverse recovery charge. The larger the value of the stretch factor, the longer it takes for the reverse recovery current to dissipate.

\section*{Reverse recovery charge, Qrr}

Value that the block uses to calculate Reverse recovery time, trr. Use this parameter if the data sheet for your diode device specifies a value for the reverse recovery charge instead of a value for the reverse recovery time.

The reverse recovery charge is the total charge that continues to dissipate when the
diode turns off. The value must be less than \(-\frac{i^{2}{ }_{R M}}{2 a}\),
where:
- \(i_{R M}\) is the value specified for Peak reverse current, iRM.
- \(a\) is the value specified for Rate of change of current when measuring iRM.

The default value is \(1500 \mu \mathrm{As}\).
The parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery charge.

For more information on these parameters, see Commutation Diode.

\section*{Thermal Model Tab}

The Thermal Model tab is enabled only when you select a block variant that includes a thermal port.

\section*{Thermal loss dependent on}

Select a parameterization method. The option that you select determines which other parameters are enabled. Options are:
- Voltage and current - Use scalar values to specify the output current, switch-on loss, switch-off loss, and on-state voltage data.
- Voltage, current, and temperature - Use vectors to specify the output current, switch-on loss, switch-off loss, on-state voltage, and temperature data. This is the default parameterization method.

\section*{Off-state voltage for losses data}

The output voltage of the device during the off state. This is the blocking voltage at which the switch-on loss and switch-off loss data are defined. The default value is 300 V.

\section*{Energy dissipation time constant}

Time constant used to average the switch-on losses, switch-off losses, and conduction losses. This value is equal to the period of the minimum switching frequency. The default value is \(1 \mathrm{e}-4 \mathrm{~s}\).

\section*{Additional Parameters for Parameterizing by Voltage, Current, and Temperature}

\section*{Temperature vector, \(\mathbf{T j}\)}

Temperature values at which the switch-on loss, switch-off loss, and on-state voltage are specified. Specify this parameter using a vector quantity. The default value is [298.15398 .15] K.

\section*{Output current vector, Iout}

Output currents for which the switch-on loss, switch-off- loss and on-state voltage are defined. The first element must be zero. Specify this parameter using a vector quantity. The default value is [01050100200400600] A.

\section*{Switch-on loss, Eon=fen(Tj,Iout)}

Energy dissipated during a single switch on event. This parameter is defined as a function of temperature and final on-state output current. Specify this parameter using a vector quantity. The default value is [\(02.9 \mathrm{e}-40.001430 .00286\) 0.00571 0.01314 0.02286; 0 5.7e-4 0.00263 0.00514 0.01029 0.02057 0.03029] J.

\section*{Switch-off loss, Eoff=fen(Tj,Iout)}

Energy dissipated during a single switch-off event. This parameter is defined as a function of temperature and final on-state output current. Specify this parameter using a vector quantity. The default value is [\(02.1 e-40.001070 .00214\) 0.00429 0.009859999999999999 0.01714; 0 4.3e-4 0.00197 0.00386 0.00771 0.01543 0.02271] J.

\section*{On-state voltage, Von=fcn(Tj,Iout)}

Voltage drop across the device while it is in a triggered conductive state.. This parameter is defined as a function of temperature and final on-state output current. Specify this parameter using a vector quantity. The default value is [01.11 .3 \(1.451 .752 .252 .7 ; 011.151 .351 .72 .353\)] V.

\section*{Additional Parameters for Parameterizing by Voltage and Current}

\section*{Output current, Iout}

Output currents for which the switch-on loss, switch-off loss, and on-state voltage are defined. The first element must be zero. Specify this parameter using a scalar quantity. The default value is 600 A .

\section*{Switch-on loss}

Energy dissipated during a single switch-on event. This parameter is defined as a function of temperature and final on-state output current. Specify this parameter using a scalar quantity. The default value is 0.02286 J .

\section*{Switch-off loss}

Energy dissipated during a single switch-off event. This parameter is defined as a function of temperature and final on-state output current. Specify this parameter using a scalar quantity. The default value is 0.01714 J .

\section*{On-state voltage}

Voltage drop across the block while it is in a triggered conductive state. This parameter is defined as a function of temperature and final on-state output current. Specify this parameter using a scalar quantity. The default value is 2.7 V .

\section*{See Also}

Commutation Diode | Diode | GTO | Ideal Semiconductor Switch | MOSFET | Thyristor

\section*{Topics}
"Quantifying IGBT Thermal Losses"
"Simulate Thermal Losses in Semiconductors"
"Switch Between Physical Signal and Electrical Ports"

\section*{Introduced in R2013b}

\section*{Incremental Shaft Encoder}

\author{
Encoding \\ Library:
}

Simscape / Power Systems / Simscape Components / Sensors

\section*{Description}

The Incremental Shaft Encoder block represents a device that converts information about the angular position of a shaft into electrical pulses. The block produces \(N\) pulses on ports \(\mathbf{A}\) and \(\mathbf{B}\) per shaft revolution, where \(N\) is the value you specify for the Pulses per revolution parameter. Pulses \(A\) and \(B\) are 90 degrees out of phase. If the shaft rotates in a positive direction, then \(A\) leads \(B\). The block produces a single index pulse on port \(\mathbf{Z}\) once per revolution. The \(Z\)-pulse positive transition always coincides with an \(A\) - pulse positive transition, and \(Z\) - pulse length is equal to the length for the \(A\) and \(B\) pulses. The voltages at ports \(\mathbf{A}, \mathbf{B}\), and \(\mathbf{Z}\) are defined relative to the Ref reference port voltage.

Use this block if you need to model the shaft encoder signals, either to support development of a decoding algorithm or to include the quantization effects. Otherwise, use the Ideal Rotational Motion Sensor block from the Simscape Foundation library.

\section*{Assumptions and Limitations}
- The Incremental Shaft Encoder block is not linearizable. For control design studies that require model linearization, use the Ideal Rotational Motion Sensor block from the Simscape Foundation library.

\section*{Ports}

\section*{Conserving}

\section*{R - Rotational velocity}
mechanical rotational
Mechanical rotational conserving port associated with the sensor positive probe.

\section*{C - Rotational velocity}
mechanical rotational
Mechanical rotational conserving port associated with the sensor negative (reference) probe.

\section*{A - Voltage}
electrical
Encoded electrical output.

\section*{B - Voltage}
electrical
Encoded electrical output.

\section*{Z - Index or synchronization \\ electrical}

Index, or synchronization, electrical output.

\section*{Ref - Voltage}
electrical
Floating zero-volt reference.

\section*{Parameters}

\section*{Pulses per revolution - Pulse count}

2 (default)

Number of pulses produced on each of the \(A\) and \(B\) phases per revolution of the shaft.

\section*{Output voltage amplitude - Voltage \\ 5 V (default)}

Amplitude of the shaft encoder output voltage when the output is high.

\section*{Index pulse offset relative to shaft initial angle - Position 0 deg (default)}

Offset of the index pulse \(Z\) relative to the angle of the shaft at the start of the simulation. This parameter lets you set the initial location of the index pulse.

\section*{See Also}

\section*{Simscape Blocks}

Ideal Rotational Motion Sensor
Introduced in R2017b

\section*{Integrator (Discrete or Continuous)}

Discrete-time or continuous-time integrator
Library: Simscape / Power Systems / Simscape Components / Control / General Control

\section*{Description}

The Integrator (Discrete or Continuous) block implements a simple integrator in conformance with IEEE 421.5-2016 \({ }^{[1]}\).

You can switch between continuous and discrete implementations of the integrator using the Sample time parameter.

\section*{Equations}

To configure the integrator for continuous time, set the Sample time property to 0. This representation is equivalent to the continuous transfer function:
\[
G(s)=\frac{1}{s} .
\]

From the preceeding transfer function, the integrator defining equations are:
\[
\left\{\begin{array}{l}
\dot{x}(t)=u(t) \\
y(t)=x(t)
\end{array} x(0)=x_{0},\right.
\]
where:
- \(u\) is the integrator input.
- \(x\) is the integrator state.
- \(y\) is the integrator output.
- \(t\) is the simulation time.
- \(x_{0}\) is the initial state of the integrator.

To configure the integrator for discrete time, set the Sample time property to a positive, nonzero value, or to - 1 to inherit the sample time from an upstream block. The discrete representation is equivalent to the transfer function:
\[
G(z)=\frac{T_{s}}{z-1},
\]
where \(T_{s}\) is the sample time. From the discrete transfer function, the integrator equations are defined using the forward Euler method:
\[
\left\{\begin{array}{c}
x(n+1)=x(n)+T_{s} u(n) \\
y(n)=x(n)
\end{array} \quad x(0)=x_{0},\right.
\]
where:
- \(u\) is the integrator input.
- \(x\) is the integrator state.
- \(y\) is the integrator output.
- \(n\) is the simulation time step.
- \(x_{0}\) is the initial state of the integrator.

\section*{Defining Initial Conditions}

You can define the state initial conditions using the input port \(\mathbf{x 0}\). The integrator state reverts to the initial condition any time it is reset.

\section*{Limiting the Integral}

You can limit the integral output using one of two methods:
- Set Limit type to Anti-windup to use the anti-windup saturation method.

The anti-windup method limits the integrator state \(x\) between the lower saturation \(\operatorname{limit} A\) and upper saturation limit \(B\) :
\[
A<=x<=B .
\]

Because the state is limited, the output can respond immediately to a reversal of the input sign when the integral is saturated.
- Set Limit type to Windup to use the windup saturation method.

The windup method limits the integrator output \(y\) between the lower saturation \(\operatorname{limit} A\) and upper saturation limit \(B\) :
\[
A<=y<=B .
\]

Because the output is limited, the state can continue to grow when the integrator is saturated. As a result, the output cannot respond to a reversal of the input sign until the state has reached the limiting saturation point.

\section*{Resetting the State}

You can reset the state of the integrator by passing a nonzero signal to the Reset port of the block.

\section*{Ports}

\section*{Input}

\section*{u - Integrator input}
vector
Integrator input.
Data Types: single | double

\section*{Reset - Revert to initial state}
scalar

Integrator reset. To reset the integrator state to the value of the \(\mathbf{x 0}\) port, pass a nonzero value to this port. Alternatively, attach a zero-valued Constant block to this port to override the external reset.

Data Types: single | double

\section*{x0 - Initial state}
vector
Integrator initial state. To specify the value of the state after a reset, pass a signal to this port.

Data Types: single | double

\section*{Output}

\section*{y - Integrator output \\ vector}

Integrator output.
Data Types: single | double

\section*{Parameters}

\section*{External reset - Reset strategy}
level (default)|rising|falling|either
Select the external reset strategy for the integrator:
- Select rising to reset the state when the reset signal rises from a negative or zero value to a positive value.
- Select falling to reset the state when the reset signal falls from a positive value to a zero or negative value.
- Select either to reset the state when the reset signal changes from zero to a nonzero value, from a nonzero value to zero, or changes sign.
- Select level to reset the state when the reset signal is nonzero at the current time step or changes from nonzero at the previous time step to zero at the current time step.

\section*{Limit type - Saturation strategy}

Anti-windup (default) | Windup
Select the limit type of the integrator:
- Select Anti-windup to limit the state of the integrator, preventing windup.
- Select windup to limit the output of the integrator, allowing windup of the integrator state.

\section*{Upper saturation limit - State upper limit inf (default) | real number}

Integrator upper saturation limit. Set this to inf for an unsaturated upper limit, or to a finite value to saturate the integrator using the strategy set by Limit type.

\section*{Lower saturation limit - State lower limit}
- inf (default) | real number

Integrator lower saturation limit. Set this to -inf for an unsaturated lower limit, or to a finite value to saturate the integrator using the strategy set by Limit type.

\section*{Sample time - Sample time}
- 1 (default) | positive number

Integrator sample time. Set this to 0 to implement a continuous integrator. Set this to -1 or a positive number to implement a discrete integrator.

\section*{References}
[1] IEEE Recommended Practice for Excitation System Models for Power System Stability Studies. IEEE Std 421.5-2016. Piscataway, NJ: IEEE-SA, 2016.

\section*{See Also}

\section*{Blocks}

Filtered Derivative (Discrete or Continuous) | Integrator with Wrapped State (Discrete or Continuous) | Lead-Lag (Discrete or Continuous) | Low-Pass Filter (Discrete or
Continuous) | Washout (Discrete or Continuous)

\section*{Introduced in R2017b}

\section*{Integrator with Wrapped State (Discrete or Continuous)}

Discrete-time or continuous-time integrator with wrapped state
Library: Simscape / Power Systems / Simscape Components / Control / General Control

\section*{Description}

The Integrator with Wrapped State (Discrete or Continuous) block implements a wrapped state integrator in conformance with IEEE 421.5-2016 \({ }^{[1]}\).

Use this block to generate periodic signals such as angles or to represent a voltagecontrolled oscillator. You can switch between continuous and discrete implementations of the integrator using the Sample time parameter.

\section*{Equations}

To configure the integrator for continuous time, set the Sample time property to 0. This representation is equivalent to the continuous transfer function:
\[
G(s)=\frac{1}{s} .
\]

From the preceeding transfer function, the integrator defining equations are:
\[
\left\{\begin{array}{l}
\dot{x}(t)=u(t) \\
y(t)=x(t)
\end{array} x(0)=x_{0},\right.
\]
where:
- \(u\) is the integrator input.
- \(x\) is the integrator state.
- \(y\) is the integrator output.
- \(t\) is the simulation time.
- \(x_{0}\) is the initial state of the integrator.

To configure the integrator for discrete time, set the Sample time property to a positive, nonzero value, or to -1 to inherit the sample time from an upstream block. The discrete representation is equivalent to the transfer function:
\[
G(z)=\frac{T_{S}}{z-1},
\]
where \(T_{s}\) is the sample time. From the discrete transfer function, the integrator equations are defined using the forward Euler method:
\[
\left\{\begin{array}{c}
x(n+1)=x(n)+T_{s} u(n) \\
y(n)=x(n)
\end{array} x(0)=x_{0},\right.
\]
where:
- \(u\) is the integrator input.
- \(x\) is the integrator state.
- \(y\) is the integrator output.
- \(n\) is the simulation time step.
- \(x_{0}\) is the initial state of the integrator.

\section*{Defining Initial Conditions}

You can define the state initial conditions using Initial condition parameter.

\section*{Wrapping Cyclic States}

The integrator wraps its state between the specified lower and upper values. This diagram shows the outputs of a wrapped and nonwrapped state integrator for a constant input.

In the diagram, the lower and upper limits are 0 and \(2 \pi\), respectively.

\section*{Ports}

\section*{Input}

\section*{u - Integrator input}
vector
Integrator input.
Data Types: single | double

\section*{Output}

\section*{y - Integrator output}
vector
Integrator output.
Data Types: single | double

\section*{Parameters}

\section*{Wrapped state upper limit - State upper limit 2*pi (default) | real number}

Integrator upper limit.
Wrapped state lower limit - State lower limit 0 (default) | real number

Integrator lower limit.

\section*{Initial condition - State initial value}

0 (default) | real number
Integrator initial state.

\section*{Sample time - Sample time}
- 1 (default) | positive number

Integrator sample time. Set this to 0 to implement a continuous integrator. To implement a discrete integrator, set this to -1 or a positive number.

\section*{References}
[1] IEEE Recommended Practice for Excitation System Models for Power System Stability Studies. IEEE Std 421.5-2016. Piscataway, NJ: IEEE-SA, 2016.

\section*{See Also}

\section*{Blocks}

Filtered Derivative (Discrete or Continuous) | Integrator (Discrete or Continuous) | LeadLag (Discrete or Continuous) | Low-Pass Filter (Discrete or Continuous) | Washout (Discrete or Continuous)

Introduced in R2017b

\section*{Inverse Clarke Transform}

\section*{Implement \(\alpha \beta 0\) to \(a b c\) transform}

Library: Simscape / Power Systems / Simscape Components / Control / Mathematical Transforms

\section*{Description}

The Inverse Clarke Transform block converts the time-domain alpha, beta, and zero components in a stationary reference frame to three-phase components in an \(a b c\) reference frame. The block can preserve the active and reactive powers with the powers of the system in the stationary reference frame by implementing an invariant power version of the inverse Clarke transform. If the zero component is zero, the components in the three-phase system are balanced.

The figures show:
- Balanced \(\alpha, \beta\), and zero components in a stationary reference frame

- The direction of the magnetic axes of the stator windings in the stationary \(\alpha \beta 0\) reference frame and the \(a b c\) reference frame

- The time-response of the individual components of equivalent balanced \(\alpha \beta 0\) and \(a b c\) systems

\section*{Equations}

The block implements the inverse Clarke transform as
\[
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 1 \\
-\frac{1}{2} & \frac{\sqrt{3}}{2} & 1 \\
-\frac{1}{2} & -\frac{\sqrt{3}}{2} & 1
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta \\
0
\end{array}\right]
\]
where:
- \(\alpha\) and \(\beta\) are the components in the stationary reference frame.
- 0 is the zero component in the stationary reference frame.
- \(a, b\), and \(c\) are the components of the three-phase system in the \(a b c\) reference frame.

The block implements this power invariant version of the inverse Clarke transform as
\[
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\sqrt{\frac{2}{3}}\left[\begin{array}{ccc}
1 & 0 & \frac{1}{\sqrt{2}} \\
-\frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} \\
-\frac{1}{2} & -\frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta \\
0
\end{array}\right]
\]

\section*{Ports}

\section*{Input}

\section*{\(\alpha \beta 0-\alpha-\beta\) axis and zero components}
vector
Alpha-axis component, \(\alpha\), beta-axis component \(\beta\), and zero component in the stationary reference frame.
Data Types: single | double

\section*{Output}
abc -a-, \(b-\), and \(c\)-phase components
vector
Components of the three-phase system in the \(a b c\) reference frame.

\section*{Data Types: single | double}

\section*{Parameters}

\section*{Power Invariant - Power invariant transform}
off (default) | on
Preserve the active and reactive power of the system in the rotating reference frame.

\section*{References}
[1] Krause, P., O. Wasynczuk, S. D. Sudhoff, and S. Pekarek. Analysis of Electric Machinery and Drive Systems. Piscatawy, NJ: Wiley-IEEE Press, 2013.

\section*{See Also}

\section*{Blocks}

Clarke Transform | Clarke to Park Angle Transform | Inverse Park Transform | Park Transform | Park to Clarke Angle Transform

\section*{Introduced in R2017b}

\section*{Inverse Park Transform}

\author{
Implement \(d q 0\) to \(a b c\) transform \\ Library: Simscape / Power Systems / Simscape Components / Control / Mathematical Transforms
}

\section*{Description}

The Inverse Park Transform block converts the time-domain direct, quadrature, and zero components in a rotating reference frame to the components of a three-phase system in an \(a b c\) reference frame. The block can preserve the active and reactive powers with the powers of the system in the rotating reference frame by implementing an invariant version of the Park transform. For a balanced system, the zero component is equal to zero.

You can configure the block to align the \(a\)-axis of the three-phase system to either the \(d\) or \(q\)-axis of the rotating reference frame at time, \(t=0\). The figures show the direction of the magnetic axes of the stator windings in an \(a b c\) reference frame and a rotating \(d-q\) reference frame where:
- The \(a\)-axis and the \(q\)-axis are initially aligned.

- The \(a\)-axis and the \(d\)-axis are initially aligned.

In both cases, the angle \(\theta=\omega t\), where
- \(\theta\) is the angle between the \(a\) and \(q\) axes for the \(q\)-axis alignment or the angle between the \(a\) and \(d\) axes for the \(d\)-axis alignment.
- \(\omega\) is the rotational speed of the \(d-q\) reference frame.
- \(t\) is the time, in s , from the initial alignment.

The figures show the time-response of the individual components of equivalent balanced \(d q 0\) and \(a b c\) for an:
- Alignment of the \(a\)-phase vector to the \(q\)-axis

- Alignment of the \(a\)-phase vector to the \(d\)-axis

\section*{Defining Equations}

The Inverse Park Transform block implements the transform for an \(a\)-phase to \(q\)-axis alignment as
\[
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{ccc}
\sin (\theta) & \cos (\theta) & 1 \\
\sin \left(\theta-\frac{2 \pi}{3}\right) & \cos \left(\theta-\frac{2 \pi}{3}\right) & 1 \\
\sin \left(\theta+\frac{2 \pi}{3}\right) & \cos \left(\theta+\frac{2 \pi}{3}\right) & 1
\end{array}\right]\left[\begin{array}{l}
d \\
q \\
0
\end{array}\right],
\]
where:
- \(d\) and \(q\) are the components of the two-axis system in the rotating reference frame.
- \(a, b\), and \(c\) are the components of the three-phase system in the \(a b c\) reference frame.
- 0 is the zero component of the two-axis system in the stationary reference frame.

For a power invariant \(a\)-phase to \(q\)-axis alignment, the block implements the transform using this equation:
\[
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\sqrt{\frac{2}{3}}\left[\begin{array}{ccc}
\sin (\theta) & \cos (\theta) & \sqrt{\frac{1}{2}} \\
\sin \left(\theta-\frac{2 \pi}{3}\right) & \cos \left(\theta-\frac{2 \pi}{3}\right) & \sqrt{\frac{1}{2}} \\
\sin \left(\theta+\frac{2 \pi}{3}\right) & \cos \left(\theta+\frac{2 \pi}{3}\right) & \sqrt{\frac{1}{2}}
\end{array}\right]\left[\begin{array}{l}
d \\
q \\
0
\end{array}\right] .
\]

For an \(a\)-phase to \(d\)-axis alignment, the block implements the transform using this equation:
\[
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 1 \\
\cos \left(\theta-\frac{2 \pi}{3}\right) & -\sin \left(\theta-\frac{2 \pi}{3}\right) & 1 \\
\cos \left(\theta+\frac{2 \pi}{3}\right) & -\sin \left(\theta+\frac{2 \pi}{3}\right) & 1
\end{array}\right]\left[\begin{array}{l}
d \\
q \\
0
\end{array}\right] .
\]

The block implements a power invariant \(a\)-phase to \(d\)-axis alignment as
\[
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\sqrt{\frac{2}{3}}\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & \sqrt{\frac{1}{2}} \\
\cos \left(\theta-\frac{2 \pi}{3}\right) & -\sin \left(\theta-\frac{2 \pi}{3}\right) & \sqrt{\frac{1}{2}} \\
\cos \left(\theta+\frac{2 \pi}{3}\right) & -\sin \left(\theta+\frac{2 \pi}{3}\right) & \sqrt{\frac{1}{2}}
\end{array}\right]\left[\begin{array}{l}
d \\
q \\
0
\end{array}\right] .
\]

\section*{Ports}

\section*{Input}
```

dq0 - d-q axis and zero components
vector

```

Direct-axis and quadrature-axis components and the zero component of the system in the rotating reference frame.

\section*{Data Types: single | double}

\section*{\(\boldsymbol{\theta}_{\mathrm{abc}}\) - Rotational angle}
scalar | in radians
Angular position of the rotating reference frame. The value of this parameter is equal to the polar distance from the vector of the \(a\)-phase in the \(a b c\) reference frame to the initially aligned axis of the \(d q 0\) reference frame.
Data Types: single | double

\section*{Output}

\section*{abc -a-, b-, and c-phase components}
vector
Components of the three-phase system in the \(a b c\) reference frame.
Data Types: single | double

\section*{Parameters}

\section*{Power Invariant - Power invariant transform}
off (default) | on
Option to preserve the active and reactive power of the abc reference frame.
Phase-a axis alignment - dq0 reference frame alignment
Q-axis (default)|D-axis

Align the \(a\)-phase vector of the \(a b c\) reference frame to the \(d\) - or \(q\)-axis of the rotating reference frame.

\section*{References}
[1] Krause, P., O. Wasynczuk, S. D. Sudhoff, and S. Pekarek. Analysis of Electric Machinery and Drive Systems. Piscatawy, NJ: Wiley-IEEE Press, 2013.

\section*{See Also}

\section*{Blocks}

Clarke Transform | Clarke to Park Angle Transform | Inverse Clarke Transform | Park Transform | Park to Clarke Angle Transform

\section*{Introduced in R2017b}

\section*{Inverse Symmetrical-Components Transform}

\author{
Implement +-0 to abc transform \\ Library: Simscape / Power Systems / Simscape Components / Control / Mathematical Transforms
}

\section*{Description}

The Inverse Symmetrical-Components Transform block implements an inverse symmetrical transform of a positive, negative, and zero phasor. The transform splits a symmetrical set of three phasors into the equivalent unbalanced set of \(a, b\), and \(c\) phasors.

Use this transform to regenerate a three-phase signal from a system that was decoupled using the Symmetrical-Components Transform block.

Use the Power invariant property to choose between the Fortescue transform, and the alternative, power-invariant version.

\section*{Equations}

The inverse symmetrical-components transform regenerates an unbalanced three-phase signal \(\left[V_{a}, V_{b}, V_{c}\right.\)] from the \(a\) components of a balanced set of phasors [\(V_{a+}, V_{a-,} V_{a 0}\)], given in the +-0 domain:
\[
\left[\begin{array}{l}
V_{a} \\
V_{b} \\
V_{c}
\end{array}\right]=\frac{1}{K}\left[\begin{array}{ccc}
1 & 1 & 1 \\
a^{2} & a & 1 \\
a & a^{2} & 1
\end{array}\right]\left[\begin{array}{l}
V_{a+} \\
V_{a-} \\
V_{a 0}
\end{array}\right] .
\]
where, \(a\) is the complex rotation operator
\[
a=e^{2 \pi i / 3},
\]
and \(K\) is the constant that determines the type of transform:
\[
\left\{\begin{array}{cc}
K=1 & \text { Fortescue transform } \\
K=\sqrt{3} & \text { Power-invariant transform }
\end{array}\right.
\]

If the transform was performed using the power-invariant option, enable the Power invariant property to select the power-invariant inverse transform and regenerate the correct abc signal.

\section*{Symmetrical-Components Transform}

The symmetrical-components transform separates an unbalanced three-phase signal given in phasor quantities into three balanced sets of phasors:
\[
\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right]=\left[\begin{array}{l}
v_{a+} \\
v_{b+} \\
v_{c+}
\end{array}\right]+\left[\begin{array}{l}
v_{a-} \\
v_{b-} \\
v_{c-}
\end{array}\right]+\left[\begin{array}{l}
v_{a 0} \\
v_{b 0} \\
v_{c 0}
\end{array}\right],
\]
where:
- \(v_{a}, v_{b}\), and \(v_{c}\) make up the original, unbalanced set of phasors.
- \(v_{a+}, v_{b+}\), and \(v_{c+}\) make up the balanced, positive set of phasors.
- \(v_{a-1} v_{b-,}\) and \(v_{c-}\) make up the balanced, negative set of phasors.
- \(v_{a 0}, v_{b 0}\), and \(v_{c 0}\) make up the balanced, zero set of phasors.

The symmetrical-components transform calculates the symmetric \(a\)-phase as:
\[
\left[\begin{array}{l}
V_{a+} \\
V_{a-} \\
V_{a 0}
\end{array}\right]=\frac{K}{3}\left[\begin{array}{ccc}
1 & a & a^{2} \\
1 & a^{2} & a \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
V_{a} \\
V_{b} \\
V_{c}
\end{array}\right] .
\]

Because the remaining two sets of symmetrical phasors are not often used in calculation, the transformation only generates the first set. However, you can calculate the \(b\) - and \(c\) sets in terms of simple rotations of the first:
\[
\left[\begin{array}{l}
V_{b+} \\
V_{b-} \\
V_{b 0}
\end{array}\right]=\left[\begin{array}{ccc}
a^{2} & 0 & 0 \\
0 & a & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
V_{a+} \\
V_{a-} \\
V_{a 0}
\end{array}\right],
\]
and
\[
\left[\begin{array}{l}
V_{c+} \\
V_{c-} \\
V_{c 0}
\end{array}\right]=\left[\begin{array}{ccc}
a & 0 & 0 \\
0 & a^{2} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
V_{a+} \\
V_{a-} \\
V_{a 0}
\end{array}\right] .
\]

\section*{Operating Principle}

The three sets of balanced phasors generated by the symmetrical-components transform have the following properties:
- The positive set has the same order as the unbalanced set of phasors \(a-b-c\).
- The negative set has the opposite order as the unbalanced set of phasors \(a-c-b\).
- The zero set has no order because all three phasor angles are equal.

This diagram visualizes the separation performed by the transform.

In the diagram, the top axis shows an unbalanced three-phase signal with components \(a\), \(b\), and \(c\). The bottom set of axes separates the three-phase signal into symmetrical positive, negative, and zero phasors.

Observe that in each case, the \(a, b\), and \(c\) components are symmetrical and are separated by:
- +120 degrees for the positive set.
- -120 degrees for the negative set.
- 0 degrees for the zero set.

\section*{Ports}

\section*{Input}

\section*{+-0 - Balanced a phasor components}
vector

Positive, negative, and zero a phasors given as a complex signal. Use the rotations given in the Symmetrical-Components Transform section to compute the \(b\) and \(c\) phasor sets.

\section*{Data Types: single | double}

\section*{Output}
\(a b c-a, b\), and \(c\) phasors
vector
Regenerated three-phase set of unbalanced phasors, output as a complex signal.
Data Types: single | double

\section*{Parameters}

\section*{Power invariant - Transform type}
off (default) | on
Power invariant toggle. Select this parameter to use the power-invariant alternative of the original Fortescue transform.

\section*{References}
[1] Anderson, P. M. Analysis of Faulted Power Systems. Hoboken, NJ: Wiley-IEEE Press, 1995.

\section*{See Also}

\section*{Blocks}

Clarke Transform | Clarke to Park Angle Transform | Inverse Clarke Transform | Inverse Park Transform | Park to Clarke Angle Transform | Symmetrical-Components Transform

\section*{Introduced in R2017b}

\section*{Lead-Lag (Discrete or Continuous)}

\section*{Discrete-time or continuous-time lead-lag compensator \\ Library: Simscape / Power Systems / Simscape Components / Control / General Control}

\section*{Description}

The Lead-Lag (Discrete or Continuous) block implements a lead-lag compensator in conformance with IEEE 421.5-2016 \({ }^{[1]}\).

You can switch between continuous and discrete implementations of the block using the Sample time parameter.

\section*{Equations}

To configure the compensator for continuous time, set the Sample time property to 0. This representation is equivalent to the continuous transfer function:
\[
G(s)=\frac{T_{1} s+1}{T_{2} s+1},
\]
where:
- \(T_{1}\) is the lead time constant.
- \(T_{2}\) is the lag time constant.

From the preceeding transfer function, the compensator defining equations are:
\[
\left\{\begin{array}{c}
\dot{x}(t)=\frac{1}{T_{2}}(u(t)-x(t)) \\
y(t)=\frac{T_{1}}{T_{2}} u(t)+\left(1-\frac{T_{1}}{T_{2}}\right) x(t)
\end{array} y(0)=x(0)=u_{0},\right.
\]
where:
- \(u\) is the block input.
- \(x\) is the block state.
- \(y\) is the block output.
- \(t\) is the simulation time.
- \(u_{0}\) is the initial input to the block.

To configure the compensator for discrete time, set the Sample time property to a positive, nonzero value, or to -1 to inherit the sample time from an upstream block. The discrete representation is equivalent to the transfer function:
\[
\frac{T_{1} z+\left(T_{s}-T_{1}\right)}{T_{2} z+\left(T_{s}-T_{2}\right)}
\]
where:
- \(T_{1}\) is the lead time constant.
- \(T_{2}\) is the lag time constant.
- \(T_{s}\) is the compensator sample time.

From the discrete transfer function, the compensator equations are defined using the forward Euler method:
\[
\left\{\begin{array}{l}
x(n+1)=\left(1-\frac{T_{s}}{T_{2}}\right) x(n)+\left(\frac{T_{s}}{T_{2}}\right) u(n) \\
y(n)=\left(1-\frac{T_{1}}{T_{2}}\right) x(n)+\left(\frac{T_{1}}{T_{2}}\right) u(n)
\end{array}\right.
\]
where:
- \(u\) is the block input.
- \(x\) is the state.
- \(y\) is the block output.
- \(n\) is the simulation time step.
- \(u_{0}\) is the initial input to the block.

\section*{Initial Conditions}

The block sets the state and output initial conditions to the initial input.

\section*{Limiting the Integral}

Set the Upper saturation limit and Lower saturation limit parameters to use the antiwindup saturation method.

The anti-windup method limits the compensator state between the lower saturation limit \(A\) and upper saturation limit \(B\) :
\[
A<=x<=B .
\]

Because the state is limited, the output can respond immediately to a reversal of the input sign when the integral is saturated.

This block does not provide a windup saturation method. To use the windup saturation method, set the Upper saturation limit parameter to inf, the Lower saturation limit parameter to -inf, and attach a Saturation block to the output.

\section*{Bypass Compensator Dynamics}

Set the lag time constant to zero or to a value equal to that of the lead time constant to ignore the dynamics of the compensator. When bypassed, the block feeds the input directly to the output:
\[
\left.\begin{array}{c}
T_{1}=0 \\
T_{2}=0 \\
T_{1}=T_{2}
\end{array}\right\} y=u .
\]

In the continuous case, both the sample time and at least one time constant must be zero.

\section*{Ports}

\section*{Input}

\section*{u - Compensator input}
vector
Lead-lag compensator input signal. The block uses the input initial value to determine the state initial value.

Data Types: single|double

\section*{Output}

\section*{y - Compensator output}
vector
Lead-lag compensator output.
Data Types: single | double

\section*{Parameters}

Lead time constant, T1 - Lead time constant
0.2 (default) | positive number

Compensator lead time constant. To bypass the dynamics of the compensator. set this value to 0 or to the value of the Lag time constant, T2 parameter.

Lag time constant, T2 - Lag time constant
0.1 (default) | positive number

Compensator lag time constant. To bypass the dynamics of the compensator. set this value to 0 or to the value of the Lead time constant, T1 parameter.

\author{
Upper saturation limit - State upper limit \\ inf (default) | real number
}

Compensator upper state limit. Set this to inf for an unsaturated upper limit, or to a finite value to prevent upper windup of the system's integrator.

\section*{Lower saturation limit - State lower limit \\ - inf (default) | real number}

Compensator lower state limit. Set this to - inf for an unsaturated lower limit, or to a finite value to prevent lower windup of the system's integrator.

\section*{Sample time (-1 for inherited) - Sample time}
- 1 (default) | positive number

Compensator sample time. Set this to 0 to implement a continuous lead-lag compensator. Set this to -1 or a positive number to implement a discrete lead-lag compensator.

\section*{References}
[1] IEEE Recommended Practice for Excitation System Models for Power System Stability Studies. IEEE Std 421.5-2016. Piscataway, NJ: IEEE-SA, 2016.

\section*{See Also}

\section*{Blocks}

Filtered Derivative (Discrete or Continuous) | Integrator (Discrete or Continuous) | Integrator with Wrapped State (Discrete or Continuous) | Low-Pass Filter (Discrete or Continuous) | Washout (Discrete or Continuous)

\section*{Introduced in R2017b}

\section*{Line Voltage Sensor}

Measure line voltages in three-phase system

\section*{Library}

Sensors

\section*{Description}

The Line Voltage Sensor block represents an ideal three-phase line voltage sensor. The block measures the line-line voltages of a three-phase system and outputs a three-element physical signal vector. Each element of the physical signal output vector is proportional to the voltage between the phases as follows:
- Element 1: \(\mathrm{V}_{\mathrm{ab}}=\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}\)
- Element 2: \(\mathrm{V}_{\mathrm{bc}}=\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{c}}\)
- Element 3: \(\mathrm{V}_{\mathrm{ca}}=\mathrm{V}_{\mathrm{c}}-\mathrm{V}_{\mathrm{a}}\)
where \(\mathrm{V}_{\mathrm{a}}, \mathrm{V}_{\mathrm{b}}\) and \(\mathrm{V}_{\mathrm{c}}\) are the absolute phase voltages.

\section*{Ports}

The block has the following ports:
~1
Expandable three-phase port

\section*{V}

Three-element physical signal vector output port associated with the voltages between the phases

\section*{See Also}

Phase Voltage Sensor

\section*{Topics}
"Expand and Collapse Three-Phase Ports on a Block"

\section*{Introduced in R2013b}

\section*{Low-Pass Filter (Discrete or Continuous)}

Discrete-time or continuous-time low-pass filter
Library: \(\quad \begin{aligned} & \text { Simscape / Power Systems / Simscape Components / } \\ & \\ & \text { Control / General Control }\end{aligned}\)

\section*{Description}

The Low-Pass Filter (Discrete or Continuous) block implements a low-pass filter in conformance with IEEE 421.5-2016 \({ }^{[1]}\). In the standard, the filter is referred to as a Simple Time Constant.

You can switch between continuous and discrete implementations of the integrator using the Sample time parameter.

\section*{Equations}

To configure the filter for continuous time, set the Sample time property to 0. This representation is equivalent to the continuous transfer function:
\[
G(s)=\frac{K}{T s+1},
\]
where:
- \(K\) is the filter gain.
- \(T\) is the filter time constant.

From the preceeding transfer function, the filter defining equations are:
\[
\left\{\begin{array}{c}
\dot{x}(t)=\frac{1}{T}(K u(t)-x(t)) \quad y(0)=x(0)=K u_{0}, \\
y(t)=x(t)
\end{array}\right.
\]
where:
- \(u\) is filter input.
- \(x\) is filter state.
- \(y\) is filter output.
- \(t\) is simulation time.
- \(u_{0}\) is the initial input to the block.

To configure the filter for discrete time, set the Sample time property to a positive, nonzero value, or to - 1 to inherit the sample time from an upstream block. The discrete representation is equivalent to the transfer function:
\[
G(z)=K \frac{\left(T_{s} / T\right) z^{-1}}{1+\left(T_{s} / T-1\right) z^{-1}}
\]
where:
- \(K\) is the filter gain.
- \(T\) is the filter time constant.
- \(T_{s}\) is the filter sample time.

From the discrete transfer function, the filter equations are defined using the forward Euler method:
\[
\left\{\begin{array}{c}
x(n+1)=\left(1-\frac{T_{s}}{T}\right) x(n)+K\left(\frac{T_{s}}{T}\right) u(n) \quad y(0)=x(0)=K u_{0}, \\
y(n)=x(n)
\end{array}\right.
\]
where:
- \(u\) is the filter input.
- \(x\) is the filter state.
- \(y\) is the filter output.
- \(n\) is the simulation time step.
- \(u_{0}\) is the initial input to the block.

\section*{Initial Conditions}

The block sets the state and output initial conditions proportionally to the initial input.

\section*{Limiting the Integral}

Set the Upper saturation limit and Lower saturation limit parameters to use the antiwindup saturation method.

The anti-windup method limits the integrator state between the lower saturation limit \(A\) and upper saturation limit \(B\) :
\[
A<=x<=B .
\]

Because the state is limited, the output can respond immediately to a reversal of the input sign when the integral is saturated. This block diagram depicts the implementation of the anti-windup saturation method in the filter.

This block does not provide a windup saturation method. To use the windup saturation method, set the Upper saturation limit parameter to inf, the Lower saturation limit parameter to -inf, and attach a saturation block to the output.

\section*{Bypass Filter Dynamics}

Set the time constant to a value smaller than or equal to the sample time to ignore the dynamics of the filter. When bypassed, the block feeds the gain-scaled input directly to the output:
\[
T \leq T_{s} \rightarrow y=K u
\]

In the continuous case, the sample time and time constant must both be zero.

\section*{Ports}

\section*{Input}

\section*{u - Filter input \\ vector}

Low-pass filter input signal. The block uses the input initial value to determine the state initial value.

\section*{Data Types: single | double}

\section*{Output}

\section*{y - Filter output}
vector
Low-pass filter output.
Data Types: single | double

\section*{Parameters}

\section*{Gain - Filter gain}

1 (default) | positive number
Low-pass filter gain.

\section*{Time constant - Filter time constant \\ 1 (default) | positive number}

Low-pass filter time constant. In the discrete implementation, set this value to less than the Sample time to bypass the dynamics of the filter.

\section*{Upper saturation limit - State upper limit \\ inf (default) | real number}

Low-pass filter upper state limit. Set this to inf for an unsaturated upper limit, or to a finite value to prevent upper windup of the filter's integrator.

\section*{Lower saturation limit - State lower limit \\ - inf (default) | real number}

Low-pass filter lower state limit. Set this to -inf for an unsaturated lower limit, or to a finite value to prevent lower windup of the filter's integrator.

\section*{Sample time - Sample time}
- 1 (default) | positive number

Low-pass filter sample time. Set this to 0 to implement a continuous low-pass filter. Set this to -1 or a positive number to implement a discrete low-pass filter.

\section*{References}
[1] IEEE Recommended Practice for Excitation System Models for Power System Stability Studies. IEEE Std 421.5-2016. Piscataway, NJ: IEEE-SA, 2016.

\section*{See Also}

\section*{Blocks}

Filtered Derivative (Discrete or Continuous) | Integrator (Discrete or Continuous) |
Integrator with Wrapped State (Discrete or Continuous) | Lead-Lag (Discrete or Continuous) | Washout (Discrete or Continuous)

\section*{Introduced in R2017b}

\section*{Luenberger Observer}

Discrete-time Luenberger observer
Library: \(\quad\)\begin{tabular}{l}
Simscape / Power Systems / Simscape Components / \\
\\
Control / Observers
\end{tabular}

\section*{Description}

The Luenberger Observer block implements a discrete time Luenberger Observer. Use this block to estimate the states of an observable system using:
- The discrete inputs and outputs of the system.
- A discrete state-space representation of the system.

The Luenberger Observer is also sometimes referred to as a state observer or simply an observer.

You can control multi-input, multi-output systems by passing the output state vector of this block to a State Feedback Controller block.

\section*{Defining Equations}

The block implements a discrete time Luenberger Observer using the backward Euler method due to its simplicity and stability.

The estimator is given by this difference equation:
\[
\breve{x}(k+1)=A_{d} \breve{x}(k)+B_{d} u(k)+L_{d}(y(k)-\breve{y}(k)),
\]
where:
- \(\breve{x}(k)\) is the \(k^{\text {th }}\) estimated state vector.
- \(\breve{y}(k)\) is the \(k^{\text {th }}\) estimated output vector.
- \(u(k)\) is the \(k^{\text {th }}\) input vector.
- \(y(k)\) is the \(k^{\text {th }}\) measured output vector.
- \(A_{d}\) is the discretized state matrix.
- \(B_{d}\) is the discretized input matrix.
- \(L_{d}\) is the discretized observer gain matrix.

The dynamics of the estimation error are described by:
\[
e(k+1)=\left(A_{d}-L_{d} C_{d}\right) e(k),
\]
where:
- \(e(k)\) is the \(k^{\text {th }}\) error vector.
- \(C_{d}\) is the output matrix.

The estimation error converges to zero when \(A_{d}-L_{d} C_{d}\) has its eigenvalues inside the unit circle. Therefore, the value of \(L_{d}\) should be such that this goal is achieved. The block computes the observer gain by solving
\[
L_{d}^{T}=G X^{-1}
\]
where \(G\) is an arbitrary matrix and \(X\) is obtained by solving the Sylvester equation:
\[
A_{d}^{T} X-X \Lambda=C_{d}^{T} G
\]

Here, \(\Lambda\) is a matrix with the desired eigenvalues, which are not the same as the eigenvalues of \(A_{d}\). This diagram shows the basic structure of a discrete time Luenberger Observer.

\section*{Assumptions}

The system is observable, which is true if the state of the system can be determined from the input and output in a finite time. Mathematically, this means that the system observability matrix has full rank.

\section*{Limitations}

The desired eigenvalues are not the same as the eigenvalues of the open-loop model.

\section*{Ports}

\section*{Input}

\section*{u - Control input}

\section*{vector}

Input signal to the system whose state we want to estimate, specified as a vector.

\section*{Data Types: single | double}

\section*{y - System output}
vector
Measured output of the system whose state we want to estimate, specified as a vector.
Data Types: single | double

\section*{Output}

\section*{xhat - State estimate}
vector
Estimate of the state of the system, specified as a vector.
Data Types: single | double

\section*{Parameters}

\section*{State-space parameterization - State-space parameterization}

\section*{Discrete-time (default)| Continuous-time}

Select the strategy for parameterizing the state-space matrices and desired poles for the observer. The block implementation is discrete regardless of this parameterization.

\section*{Discrete A matrix - A matrix in discrete time \\ 1 (default) | real scalar or matrix}

State matrix of the discrete-time state-space model. The A matrix must be square, with the number of rows and columns equal to the order of the system.

\section*{Dependencies}

To enable this parameter, set State-space parameterization to Discrete-time.

\section*{Discrete B matrix - B matrix in discrete time 1 (default) | real scalar or matrix}

Input matrix of the discrete-time state-space model. The B matrix must have the number of rows equal to the order of the system, and the number of columns equal to the number of system inputs.

\section*{Dependencies}

To enable this parameter, set State-space parameterization to Discrete-time.

\section*{Discrete C matrix - C matrix in discrete time 1 (default) | real scalar or matrix}

Output matrix of the discrete-time state-space model. The C matrix must have the number of rows equal the number of outputs of the system, and the number of columns equal to the order of the system.

\section*{Dependencies}

To enable this parameter, set State-space parameterization to Discrete-time.

\section*{Discrete D matrix - D matrix in discrete time}

1 (default) | real scalar or matrix
Feedthrough matrix of the discrete-time state-space model. The D matrix must have the number of rows equal to the number of system outputs, and the number of columns equal to the number of system inputs.

\section*{Dependencies}

To enable this parameter, set State-space parameterization to Discrete-time.

\section*{Continuous A matrix - A matrix in continuous time}

1 (default) | real scalar or matrix
State matrix of the continuous-time state-space model. The A matrix must be square, with the number of rows and columns equal to the order of the system.

\section*{Dependencies}

To enable this parameter, set State-space parameterization to Continuous-time.

\section*{Continuous B matrix - B matrix in continuous time}

1 (default) | real scalar or matrix
Input matrix of the continuous-time state-space model. The B matrix must have the number of rows equal to the order of the system, and the number of columns equal to the number of system inputs.

\section*{Dependencies}

To enable this parameter, set State-space parameterization to Continuous-time.

\section*{Continuous C matrix - C matrix in continuous time} 1 (default) | real scalar or matrix

Output matrix of the continuous-time state-space model. The C matrix must have the number of rows equal the number of outputs of the system, and the number of columns equal to the order of the system.

\section*{Dependencies}

To enable this parameter, set State-space parameterization to Continuous-time.

\section*{Continuous D matrix - D matrix in continuous time}

\section*{1 (default) | real scalar or matrix}

Feedthrough matrix of the continuous-time state-space model. The D matrix must have the number of rows equal to the number of system outputs, and the number of columns equal to the number of system inputs.

\section*{Dependencies}

To enable this parameter, set State-space parameterization to Continuous-time.

\section*{Observer design - State-space parameterization Desired eigenvalues (default)|Observer gain}

Select the strategy for parameterizing observer gain.

\section*{Dependencies}

To enable this parameter, set State-space parameterization to Discrete-time.

\section*{Observer gain - Observer gain}

1 (default) | real scalar or matrix
Specify the observer gain that puts all eigenvalues of the matrix \(A_{d}-L_{d} C_{d}\) inside the unit circle. The gain matrix must have the number of rows equal to number of system inputs and the number of columns equal to the order of the system.

\section*{Dependencies}

To enable this parameter, set:
- State-space parameterization to Discrete-time.
- Observer design to Observer gain.

\section*{Desired eigenvalues - Observer eigenvalues}

0 (default) | real vector
Specify the location of the eigenvalues:
- To have negative real part if State-space parameterization is set to Continuous time. In this case, the eigenvalues of the continuous-time system are approximated to the discrete ones based on the Discretization sample time.
- To lie within the unit circle if State-space parameterization is set to Discretetime.

The Observer gain is then calculated based on these eigenvalues. The size of the vector should be the same as the system order.

\section*{Initial conditions - Initial conditions}

0 (default) | real vector with length equal to system order
Select the initial condition of each state.

\section*{Discretization sample time - Discretization sample time \\ 0.1 (default) | positive real number}

Value used to discretize the state space matrices and also approximate the discrete-time eigenvalues.

\section*{Dependencies}

To enable this parameter, set State-space parameterization to Continuous-time.

\section*{Sample time - Sample time}
0.1 (default) | - 1 or positive real number

Value used to simulate the dynamics of the model. Choose the same value as Discretization sample time, unless the block is placed within a triggered subsystem, in which case you must set it to -1.

\section*{References}
[1] Luenberger, D. G. "An Introduction to Observers." IEEE Transactions on Automatic Control. Vol. 16, Number 6, 1971, pp. 596-602.
[2] Alessandri, A., and P. Coletta. "Design of Luenberger observers for a class of hybrid linear systems." In International Workshop on Hybrid Systems: Computation and Control, Berlin, March 2001.
[3] Varga, A. "Robust pole assignment via Sylvester equation based state feedback parametrization." In Computer-Aided Control System Design, pp. 13-18., Anchorage, Alaska, 2000.

\section*{See Also}

\section*{Blocks}

ASM Flux Observer | State Feedback Controller

\section*{Introduced in R2017b}

\section*{Machine Inertia}

Machine inertia

\section*{Library}

Machines

\section*{Description}

The Machine Inertia block models inertia and damping that you connect to the mechanical rotational R port of a three-phase machine. The block has an internal connection to a mechanical rotational reference. The figure shows an equivalent configuration to the Machine Inertia block using Simscape mechanical rotational components.

Based on the value you select for the Specify inertia parameterization by parameter, you specify inertia J directly or using the machine inertia constant H .

If you specify the inertia constant, the block calculates inertia by
\[
J=\frac{2 H S_{\text {rated }}}{\left(2 \pi F_{\text {rated }} / N\right)^{2}},
\]
where:
- \(J\) is inertia in \(\mathrm{kg} \cdot \mathrm{m}^{2}\).
- \(H\) is the inertia constant in sW/VA.
- \(S_{\text {rated }}\) is the machine rated apparent power in VA.
- \(F_{\text {rated }}\) is the machine rated electrical frequency in Hz .
- \(\quad N\) is the number of machine pole pairs.

You specify damping that represents viscous friction between the machine rotor and mechanical rotational reference. Based on the value you select for the Specify damper parameterization by parameter, you specify a damping coefficient in SI units or in per-unit. If you specify the damping coefficient in per-unit, the block calculates the damping coefficient in SI units by
\[
\begin{aligned}
& \omega_{\text {base }}=\frac{2 \pi F_{\text {rated }}}{N}, \\
& T_{\text {base }}=\frac{S_{\text {rated }}}{\omega_{\text {base }}}, \\
& D_{\text {base }}=\frac{T_{\text {base }}}{\omega_{\text {base }}}
\end{aligned}
\]
and
\[
D=D_{p u} D_{b a s e},
\]
where:
- \(\omega_{\text {base }}\) is the base mechanical speed in rad/s.
- \(T_{\text {base }}\) is the base damping torque in Nm.
- \(D_{\text {base }}\) is the base damping coefficient in \(\mathrm{Nm} /(\mathrm{rad} / \mathrm{s})\).
- \(D_{p u}\) is the damping coefficient in per-unit.
- \(D\) is the damping coefficient in SI units of \(\mathrm{Nm} /(\mathrm{rad} / \mathrm{s})\).

\section*{Display Option}

You can display machine parameters using the Power Systems menu on the block context menu.

Right-click the block and, from the Power Systems menu, select Display Parameters to display the machine per-unit base values and inertia parameters in the MATLAB Command Window.

\section*{Parameters}
- "Main Tab" on page 1-489
- "Inertia Tab" on page 1-489
- "Initial Conditions Tab" on page 1-490

\section*{Main Tab}

\section*{Rated apparent power}

Machine rated apparent power. The default value is 555 e 6 V *A.

\section*{Rated electrical frequency}

Nominal electrical frequency corresponding to the machine rated apparent power. The default value is 60 Hz .

\section*{Number of pole pairs}

Number of machine pole pairs. The default value is 1.

\section*{Inertia Tab}

\section*{Specify inertia parameterization by}

Inertia specification. The default value is Inertia constant, H .

\section*{Inertia constant, \(\mathbf{H}\)}

Inertia constant. This parameter is visible only if you set Specify inertia
parameterization by to Inertia constant, H . The default value is 3.525 sW/VA.

\section*{Actual inertia, J}

Inertia. This parameter is visible only if you set Specify inertia parameterization by to Actual inertia, J. The default value is \(27548 \mathrm{~kg} \cdot \mathrm{~m}^{2}\).

\section*{Specify damper parameterization by}

Damping specification. The default value is Per-unit damping coefficient, pu_D.

\section*{Per-unit damping coefficient}

Damping coefficient in per-unit. This parameter is visible only if you set Specify damper parameterization by to Per-unit damping coefficient, pu_D. The default value is 0.01 .

\section*{SI damping coefficient}

Damping coefficient in SI units. This parameter is visible only if you set Specify damper parameterization by to SI damping coefficient, D. The default value is \(39.0509 \mathrm{Nm} /(\mathrm{rad} / \mathrm{s})\).

\section*{Initial Conditions Tab}

\section*{Specify initialization by}

Frequency initialization. The default value is Initial electrical frequency.

\section*{Initial electrical frequency}

Initial electrical frequency. This parameter is visible only if you set Specify initialization by to Initial electrical frequency. The default value is 60 Hz .

\section*{Initial mechanical frequency}

Initial mechanical frequency. This parameter is visible only if you set Specify initialization by to Initial mechanical frequency. The default value is 60 Hz .

\section*{Ports}

The block has the following ports:

\section*{R}

Mechanical rotational conserving port associated with the machine rotor

\section*{References}
[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.

\section*{Introduced in R2013b}

\section*{Machine Mechanical Power (pu)}

Machine mechanical power defined in the per-unit system

\section*{Library}

Machines

\section*{Description}

The Machine Mechanical Power (pu) block supplies specified power to, or draws specified power from, the machine that it connects to. It includes a representation of machine inertia and a mechanical rotational reference. In generator mode, the physical signal input pu defines the per-unit mechanical power that is input to the machine. In motor mode, it defines the mechanical power output from the machine. The pu input must always be positive.

The figure shows an equivalent configuration to the Machine Mechanical Power (pu) block using Simscape mechanical rotational components.

\section*{Electrical Defining Equations}

To calculate the torque that it applies to the inertia, the block divides the power demand by the present speed. To set the peak torque limit, specify a value for the Peak torque to rated torque ratio parameter. Use the Specify inertia parameterization by parameter to specify inertia, \(J\), directly or indirectly, with the inertia constant for the machine, \(H\).

If you specify the inertia constant for the machine, the block calculates inertia as
\[
J=\frac{2 H S_{\text {rated }}}{\left(2 \pi F_{\text {rated }} / N\right)^{2}},
\]
where:
- \(J\) is inertia in \(\mathrm{kg} \cdot \mathrm{m}^{2}\).
- \(H\) is the inertia constant in sW/VA.
- \(S_{\text {rated }}\) is the rated apparent power of the connected machine in VA.
- \(F_{\text {rated }}\) is the rated electrical frequency of the connected machine in Hz .
- \(N\) is the number of machine pole pairs.

Damping represents viscous friction between the machine rotor and mechanical rotational reference. Based on the value you select for the Specify damper parameterization by parameter, you specify a damping coefficient in per-unit or in SI
units. If you specify the damping coefficient in per-unit, the block calculates the damping coefficient in SI units using these equations:
\[
\begin{aligned}
& \omega_{\text {base }}=\frac{2 \pi F_{\text {rated }}}{N}, \\
& T_{\text {base }}=\frac{S_{\text {rated }}}{\omega_{\text {base }}}, \\
& D_{\text {base }}=\frac{T_{\text {base }}}{\omega_{\text {base }}}
\end{aligned}
\]
and
\[
D=D_{p u} D_{\text {base }},
\]
where:
- \(\omega_{\text {base }}\) is the base mechanical speed in rad/s.
- \(T_{\text {base }}\) is the base damping torque in Nm.
- \(D_{\text {base }}\) is the base damping coefficient in \(\mathrm{Nm} /(\mathrm{rad} / \mathrm{s})\).
- \(D_{p u}\) is the damping coefficient in per-unit.
- \(D\) is the damping coefficient in SI units of \(\mathrm{Nm} /(\mathrm{rad} / \mathrm{s})\).

\section*{Parameters}
- "Main Tab" on page 1-494
- "Inertia Tab" on page 1-495
- "Initial Conditions Tab" on page 1-496

\section*{Main Tab}

\section*{Input power sign convention}

Machine type specification. The choices are Generator and Motor. The default value is Generator.

\section*{Rated apparent power}

Rated apparent power of the connected machine. The default value is 555 e 6 V *A.

\section*{Rated electrical frequency}

Nominal electrical frequency corresponding to the rated apparent power of the connected machine. The default value is 60 Hz .

\section*{Number of pole pairs}

Number of pole pairs of the connected machine. The default value is 1.

\section*{Peak torque to rated torque ratio}

Ratio that the block multiplies by the base torque to provide the upper limit for the torque that accelerates the inertia. The default value is 2 .

\section*{Inertia Tab}

\section*{Specify inertia parameterization by}

Inertia specification. The choices are between Actual Inertia, J and Inertia constant, H . The default value is Inertia constant, H .

\section*{Inertia constant, \(\mathbf{H}\)}

Inertia constant. This parameter is visible only if you set Specify inertia parameterization by to Inertia constant, H . The default value is 3.525 s*W/VA.

\section*{Actual inertia, J}

Inertia. This parameter is visible only if you set Specify inertia parameterization by to Actual Inertia, J. The default value is \(27548 \mathrm{~kg} \cdot \mathrm{~m}^{2}\).

\section*{Specify damper parameterization by}

Damping specification. The choices are Per-unit damping coefficient, pu_D and SI damping coefficient, D. The default value is Per-unit damping coefficient, pu_D.

\section*{Per-unit damping coefficient}

Damping coefficient in per-unit. This parameter is visible only if you set Specify damper parameterization by to Per-unit damping coefficient, pu_D. The default value is 0.01 .

\section*{SI damping coefficient}

Damping coefficient in SI units. This parameter is visible only if you set Specify damper parameterization by to SI damping coefficient, D. The default value is \(39.0509 \mathrm{Nm} /(\mathrm{rad} / \mathrm{s})\).

\section*{Initial Conditions Tab}

\section*{Specify initialization by}

Frequency initialization. The choices are Initial electrical frequency and Initial mechanical frequency. The default value is Initial electrical frequency.

\section*{Initial electrical frequency}

Initial electrical frequency. This parameter is visible only if you set Specify initialization by to Initial electrical frequency. The default value is 60 Hz .

\section*{Initial mechanical frequency}

Initial mechanical frequency. This parameter is visible only if you set Specify initialization by to Initial mechanical frequency. The default value is 60 Hz .

\section*{Ports}

The block has the following ports:

\section*{pu}

Physical signal input port associated with mechanical power, per-unit
R
Mechanical rotational conserving port associated with the machine rotor

\section*{C}

Mechanical rotational conserving port associated with the machine case

\section*{See Also}

Machine Inertia | Machine Mechanical Power (SI)

\section*{Introduced in R2014b}

\section*{Machine Mechanical Power (SI)}

Machine mechanical power defined in SI units

\section*{Library}

Machines

\section*{Description}

The Machine Mechanical Power (SI) block supplies specified power to, or draws specified power from, the machine that it connects to. It includes a representation of machine inertia and a mechanical rotational reference. In generator mode, the physical signal input Pm defines the mechanical power in SI units that is input to the machine. In motor mode, it defines the mechanical power output from the machine. The Pm input must always be positive.

The figure shows an equivalent configuration to the Machine Mechanical Power (SI) block using Simscape mechanical rotational components.

\section*{Electrical Defining Equations}

To calculate the torque that it applies to the inertia, the block divides the power demand by the present speed. To set the peak torque limit, specify a value for the Peak torque to rated torque ratio parameter. Use the Specify inertia parameterization by parameter to specify inertia, \(J\), directly or indirectly, with the inertia constant for the machine, \(H\).

If you specify the inertia constant for the machine, the block calculates inertia as
\[
J=\frac{2 H S_{\text {rated }}}{\left(2 \pi F_{\text {rated }} / N\right)^{2}},
\]
where:
- \(J\) is inertia in \(\mathrm{kg} \cdot \mathrm{m}^{2}\).
- \(H\) is the inertia constant in sW/VA.
- \(S_{\text {rated }}\) is the rated apparent power of the connected machine in VA.
- \(F_{\text {rated }}\) is the rated electrical frequency of the connected machine in Hz .
- \(N\) is the number of pole pairs in the connected machine.

Damping represents viscous friction between the machine rotor and mechanical rotational reference. Based on the value you select for the Specify damper parameterization by parameter, you specify a damping coefficient in per-unit or in SI
units. If you specify the damping coefficient in per-unit, the block calculates the damping coefficient in SI units using these equations:
\[
\begin{aligned}
& \omega_{\text {base }}=\frac{2 \pi F_{\text {rated }}}{N}, \\
& T_{\text {base }}=\frac{S_{\text {rated }}}{\omega_{\text {base }}}, \\
& D_{\text {base }}=\frac{T_{\text {base }}}{\omega_{\text {base }}}
\end{aligned}
\]
and
\[
D=D_{p u} D_{\text {base }},
\]
where:
- \(\omega_{\text {base }}\) is the base mechanical speed in rad/s.
- \(T_{\text {base }}\) is the base damping torque in Nm.
- \(D_{\text {base }}\) is the base damping coefficient in \(\mathrm{Nm} /(\mathrm{rad} / \mathrm{s})\).
- \(D_{p u}\) is the damping coefficient in per-unit.
- \(D\) is the damping coefficient in SI units of \(\mathrm{Nm} /(\mathrm{rad} / \mathrm{s})\).

\section*{Parameters}
- "Main Tab" on page 1-500
- "Inertia Tab" on page 1-501
- "Initial Conditions Tab" on page 1-502

\section*{Main Tab}

\section*{Input power sign convention}

Machine type specification. The choices are Generator and Motor. The default value is Generator.

\section*{Rated apparent power}

Rated apparent power of the connected machine. The default value is 555 e 6 V *A.

\section*{Rated electrical frequency}

Nominal electrical frequency corresponding to the rated apparent power of the connected machine. The default value is 60 Hz .

\section*{Number of pole pairs}

Number of pole pairs of the connected machine. The default value is 1.

\section*{Peak torque to rated torque ratio}

Ratio that the block multiplies by the base torque to provide the upper limit for the torque that accelerates the inertia. The default value is 2 .

\section*{Inertia Tab}

\section*{Specify inertia parameterization by}

Inertia specification. The choices are Actual Inertia, J and Inertia constant, H . The default value is Inertia constant, H .

\section*{Inertia constant, \(\mathbf{H}\)}

Inertia constant. This parameter is visible only if you set Specify inertia parameterization by to Inertia constant, H . The default value is 3.525 s*W/VA.

\section*{Actual inertia, J}

Inertia. This parameter is visible only if you set Specify inertia parameterization by to Actual Inertia, J. The default value is \(27548 \mathrm{~kg} \cdot \mathrm{~m}^{2}\).

\section*{Specify damper parameterization by}

Damping specification. The choices are Per-unit damping coefficient, pu_D and SI damping coefficient, D. The default value is Per-unit damping coefficient, pu_D.

\section*{Per-unit damping coefficient}

Damping coefficient in per-unit. This parameter is visible only if you set Specify damper parameterization by to Per-unit damping coefficient, pu_D. The default value is 0.01 .

\section*{SI damping coefficient}

Damping coefficient in SI units. This parameter is visible only if you set Specify damper parameterization by to SI damping coefficient, D. The default value is \(39.0509 \mathrm{Nm} /(\mathrm{rad} / \mathrm{s})\).

\section*{Initial Conditions Tab}

\section*{Specify initialization by}

Frequency initialization. The choices are Initial electrical frequency and Initial mechanical frequency. The default value is Initial electrical frequency.

\section*{Initial electrical frequency}

Initial electrical frequency. This parameter is visible only if you set Specify initialization by to Initial electrical frequency. The default value is 60 Hz .

\section*{Initial mechanical frequency}

Initial mechanical frequency. This parameter is visible only if you set Specify initialization by to Initial mechanical frequency. The default value is 60 Hz .

\section*{Ports}

The block has the following ports:

\section*{Pm}

Physical signal input port associated with mechanical power, W
R
Mechanical rotational conserving port associated with the machine rotor
C
Mechanical rotational conserving port associated with the machine case

\section*{See Also}

Machine Inertia | Machine Mechanical Power (pu)

\section*{Topics}

Three-Phase Asynchronous Machine Starting

\section*{Introduced in R2014b}

\section*{Model Reference Adaptive Controller}

Discrete-time PID-based model reference adaptive control Library: \(\quad \begin{array}{ll}\text { Simscape / Power Systems / Simscape Components / } \\ & \text { Control / General Control }\end{array}\)

\section*{Description}

The Model Reference Adaptive Controller block implements discrete-time proportional-integral-derivative (PID) model reference adaptive control (MRAC). The three main components of an MRAC system are the reference model, the adjustment mechanism, and the controller.

\section*{Equations}

The control equation is
\[
u_{p i d}(k)=\left[K_{p}+K_{i} \frac{T_{s} z}{z-1}+K_{d} \frac{z-1}{T_{s} z}\right] \mathrm{e}(\mathrm{k}),
\]
where:
- \(u_{\text {pid }}\) is the controller output.
- \(K_{p}\) is the proportional gain.
- \(K_{i}\) is the integral gain.
- \(K_{d}\) is the differential gain.
- \(T_{s}\) is the sample time.
- \(e\) is the error.

The reference model is the transfer function for the closed-loop system. This model captures the desired behavior of the closed-loop system. It is implemented as the discrete-time transfer function
\[
G_{m}(z)=\frac{B(z)}{A(z)}
\]

The adaptation mechanism adjusts the control action based on the error between the plant output and the reference model output as
\[
\theta=\left(y-y_{m}\right) y_{m} \frac{-\gamma T_{s} z}{z-1},
\]
where:
- \(\theta\) is the adaptation parameter.
- \(y\) is the plant output.
- \(y_{m}\) is the reference model output.
- \(\quad \gamma\) is the learning rate.

Increasing the value of \(\gamma\) results in faster adaptation to plant changes.
The adjusted control signal, \(u\), is
\[
u(k)=u_{p i d}(k) \theta(k)
\]

\section*{Ports}

\section*{Input}

\section*{\(r\) - Plant reference, \(r\)}
scalar
Plant system reference signal.
Data Types: single | double

\section*{\(y\) - Plant output, \(y\)}
scalar
Plant system output signal.
Data Types: single | double

\section*{Reset - Integrator reset}
scalar
External reset signal (rising edge) for the integrator.
Data Types: Boolean

\section*{Output}
u - Controller adjusted output, u
scalar
Adjusted control signal.
Data Types: single | double

\section*{Parameters}

\section*{Controller Parameters}

\section*{Proportional gain - Controller proportional gain, \(\boldsymbol{K}_{\boldsymbol{p}}\)}

1 (default) | positive scalar
Proportional gain, \(K_{p}\), of the controller.
Integral gain - Controller integral gain, \(\boldsymbol{K}_{\boldsymbol{i}}\)
1 (default) | positive scalar
Integral gain, \(K_{i}\), of the controller.

\section*{Derivative gain - Controller derivative gain, \(\boldsymbol{K}_{\boldsymbol{d}}\) 0 (default)}

Derivative gain, \(K_{d}\), of the controller.

\section*{Anti-windup gain - Controller anti-windup gain}

\section*{1 (default) | positive scalar}

Anti-windup gain of the controller.

\section*{Use filtered derivative - Filter option}
on (default) | off
Choose whether to use a filter coefficient for the reference signal.

\section*{Dependencies}

The Filter coefficient parameter is only visible when the Use filtered derivative check box is selected.

\section*{Filter coefficient - Reference signal filter coefficient 100 (default)}

Filter coefficient for the reference signal.

\section*{Dependencies}

This parameter is only visible when the Use filtered derivative check box is selected.

\section*{Control action upper limit - Control signal upper limit, \(u_{\text {pid_max }}\) 5 (default)}

Upper bound for the control signal.

\section*{Control action lower limit - Control signal lower limit, \(u_{\text {pid_min }}\) - 5 (default)}

Lower bound for the control signal.

\section*{Sample time (-1 for inherited) - Block sample time} -1 (default) | positive scalar

Time, in s, between consecutive block executions. During execution, the block produces outputs and, if appropriate, updates its internal state. For more information, see "What Is Sample Time?" (Simulink) and "Specify Sample Time" (Simulink).

If this block is inside a triggered subsystem, inherit the sample time by setting this parameter to -1. If this block is in a continuous variable-step model, specify the sample time explicitly using a positive scalar.

\section*{Dependencies}

If you set Sample time (-1 for inherited) to -1 and, in the Reference Model settings, set Model parameterization to Continuous - time, the Discretization sample time parameter becomes visible in the Reference Model settings.

\section*{Reference Model}

\section*{Model parameterization - Discrete or continuous model option} Discrete-time (default)| Continuous-time

Mathematical model for the controller.

\section*{Dependencies}

Choosing:
- Discrete-time makes the discrete-time parameters visible.
- Continuous-time makes the continuous-time parameters visible. Also, in the Controller Parameter settings, if Sample time (-1 for inherited) is set to -1, choosing this option makes the Discretization sample time parameter visible in the Reference Model settings.

Discrete-time numerator - Discrete-time transfer function numerator [0.01-0.0099] (default)

Numerator for the discrete-time transfer function.

\section*{Dependencies}

Choosing Discrete-time for Model parameterization makes this parameter visible.
Discrete-time denominator - Discrete-time transfer function denominator [1-1.9801 0.9802] (default)|vector

Denominator for the discrete-time transfer function.

\section*{Dependencies}

Choosing Discrete-time for Model parameterization makes this parameter visible.

\section*{Discretization sample time - Sample time for discretization}
0.01 (default) |-1 or positive number

Time, in seconds, between consecutive discretizations. If block sample time is inherited, specify the discretization sample time explicitly.

\section*{Dependencies}

This parameter is only visible when both of these conditions are met:
- In the Control Parameters settings, Sample time (-1 for inherited) is set to -1.
- In the Reference Model settings, Model parameterization is set to Continuous time.

\section*{Continuous-time numerator - Continuous-time transfer function numerator}

\section*{[1 1] (default)|vector}

Numerator for the continuous-time transfer function.

\section*{Dependencies}

Choosing Continuous-time for Model parameterization makes this parameter visible.

\section*{Continuous-time denominator - Continuous-time transfer function denominator \\ [1 2 1] (default)|vector}

Denominator for the continuous-time transfer function.

\section*{Dependencies}

Choosing Continuous-time for Model parameterization makes this parameter visible.

\section*{Adjustment Mechanism}

\section*{Learning rate \(\boldsymbol{-} \boldsymbol{\gamma}\)}
0.5 (default)

Rate of adjustment to plant changes.

\section*{References}
[1] Butler, H. Model-Reference Adaptive Control-From Theory to Practice. Upper Saddle River, NJ: Prentice Hall, 1992.

\section*{See Also}

RST Controller

Introduced in R2018a

\section*{MOSFET}

N-channel MOSFET

\section*{Library}

\section*{Semiconductors / Fundamental Components}

\section*{Description}

The MOSFET block models an n-channel metal-oxide-semiconductor field-effect transistor (MOSFET).

The I-V characteristic of an n-channel MOSFET is such that if the gate-source voltage exceeds the specified threshold voltage, the MOSFET is in the on state. Otherwise, the device is in the off state.

In the on state, the drain-source path behaves like a linear resistor with resistance, \(R_{d s-o n}\).

In the off state, the drain-source path behaves like a linear resistor with low off-state conductance, \(G_{\text {off }}\).

The defining Simscape equations for the block are:
```

if G > Vth
v == i*Rds_on;
else
v == i/Goff;
end

```
where:
- \(G\) is the gate-source voltage.
- Vth is the threshold voltage.
- \(v\) is the drain-source voltage.
- \(i\) is the drain-source current.
- Rds_on is the on-state resistance.
- Goff is the off-state conductance.

Using the Integral Diode tab of the block dialog box, you can include an integral sourcedrain diode. An integral diode protects the semiconductor device by providing a conduction path for reverse current. An inductive load can produce a high reverse-voltage spike when the semiconductor device suddenly switches off the voltage supply to the load.

Set the Integral protection diode parameter based on your goal.
\begin{tabular}{|l|l|l|}
\hline Goal & Value to Select & Block Behavior \\
\hline Prioritize simulation speed. & \begin{tabular}{l}
Protection diode with \\
no dynamics
\end{tabular} & \begin{tabular}{l}
The block includes an \\
integral copy of the Diode \\
block. To parameterise the \\
internal Diode block, use the \\
Protection parameters.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Goal & Value to Select & Block Behavior \\
\hline \begin{tabular}{ll}
Precisely specify reverse- \\
mode charge dynamics.
\end{tabular} & \begin{tabular}{l}
Protection diode with \\
charge dynamics
\end{tabular} & \begin{tabular}{l}
The block includes an \\
integral copy of the \\
Commutation Diode block. \\
To parameterise the internal \\
Commutation Diode block, \\
use the Protection \\
parameters.
\end{tabular} \\
\hline
\end{tabular}

\section*{Modeling Variants}

The block provides four modeling variants. To select the desired variant, right-click the block in your model. From the context menu, select Simscape > Block choices, and then one of these variants:
- PS Control Port - Contains a physical signal port that is associated with the gate terminal. This variant is the default.
- Electrical Control Port - Contains an electrical conserving port that is associated with the gate terminal.
- PS Control Port | Thermal Port - Contains a thermal port and a physical signal port that is associated with the gate terminal.
- Electrical Control Port | Thermal Port - Contains a thermal port and an electrical conserving port that is associated with the gate terminal.

The variants of this block without the thermal port do not simulate heat generation in the device.

The variants with the thermal port allow you to model the heat that switching events and conduction losses generate. For numerical efficiency, the thermal state does not affect the electrical behavior of the block. The thermal port is hidden by default. To enable the thermal port, select a thermal block variant.

\section*{Thermal Loss Equations}

The figure shows an idealized representation of the output voltage, \(V_{\text {out }}\), and the output current, \(I_{\text {out }}\), of the semiconductor device. The interval shown includes the entire \(n\)th switching cycle, during which the block turns off and then on.

When the semiconductor turns on during the \(n\)th switching cycle, the amount of thermal energy that the device dissipates increments by a discrete amount. If you select Voltage, current, and temperature for the Thermal loss dependent on parameter, the equation for the incremental change is
\[
E_{\text {on }(n)}=\frac{V_{\text {off }(n)}}{V_{o f f} \text { _data }} f c n\left(T, I_{\text {on }(n-1)}\right),
\]
where:
- \(E_{\text {on(n) }}\) is the switch-on loss at the \(n\)th switch-on event.
- \(V_{\text {off(}(n)}\) is the off-state output voltage, \(V_{\text {out }}\) just before the device switches on during the \(n\)th switching cycle.
- \(V_{\text {off_data }}\) is the Off-state voltage for losses data parameter value.
- \(T\) is the device temperature.
- \(I_{o n(n-1)}\) is the on-state output current, \(I_{o u t}\), just before the device switches off during the cycle that precedes the nth switching cycle.

The function \(f c n\) is a 2-D lookup table with linear interpolation and linear extrapolation:
\[
E=\text { tablelookup }\left(T_{j_{-}} \text {data }, I_{\text {out_data }}, E_{\text {on_data }}, T, I_{\text {on }(n-1)}\right),
\]
where:
- \(T_{j_{-} d a t a}\) is the Temperature vector, \(\mathbf{T j}\) parameter value.
- \(I_{\text {out_data }}\) is the Output current vector, Iout parameter value.
- \(E_{\text {on_data }}\) is the Switch-on loss, Eon=fen(Tj,Iout) parameter value.

If you select Voltage and current for the Thermal loss dependent on parameter, when the semiconductor turns on during the \(n\)th switching cycle, the equation that the block uses to calculate the incremental change in the discrete amount of thermal energy that the device dissipates is
\[
E_{\text {on }(n)}=\left(\frac{V_{\text {off }(n)}}{V_{\text {off_data }}}\right)\left(\frac{I_{\text {on }(n-1)}}{I_{\text {out_scalar }}}\right)\left(E_{\text {on_scalar })}\right.
\]
where:
- \(I_{\text {out_scalar }}\) is the Output current, Iout parameter value.
- \(E_{\text {on_scalar }}\) is the Switch-on loss parameter value.

When the semiconductor turns off during the \(n\)th switching cycle, the amount of thermal energy that the device dissipates increments by a discrete amount. If you select Voltage, current, and temperature for the Thermal loss dependent on parameter, the equation for the incremental change is
\[
E_{o f f(n)}=\frac{V_{o f f(n)}}{V_{o f f_{-} \text {data }}} f c n\left(T, I_{o n(n)}\right),
\]
where:
- \(E_{\text {off(} n)}\) is the switch-off loss at the \(n\)th switch-off event.
- \(V_{\text {off(n) }}\) is the off-state output voltage, \(V_{\text {out }}\), just before the device switches on during the \(n\)th switching cycle.
- \(V_{\text {off_data }}\) is the Off-state voltage for losses data parameter value.
- \(T\) is the device temperature.
- \(I_{o n(n)}\) is the on-state output current, \(I_{o u t}\), just before the device switches off during the \(n\)th switching cycle.

The function \(f c n\) is a 2-D lookup table with linear interpolation and linear extrapolation:
\[
E=\text { tablelookup }\left(T_{j_{-}} \text {data }, I_{\text {out_data }}, E_{\text {off_data }}, T, I_{\text {on }(n)}\right),
\]
where:
- \(T_{j_{-} \text {data }}\) is the Temperature vector, \(\mathbf{T j}\) parameter value.
- \(I_{\text {out_data }}\) is the Output current vector, Iout parameter value.
- \(E_{\text {off_data }}\) is the Switch-off loss, \(\mathbf{E o f f}=\mathbf{f e n}(\mathbf{T j}, I o u t)\) parameter value.

If you select Voltage and current for the Thermal loss dependent on parameter, when the semiconductor turns off during the \(n\)th switching cycle, the equation that the block uses to calculate the incremental change in the discrete amount of thermal energy that the device dissipates is
\[
E_{\text {off }(n)}=\left(\frac{V_{\text {off }(n)}}{V_{\text {off_data }}}\right)\left(\frac{I_{\text {on }(n-1)}}{I_{\text {out_scalar }}}\right)\left(E_{\text {off_scalar }}\right)
\]
where:
- \(I_{\text {out_scalar }}\) is the Output current, Iout parameter value.
- \(E_{\text {off_scalar }}\) is the Switch-off loss parameter value.

If you select Voltage, current, and temperature for the Thermal loss
dependent on parameter, then, for both the on state and the off state, the heat loss due to electrical conduction is
\[
E_{\text {conduction }}=\int f c n\left(T, I_{\text {out }}\right) d t,
\]
where:
- \(E_{\text {conduction }}\) is the heat loss due to electrical conduction.
- \(T\) is the device temperature.
- \(I_{\text {out }}\) is the device output current.

The function \(f c n\) is a 2-D lookup table:
\[
Q_{\text {conduction }}=\operatorname{tablelookup}\left(T_{j_{-} \text {data }}, I_{\text {out_data }}, I_{\text {out_data_repmat }} * V_{\text {on_data }}, T, I_{\text {out }}\right),
\]
where:
- \(T_{j_{j} \text { data }}\) is the Temperature vector, \(\mathbf{T j}\) parameter value.
- \(I_{\text {out_data }}\) is the Output current vector, Iout parameter value.
- \(I_{\text {out_data_repmat }}\) is a matrix that contains length, \(T_{j_{-} \text {data }}\), copies of \(I_{\text {out_data }}\).
- \(V_{\text {on_data }}\) is the \(\mathbf{O n}\)-state voltage, Von=fcn(Tj,Iout) parameter value.

If you select Voltage and current for the Thermal loss dependent on parameter, then, for both the on state and the off state, the heat loss due to electrical conduction is
\[
E_{\text {conduction }}=\int\left(I_{\text {out }} * V_{\text {on_scalar }}\right) d t
\]
where \(V_{\text {on_scalar }}\) is the \(\mathbf{O n}\)-state voltage parameter value.

The block uses the Energy dissipation time constant parameter to filter the amount of heat flow that the block outputs. The filtering allows the block to:
- Avoid discrete increments for the heat flow output
- Handle a variable switching frequency

The filtered heat flow is
\[
Q=\frac{1}{\tau}\left(\sum_{i=1}^{n} E_{\text {on }(i)}+\sum_{i=1}^{n} E_{\text {off }(i)}+E_{\text {conduction }}-\int Q d t\right)
\]
where:
- \(Q\) is the heat flow from the component.
- \(\tau\) is the Energy dissipation time constant parameter value.
- \(n\) is the number of switching cycles.
- \(E_{\text {on(i) }}\) is the switch-on loss at the \(i\) th switch-on event.
- \(E_{\text {off(i) }}\) is the switch-off loss at the \(i\) th switch-off event.
- \(E_{\text {conduction }}\) is the heat loss due to electrical conduction.
- \(\int Q d t\) is the total heat previously dissipated from the component.

\section*{Ports}

The figure shows the block port names.

G
Port associated with the gate terminal. You can set the port to either a physical signal or electrical port.
S
Electrical conserving port associated with the source terminal.
D
Electrical conserving port associated with the drain terminal.
H
Thermal conserving port. The thermal port is optional and is hidden by default. To enable this port, select a variant that includes a thermal port.

\section*{Parameters}
- "Main Tab" on page 1-519
- "Integral Diode Tab" on page 1-519
- "Thermal Model Tab" on page 1-522

\section*{Main Tab}

\section*{On-state resistance, R_DS(on)}

Drain-source resistance when the device is on. The default value is 0.010 hm .

\section*{Off-state conductance}

Drain-source conductance when the device is off. The value must be less than \(1 / R\), where \(R\) is the value of \(\mathbf{O n}\)-state resistance. The default value is \(1 \mathrm{e}-61 / 0 \mathrm{hm}\).

\section*{Threshold voltage, Vth}

Gate-source voltage threshold. The device turns on when the gate-source voltage is above this value. The default value is 2 V .

\section*{Integral Diode Tab}

\section*{Integral protection diode}

Block integral protection diode. The default value is Protection diode with no dynamics.

The diodes you can select are:
- Protection diode with no dynamics
- Protection diode with charge dynamics

When you select Protection diode with no dynamics, additional parameters appear.

\section*{Additional Parameters for Protection diode with no dynamics}

\section*{Forward voltage}

Minimum voltage required across the + and - block ports for the gradient of the diode \(I-V\) characteristic to be \(1 / R_{o n}\), where \(R_{\text {on }}\) is the value of \(\mathbf{O n}\) resistance. The default value is 0.8 V .

\section*{On resistance}

Rate of change of voltage versus current above the Forward voltage. The default value is 0.0010 hm .

\section*{Off conductance}

Conductance of the reverse-biased diode. The default value is \(1 \mathrm{e}-51 / 0 \mathrm{hm}\).
For more information on these parameters, see Diode.

When you select Protection diode with charge dynamics, additional parameters appear.

\section*{Additional Parameters for Protection diode with charge dynamics}

\section*{Forward voltage}

Minimum voltage required across the + and - block ports for the gradient of the diode I-V characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of \(O n\) resistance. The default value is 0.8 V .

\section*{On resistance}

Rate of change of voltage versus current above the Forward voltage. The default value is 0.0010 hm .

\section*{Off conductance}

Conductance of the reverse-biased diode. The default value is \(1 \mathrm{e}-51 / 0 \mathrm{hm}\).

\section*{Junction capacitance}

Diode junction capacitance. The default value is 50 nF .

\section*{Peak reverse current, iRM}

Peak reverse current measured by an external test circuit. This value must be less than zero. The default value is -235 A .

\section*{Initial forward current when measuring iRM}

Initial forward current when measuring peak reverse current. This value must be greater than zero. The default value is 300 A .

\section*{Rate of change of current when measuring iRM}

Rate of change of current when measuring peak reverse current. This value must be less than zero. The default value is \(-50 \mathrm{~A} / \mu \mathrm{s}\).

\section*{Reverse recovery time parameterization}

Determines how you specify reverse recovery time in the block. The default value is Specify reverse recovery time directly.

If you select Specify stretch factor or Specify reverse recovery charge, you specify a value that the block uses to derive the reverse recovery time. For more information on these options, see "Alternatives to Specifying trr Directly" on page 1254.

\section*{Reverse recovery time, trr}

Interval between the time when the current initially goes to zero (when the diode turns off) and the time when the current falls to less than \(10 \%\) of the peak reverse current. The default value is \(15 \mu \mathrm{~s}\).

This parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery time directly.

The value of the Reverse recovery time, trr parameter must be greater than the value of the Peak reverse current, iRM parameter divided by the value of the Rate of change of current when measuring iRM parameter.

\section*{Reverse recovery time stretch factor}

Value that the block uses to calculate Reverse recovery time, trr. This value must be greater than 1 . The default value is 3 .

This parameter is visible only if you set Reverse recovery time parameterization to Specify stretch factor.

Specifying the stretch factor is an easier way to parameterize the reverse recovery time than specifying the reverse recovery charge. The larger the value of the stretch factor, the longer it takes for the reverse recovery current to dissipate.

\section*{Reverse recovery charge, Qrr}

Value that the block uses to calculate Reverse recovery time, trr. Use this parameter if the data sheet for your diode device specifies a value for the reverse recovery charge instead of a value for the reverse recovery time.

The reverse recovery charge is the total charge that continues to dissipate when the
diode turns off. The value must be less than \(-\frac{i^{2}{ }_{R M}}{2 a}\),
where:
- \(i_{R M}\) is the value specified for Peak reverse current, iRM.
- \(a\) is the value specified for Rate of change of current when measuring iRM.

The default value is \(1500 \mu \mathrm{As}\).
The parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery charge.

For more information on these parameters, see Commutation Diode.

\section*{Thermal Model Tab}

The Thermal Model tab is enabled only when you select a block variant that includes a thermal port.

\section*{Thermal loss dependent on}

Select a parameterization method. The option that you select determines which other parameters are enabled. Options are:
- Voltage and current - Use scalar values to specify the output current, switch-on loss, switch-off loss, and on-state voltage data.
- Voltage, current, and temperature - Use vectors to specify the output current, switch-on loss, switch-off loss, on-state voltage, and temperature data. This is the default parameterization method.

\section*{Off-state voltage for losses data}

The output voltage of the device during the off state. This is the blocking voltage at which the switch-on loss and switch-off loss data are defined. The default value is 300 V.

\section*{Energy dissipation time constant}

Time constant used to average the switch-on losses, switch-off losses, and conduction losses. This value is equal to the period of the minimum switching frequency. The default value is \(1 \mathrm{e}-4 \mathrm{~s}\).

\section*{Additional Parameters for Parameterizing by Voltage, Current, and Temperature}

\section*{Temperature vector, \(\mathbf{T j}\)}

Temperature values at which the switch-on loss, switch-off loss, and on-state voltage are specified. Specify this parameter using a vector quantity. The default value is [298.15398 .15] K.

\section*{Output current vector, Iout}

Output currents for which the switch-on loss, switch-off- loss and on-state voltage are defined. The first element must be zero. Specify this parameter using a vector quantity. The default value is [01050100200400600] A.

\section*{Switch-on loss, Eon=fen(Tj,Iout)}

Energy dissipated during a single switch on event. This parameter is defined as a function of temperature and final on-state output current. Specify this parameter using a vector quantity. The default value is [\(02.9 \mathrm{e}-40.001430 .00286\) \(0.005710 .013140 .02286 ; 05.7 e-40.002630 .005140 .010290 .02057\) 0.03029] J.

\section*{Switch-off loss, Eoff=fen(Tj,Iout)}

Energy dissipated during a single switch-off event. This parameter is defined as a function of temperature and final on-state output current. Specify this parameter using a vector quantity. The default value is [\(02.1 e-40.001070 .00214\) \(0.004290 .0098599999999999990 .01714 ; 04.3 \mathrm{e}-40.001970 .00386\) 0.00771 0.01543 0.02271] J.

\section*{On-state voltage, Von=fcn(Tj,Iout)}

Voltage drop across the device while it is in a triggered conductive state.. This parameter is defined as a function of temperature and final on-state output current. Specify this parameter using a vector quantity. The default value is [01.11 .3 \(1.451 .752 .252 .7 ; 011.151 .351 .72 .353\)] V.

\section*{Additional Parameters for Parameterizing by Voltage and Current}

\section*{Output current, Iout}

Output currents for which the switch-on loss, switch-off loss, and on-state voltage are defined. The first element must be zero. Specify this parameter using a scalar quantity. The default value is 600 A .

\section*{Switch-on loss}

Energy dissipated during a single switch-on event. This parameter is defined as a function of temperature and final on-state output current. Specify this parameter using a scalar quantity. The default value is 0.02286 J .

\section*{Switch-off loss}

Energy dissipated during a single switch-off event. This parameter is defined as a function of temperature and final on-state output current. Specify this parameter using a scalar quantity. The default value is 0.01714 J .

\section*{On-state voltage}

Voltage drop across the block while it is in a triggered conductive state. This parameter is defined as a function of temperature and final on-state output current. Specify this parameter using a scalar quantity. The default value is 2.7 V .

\section*{See Also}

Commutation Diode | Diode | GTO | IGBT | Ideal Semiconductor Switch | Thyristor

\section*{Topics}
"Quantifying IGBT Thermal Losses"
"Simulate Thermal Losses in Semiconductors"
"Switch Between Physical Signal and Electrical Ports"

\section*{Introduced in R2013b}

\section*{Neutral Port}

Connect phases of three-phase system to electrical conserving port

\section*{Library}

Simscape / Power Systems / Simscape Components / Connections

\section*{Description}

The Neutral Port block connects the phases of a three-phase system to an electrical conserving port. You can connect the electrical port to electrical components from the Simscape and Simscape Electronics libraries.

Note If you do not need to connect the neutral port to other blocks, use a Floating Neutral block instead. If you want to ground the neutral port, use a Grounded Neutral block.

\section*{Parameters}

\section*{Parasitic ground conductance}

Parasitic conductance to ground. A nonzero value is required for the simulation of some circuit topologies.

The default value is \(1 \mathrm{e}-121 / 0 \mathrm{hm}\).

\section*{Ports}

The block has the following ports:

Expandable three-phase port
n
Electrical conserving port associated with the neutral point

\section*{See Also}

Floating Neutral | Neutral Port

\author{
Topics \\ "Expand and Collapse Three-Phase Ports on a Block" \\ Introduced in R2013b
}

\section*{Nonlinear Inductor}

Model inductor with nonideal core

\section*{Library}

Passive Devices / Fundamental Components

\section*{Description}

The Nonlinear Inductor block represents an inductor with a nonideal core. A core may be nonideal due to its magnetic properties and dimensions. The block provides the following parameterization options:
- "Single Inductance (Linear)" on page 1-527
- "Single Saturation Point" on page 1-528
- "Magnetic Flux Versus Current Characteristic" on page 1-529
- "Magnetic Flux Density Versus Magnetic Field Strength Characteristic" on page 1530
- "Magnetic Flux Density Versus Magnetic Field Strength Characteristic with Hysteresis" on page 1-531

\section*{Single Inductance (Linear)}

The relationships between voltage, current, and flux are defined by the following equations:
\[
\begin{aligned}
& i=i_{L}+v G_{p} \\
& v=N_{w} \frac{d \Phi}{d t}
\end{aligned}
\]
\[
\Phi=\frac{L}{N_{w}} i_{L}
\]
where:
- \(v\) is the terminal voltage.
- \(i\) is the terminal current.
- \(i_{\mathrm{L}}\) is the current through inductor.
- \(G_{\mathrm{p}}\) is the parasitic parallel conductance.
- \(N_{\mathrm{w}}\) is the number of winding turns.
- \(\Phi\) is the magnetic flux.
- \(L\) is the unsaturated inductance.

\section*{Single Saturation Point}

The relationships between voltage, current, and flux are defined by the following equations:
\[
\begin{aligned}
& i=i_{L}+v G_{p} \\
& v=N_{w} \frac{d \Phi}{d t} \\
& \Phi=\frac{L}{N_{w}} i_{L} \text { (for unsaturated) } \\
& \Phi=\frac{L_{s a t}}{N_{w}} i_{L} \pm \Phi_{\text {offset }} \text { (for saturated) }
\end{aligned}
\]
where:
- \(\quad v\) is the terminal voltage.
- \(i\) is the terminal current.
- \(i_{\mathrm{L}}\) is the current through inductor.
- \(G_{\mathrm{p}}\) is the parasitic parallel conductance.
- \(N_{\mathrm{w}}\) is the number of winding turns.
- \(\Phi\) is the magnetic flux.
- \(\Phi_{\text {offset }}\) is the magnetic flux saturation offset.
- \(L\) is the unsaturated inductance.
- \(L_{\text {sat }}\) is the saturated inductance.

\section*{Magnetic Flux Versus Current Characteristic}

The relationships between voltage, current, and flux are defined by the following equations:
\[
\begin{aligned}
& i=i_{L}+v G_{p} \\
& v=N_{w} \frac{d \Phi}{d t} \\
& \Phi=f\left(i_{L}\right)
\end{aligned}
\]
where:
- \(\quad v\) is the terminal voltage.
- \(i\) is the terminal current.
- \(i_{\mathrm{L}}\) is the current through inductor.
- \(G_{\mathrm{p}}\) is the parasitic parallel conductance.
- \(N_{\mathrm{w}}\) is the number of winding turns.
- \(\Phi\) is the magnetic flux.

Magnetic flux is determined by one-dimensional table lookup, based on the vector of current values and the vector of corresponding magnetic flux values that you provide. You can construct these vectors using either negative and positive data, or positive data only. If using positive data only, the vector must start at 0 , and the negative data is automatically calculated by rotation about \((0,0)\).

\section*{Magnetic Flux Density Versus Magnetic Field Strength Characteristic}

The relationships between voltage, current, and flux are defined by the following equations:
\[
\begin{aligned}
& i=i_{L}+v G_{p} \\
& v=N_{w} \frac{d \Phi}{d t} \\
& \Phi=B \cdot A_{e} \\
& B=f(H) \\
& H=\frac{N_{w}}{l_{e}} i_{L}
\end{aligned}
\]
where:
- \(\quad v\) is the terminal voltage.
- \(i\) is the terminal current.
- \(i_{\mathrm{L}}\) is the current through inductor.
- \(G_{p}\) is the parasitic parallel conductance.
- \(N_{\mathrm{w}}\) is the number of winding turns.
- \(\Phi\) is the magnetic flux.
- \(B\) is the magnetic flux density.
- \(H\) is the magnetic field strength.
- \(l_{\mathrm{e}}\) is the effective core length.
- \(A_{\mathrm{e}}\) is the effective core cross-sectional area.

Magnetic flux density is determined by one-dimensional table lookup, based on the vector of magnetic field strength values and the vector of corresponding magnetic flux density values that you provide. You can construct these vectors using either negative and
positive data, or positive data only. If using positive data only, the vector must start at 0 , and the negative data is automatically calculated by rotation about \((0,0)\).

\section*{Magnetic Flux Density Versus Magnetic Field Strength Characteristic with Hysteresis}

The relationships between voltage, current, and flux are defined by the following equations:
\[
\begin{aligned}
& i=i_{L}+v G_{p} \\
& v=N_{w} \frac{d \Phi}{d t} \\
& \Phi=B \cdot A_{e} \\
& B=\mu_{0}(H+M) \\
& H=\frac{N_{w}}{l_{e}} i_{L}
\end{aligned}
\]
where:
- \(v\) is the terminal voltage.
- \(i\) is the terminal current.
- \(i_{\mathrm{L}}\) is the current through inductor.
- \(G_{p}\) is the parasitic parallel conductance.
- \(N_{\mathrm{w}}\) is the number of winding turns.
- \(\Phi\) is the magnetic flux.
- \(B\) is the magnetic flux density.
- \(\mu_{0}\) is the magnetic constant, permeability of free space.
- \(H\) is the magnetic field strength.
- \(M\) is the magnetization of the inductor core.
- \(l_{\mathrm{e}}\) is the effective core length.
- \(A_{\mathrm{e}}\) is the effective core cross-sectional area.

The magnetization acts to increase the magnetic flux density, and its value depends on both the current value and the history of the field strength \(H\). The Jiles-Atherton [1], [2] equations are used to determine \(M\) at any given time. The figure shows a typical plot of the resulting relationship between \(B\) and \(H\).

In this case, the magnetization starts as zero, and hence the plot starts at \(B=H=0\). As the field strength increases, the plot tends to the positive-going hysteresis curve; then on reversal the rate of change of \(H\), it follows the negative-going hysteresis curve. The difference between positive-going and negative-going curves is due to the dependence of \(M\) on the trajectory history. Physically the behavior corresponds to magnetic dipoles in the core aligning as the field strength increases, but not then fully recovering to their original position as field strength decreases.

The starting point for the Jiles-Atherton equation is to split the magnetization effect into two parts, one that is purely a function of effective field strength (\(H_{\text {eff }}\)) and one that is an irreversible part that depends on history:
\[
M=c M_{a n}+(1-c) M_{i r r}
\]

The \(M_{\mathrm{an}}\) term is called the anhysteretic magnetization because it exhibits no hysteresis. It is described by the following function of the current value of the effective field strength, \(H_{\text {eff: }}\)
\[
M_{a n}=M_{s}\left(\operatorname{coth}\left(\frac{H_{e f f}}{\alpha}\right)-\frac{\alpha}{H_{e f f}}\right)
\]

This function defines a saturation curve with limiting values \(\pm M_{\mathrm{s}}\) and point of saturation determined by the value of \(\alpha\), the anhysteretic shape factor. It can be thought of as describing the average of the two hysteretic curves. In the Nonlinear Inductor block, you
provide values for \(d M_{a n} / d H_{\text {eff }}\) when \(H_{\text {eff }}=0\) and a point [\(H_{1}, B_{1}\)] on the anhysteretic BH curve. These values are used to determine values for \(\alpha\) and \(M_{s}\).

The parameter \(c\) is the coefficient for reversible magnetization, and dictates how much of the behavior is defined by \(M_{\mathrm{an}}\) and how much by the irreversible term \(M_{\mathrm{irrr}}\). The JilesAtherton model defines the irreversible term by a partial derivative with respect to field strength:
\[
\begin{aligned}
& \frac{d M_{i r r}}{d H}=\frac{M_{a n}-M_{i r r}}{K \delta-\alpha\left(M_{a n}-M_{i r r}\right)} \\
& \delta= \begin{cases}1 & \text { if } H \geq 0 \\
-1 & \text { if } H<0\end{cases}
\end{aligned}
\]

Comparison of this equation with a standard first order differential equation reveals that as increments in field strength, \(H\), are made, the irreversible term \(M_{\text {irr }}\) attempts to track
the reversible term \(M_{\mathrm{an}}\), but with a variable tracking gain of \(1 /\left(K \delta-\alpha\left(M_{a n}-M_{i r r}\right)\right)\). The tracking error acts to create the hysteresis at the points where \(\delta\) changes sign. The main parameter that shapes the irreversible characteristic is \(K\), which is called the bulk coupling coefficient. The parameter \(\alpha\) is called the inter-domain coupling factor, and is also used to define the effective field strength used when defining the anhysteretic curve:
\[
H_{e f f}=H+\alpha M
\]

The value of \(\alpha\) affects the shape of the hysteresis curve, larger values acting to increase the B-axis intercepts. However, notice that for stability the term \(K \delta-\alpha\left(M_{a n}-M_{i r r}\right)\) must be positive for \(\delta>0\) and negative for \(\delta<0\). Therefore not all values of \(\alpha\) are permissible, a typical maximum value being of the order \(1 \mathrm{e}-3\).

\section*{Procedure for Finding Approximate Values for Jiles-Atherton Equation Coefficients}

You can determine representative parameters for the equation coefficients by using the following procedure:

1 Provide a value for the Anhysteretic B-H gradient when H is zero parameter
\(\left(d M_{a n} / d H_{e f f}\right.\) when \(\left.H_{\text {eff }}=0\right)\) plus a data point \(\left[H_{1}, B_{1}\right]\) on the anhysteretic B-H curve. From these values, the block initialization determines values for \(\alpha\) and \(M_{s}\).
2 Set the Coefficient for reversible magnetization, c parameter to achieve correct initial B-H gradient when starting a simulation from [H B] = [0 0]. The value of \(c\) is approximately the ratio of this initial gradient to the Anhysteretic B-H gradient when \(\mathbf{H}\) is zero. The value of \(c\) must be greater than 0 and less than 1.
3 Set the Bulk coupling coefficient, \(\mathbf{K}\) parameter to the approximate magnitude of \(H\) when \(B=0\) on the positive-going hysteresis curve.
4 Start with \(\alpha\) very small, and gradually increase to tune the value of \(B\) when crossing \(H=0\) line. A typical value is in the range of \(1 \mathrm{e}-4\) to \(1 \mathrm{e}-3\). Values that are too large cause the gradient of the B-H curve to tend to infinity, which is nonphysical and generates a run-time assertion error.

Sometimes iteration on these four steps is required to get a good match against a predefined B-H curve.

\section*{Parameters}
- "Main Tab" on page 1-535
- "Initial Conditions Tab" on page 1-539

\section*{Main Tab}

\section*{Parameterized by}

Select one of the following methods for block parameterization:
- Single inductance (linear) - Provide the values for number of turns, unsaturated inductance, and parasitic parallel conductance.
- Single saturation point - Provide the values for number of turns, unsaturated and saturated inductances, saturation magnetic flux, and parasitic parallel conductance. This is the default option.
- Magnetic flux versus current characteristic - In addition to the number of turns and the parasitic parallel conductance value, provide the current vector and the magnetic flux vector, to populate the magnetic flux versus current lookup table.
- Magnetic flux density versus magnetic field strength characteristic - In addition to the number of turns and the parasitic parallel conductance value, provide the values for effective core length and cross-sectional area, as well as the magnetic field strength vector and the magnetic flux density vector, to populate the magnetic flux density versus magnetic field strength lookup table.
- Magnetic flux density versus magnetic field strength characteristic with hysteresis - In addition to the number of turns and the effective core length and cross-sectional area, provide the values for the initial anhysteretic B-H curve gradient, the magnetic flux density and field strength at a certain point on the B-H curve, as well as the coefficient for the reversible magnetization, bulk coupling coefficient, and inter-domain coupling factor, to define magnetic flux density as a function of both the current value and the history of the field strength.

\section*{Number of turns}

The total number of turns of wire wound around the inductor core. The default value is 10 .

\section*{Unsaturated inductance}

The value of inductance used when the inductor is operating in its linear region. This parameter is visible only when you select Single inductance (linear) or Single saturation point for the Parameterized by parameter. The default value is \(2 \mathrm{e}-4 \mathrm{H}\).

\section*{Saturated inductance}

The value of inductance used when the inductor is operating beyond its saturation point. This parameter is visible only when you select Single saturation point for the Parameterized by parameter. The default value is \(1 \mathrm{e}-4 \mathrm{H}\).

\section*{Saturation magnetic flux}

The value of magnetic flux at which the inductor saturates. This parameter is visible only when you select Single saturation point for the Parameterized by parameter. The default value is \(1.3 \mathrm{e}-5 \mathrm{~Wb}\).

\section*{Current, i}

The current data used to populate the magnetic flux versus current lookup table. This parameter is visible only when you select Magnetic flux versus current characteristic for the Parameterized by parameter. The default value is [0 0.641 .281 .922 .563 .20] A.

\section*{Magnetic flux vector, phi}

The magnetic flux data used to populate the magnetic flux versus current lookup table. This parameter is visible only when you select Magnetic flux versus current characteristic for the Parameterized by parameter. The default value is [0 1.29 2.00 2.27 2.36 2.39].*1e-5 Wb.

\section*{Magnetic field strength vector, \(\mathbf{H}\)}

The magnetic field strength data used to populate the magnetic flux density versus magnetic field strength lookup table. This parameter is visible only when you select Magnetic flux density versus magnetic field strength characteristic for the Parameterized by parameter. The default value is [0 2004006008001000] A/m.

\section*{Magnetic flux density vector, \(B\)}

The magnetic flux density data used to populate the magnetic flux density versus magnetic field strength lookup table. This parameter is visible only when you select Magnetic flux density versus magnetic field strength characteristic for the Parameterized by parameter. The default value is [0 0.811 .251 .421 .481 .49] T.

\section*{Effective length}

The effective core length, that is, the average distance of the magnetic path. This parameter is visible only when you select Magnetic flux density versus magnetic field strength characteristic or Magnetic flux density versus magnetic field strength characteristic with hysteresis for the Parameterized by parameter. The default value is 0.032 m .

\section*{Effective cross-sectional area}

The effective core cross-sectional area, that is, the average area of the magnetic path. This parameter is visible only when you select Magnetic flux density versus magnetic field strength characteristic or Magnetic flux density versus magnetic field strength characteristic with hysteresis for the Parameterized by parameter. The default value is \(1.6 \mathrm{e}-5 \mathrm{~m} \wedge 2\).

\section*{Anhysteretic B-H gradient when \(H\) is zero}

The gradient of the anhysteretic (no hysteresis) B-H curve around zero field strength. Set it to the average gradient of the positive-going and negative-going hysteresis curves. This parameter is visible only when you select Magnetic flux density versus magnetic field strength characteristic with hysteresis for the Parameterized by parameter. The default value is \(0.005 \mathrm{~m} * \mathrm{~T} / \mathrm{A}\).

\section*{Flux density point on anhysteretic \(B-H\) curve}

Specify a point on the anhysteretic curve by providing its flux density value. Picking a point at high field strength where the positive-going and negative-going hysteresis curves align is the most accurate option. This parameter is visible only when you select Magnetic flux density versus magnetic field strength characteristic with hysteresis for the Parameterized by parameter. The default value is 1.49 T .

\section*{Corresponding field strength}

The corresponding field strength for the point that you define by the Flux density point on anhysteretic B-H curve parameter. This parameter is visible only when you select Magnetic flux density versus magnetic field strength characteristic with hysteresis for the Parameterized by parameter. The default value is \(1000 \mathrm{~A} / \mathrm{m}\).

\section*{Coefficient for reversible magnetization, \(c\)}

The proportion of the magnetization that is reversible. The value should be greater than zero and less than one. This parameter is visible only when you select Magnetic flux density versus magnetic field strength characteristic with hysteresis for the Parameterized by parameter. The default value is 0.1.

\section*{Bulk coupling coefficient, \(K\)}

The Jiles-Atherton parameter that primarily controls the field strength magnitude at which the B-H curve crosses the zero flux density line. This parameter is visible only when you select Magnetic flux density versus magnetic field strength characteristic with hysteresis for the Parameterized by parameter. The default value is \(200 \mathrm{~A} / \mathrm{m}\).

\section*{Inter-domain coupling factor, alpha}

The Jiles-Atherton parameter that primarily affects the points at which the B-H curves intersect the zero field strength line. Typical values are in the range of \(1 \mathrm{e}-4\) to \(1 \mathrm{e}-3\). This parameter is visible only when you select Magnetic flux density versus magnetic field strength characteristic with hysteresis for the Parameterized by parameter. The default value is 1e-4.

\section*{Averaging period for power logging}

Averaging period for the hysteresis losses calculation. These losses are proportional to the area enclosed by the B-H trajectory. If the block is excited at a known, fixed frequency, you can set this value to the corresponding excitation period to calculate the hysteresis loss. In this case, the block logs the hysteresis loss once per AC cycle to the variable power_dissipated. If you are using a fixed-step solver, this value must be an integer multiple of the simulation step size.

If the block is not excited at a known, fixed frequency, set this parameter to 0 . In this case, the block sets power_dissipated to zero, and you can calculate the actual hysteresis loss by post-processing the logged variable power_instantaneous.

The default value is 0 s . This parameter is visible only when you select Magnetic flux density versus magnetic field strength characteristic with hysteresis for the Parameterized by parameter.

\section*{Parasitic parallel conductance}

Use this parameter to represent small parasitic effects. A small parallel conductance may be required for the simulation of some circuit topologies. The default value is 1e-9 1/0hm.

\section*{Interpolation option}

The lookup table interpolation option. This parameter is visible only when you select Magnetic flux versus current characteristic or Magnetic flux density versus magnetic field strength characteristic for the Parameterized by parameter. Select one of the following interpolation methods:
- Linear - Uses a linear interpolation function.
- Cubic - Uses the Piecewise Cubic Hermite Interpolation Polynomial (PCHIP).

For more information on interpolation algorithms, see the PS Lookup Table (1D) block reference page.

\section*{Initial Conditions Tab}

\section*{Specify initial state by}

Select the appropriate initial state specification option:
- Current - Specify the initial state of the inductor by the initial current through the inductor (\(i_{\mathrm{L}}\)). This is the default option.
- Magnetic flux - Specify the initial state of the inductor by the magnetic flux.

This parameter is not visible when you select Magnetic flux density versus magnetic field strength characteristic with hysteresis for the Parameterized by parameter on the Main tab.

\section*{Initial current}

The initial current value used to calculate the value of magnetic flux at time zero. This is the current passing through the inductor. Component current consists of current passing through the inductor and current passing through the parasitic parallel conductance. This parameter is visible only when you select Current for the Specify initial state by parameter. The default value is 0 A .

\section*{Initial magnetic flux}

The value of magnetic flux at time zero. This parameter is visible only when you select Magnetic flux for the Specify initial state by parameter. The default is 0 Wb .

\section*{Initial magnetic flux density}

The value of magnetic flux density at time zero. This parameter is visible only when you select Magnetic flux density versus magnetic field strength characteristic with hysteresis for the Parameterized by parameter on the Main tab. The default is 0 T .

\section*{Initial field strength}

The value of magnetic field strength at time zero. This parameter is visible only when you select Magnetic flux density versus magnetic field strength characteristic with hysteresis for the Parameterized by parameter on the Main tab. The default is \(0 \mathrm{~A} / \mathrm{m}\).

\section*{Ports}

The block has the following ports:

Electrical conserving port associated with the positive terminal of the inductor winding

Electrical conserving port associated with the negative terminal of the inductor winding

\section*{References}
[1] Jiles, D. C., and D. L. Atherton. "Theory of ferromagnetic hysteresis." Journal of Magnetism and Magnetic Materials. Vol. 61, 1986, pp. 48-60.
[2] Jiles, D. C., and D. L. Atherton. "Ferromagnetic hysteresis." IEEE Transactions on Magnetics. Vol. 19, No. 5, 1983, pp. 2183-2184.

\section*{See Also}

Nonlinear Transformer

Introduced in R2015b

\section*{Nonlinear Transformer}

Model transformer with nonideal core

\section*{Library}

Passive Devices / Fundamental Components

\section*{Description}

The Nonlinear Transformer block represents a transformer with a nonideal core. A core may be nonideal due to its magnetic properties and dimensions. The equivalent circuit topology depends upon which of the two winding leakage parameterization options you select:
- Combined primary and secondary values

- Separate primary and secondary values

where:
- \(R e q\) is the combined leakage resistance.
- Leq is the combined leakage inductance.
- \(\quad R 1\) is the primary leakage resistance.
- L1 is the primary leakage inductance.
- \(R 2\) is the secondary leakage resistance.
- \(L 2\) is the secondary leakage inductance.
- \(R m\) is the magnetization resistance.
- \(L m\) is the magnetization inductance.

The block provides the following parameterization options for the nonlinear magnetization inductance:
- Single inductance (linear)
- Single saturation point
- Magnetic flux versus current characteristic
- Magnetic flux density versus magnetic field strength characteristic
- Magnetic flux density versus magnetic field strength characteristic with hysteresis

For more information, see the Nonlinear Inductor block reference page.

\section*{Parameters}
- "Main Tab" on page 1-543
- "Magnetization Tab" on page 1-544
- "Initial Conditions Tab" on page 1-548
- "Parasitics Tab" on page 1-549

\section*{Main Tab}

\section*{Primary number of turns}

The number of turns of wire on the primary winding of the transformer. The default value is 100

\section*{Secondary number of turns}

The number of turns of wire on the secondary winding of the transformer. The default value is 200 .

\section*{Winding parameterized by}

Select one of the following methods for the winding leakage parameterization:
- Combined primary and secondary values - Use the lumped resistance and inductance values representing the combined leakage in the primary and secondary windings. This is the default option.
- Separate primary and secondary values - Use separate resistances and inductances to represent leakages in the primary and secondary windings.

\section*{Combined leakage resistance}

The lumped equivalent resistance Req, which represents the combined power loss of the primary and secondary windings. This parameter is visible only when you select Combined primary and secondary values for the Winding parameterized by parameter. The default value is 0.010 hm .

\section*{Combined leakage inductance}

The lumped equivalent inductance \(L e q\), which represents the combined magnetic flux loss of the primary and secondary windings. This parameter is visible only when you select Combined primary and secondary values for the Winding parameterized by parameter. The default value is \(1 \mathrm{e}-4 \mathrm{H}\).

\section*{Primary leakage resistance}

The resistance R1, which represents the power loss of the primary winding. This parameter is visible only when you select Separate primary and secondary
values for the Winding parameterized by parameter. The default value is 0.01 Ohm.

\section*{Primary leakage inductance}

The inductance L1, which represents the magnetic flux loss of the primary winding. This parameter is visible only when you select Separate primary and secondary values for the Winding parameterized by parameter. The default value is 1e-4 H.

\section*{Secondary leakage resistance}

The resistance \(R 2\), which represents the power loss of the secondary winding. This parameter is visible only when you select Separate primary and secondary values for the Winding parameterized by parameter. The default value is 0.01 Ohm.

\section*{Secondary leakage inductance}

The inductance \(L 2\), which represents the magnetic flux loss of the secondary winding. This parameter is visible only when you select Separate primary and secondary values for the Winding parameterized by parameter. The default value is \(1 \mathrm{e}-4 \mathrm{H}\).

\section*{Magnetization Tab}

\section*{Magnetization resistance}

The resistance \(R m\), which represents the magnetic losses in the transformer core. The default value is 1000 hm .

\section*{Magnetization inductance parameterized by}

Select one of the following methods for the nonlinear magnetization inductance parameterization:
- Single inductance (linear) - Provide the unsaturated inductance value.
- Single saturation point - Provide the values for the unsaturated and saturated inductances, as well as saturation magnetic flux. This is the default option.
- Magnetic flux versus current characteristic - Provide the current vector and the magnetic flux vector, to populate the magnetic flux versus current lookup table.
- Magnetic flux density versus magnetic field strength characteristic - Provide the values for effective core length and crosssectional area, as well as the magnetic field strength vector and the magnetic flux density vector, to populate the magnetic flux density versus magnetic field strength lookup table.
- Magnetic flux density versus magnetic field strength characteristic with hysteresis - In addition to the number of turns and the effective core length and cross-sectional area, provide the values for the initial anhysteretic B-H curve gradient, the magnetic flux density and field strength at a certain point on the B-H curve, as well as the coefficient for the reversible magnetization, bulk coupling coefficient, and inter-domain coupling factor, to define magnetic flux density as a function of both the current value and the history of the field strength.

\section*{Unsaturated inductance}

The value of inductance used when the magnetization inductance \(L m\) is operating in its linear region. This parameter is visible only when you select Single inductance (linear) or Single saturation point for the Magnetization inductance parameterized by parameter. The default value is 0.04 H .

\section*{Saturated inductance}

The value of inductance used when the magnetization inductance \(L m\) is operating beyond its saturation point. This parameter is visible only when you select Single saturation point for the Magnetization inductance parameterized by parameter. The default value is 0.01 H .

\section*{Saturation magnetic flux}

The value of magnetic flux at which the magnetization inductance \(L m\) saturates. This parameter is visible only when you select Single saturation point for the Magnetization inductance parameterized by parameter. The default value is 1.6e-4 Wb.

\section*{Current, i}

The current data used to populate the magnetic flux versus current lookup table. This parameter is visible only when you select Magnetic flux versus current characteristic for the Magnetization inductance parameterized by parameter. The default value is [\(\left.0 \begin{array}{lllll}0 & 0.4 & 1.2 & 1.6 & 2.0\end{array}\right]\) A.

\section*{Magnetic flux vector, phi}

The magnetic flux data used to populate the magnetic flux versus current lookup table. This parameter is visible only when you select Magnetic flux versus current characteristic for the Magnetization inductance parameterized by parameter. The default value is [0 00.1610 .250 .2840 .2950 .299].*1e-3 Wb.

\section*{Magnetic field strength vector, \(\mathbf{H}\)}

The magnetic field strength data used to populate the magnetic flux density versus magnetic field strength lookup table. This parameter is visible only when you select Magnetic flux density versus magnetic field strength characteristic for the Magnetization inductance parameterized by parameter. The default value is [02004006008001000] A/m.

\section*{Magnetic flux density vector, \(B\)}

The magnetic flux density data used to populate the magnetic flux density versus magnetic field strength lookup table. This parameter is visible only when you select Magnetic flux density versus magnetic field strength characteristic for the Magnetization inductance parameterized by parameter. The default value is [\(\left.\begin{array}{lllllll}0 & 0.81 & 1.25 & 1.42 & 1.48 & 1.49\end{array}\right]\) T.

\section*{Effective length}

The effective core length, that is, the average distance of the magnetic path around the transformer core. This parameter is visible only when you select Magnetic flux density versus magnetic field strength characteristic for the Magnetization inductance parameterized by parameter. The default value is 0.2 m.

\section*{Effective cross-sectional area}

The effective core cross-sectional area, that is, the average area of the magnetic path around the transformer core. This parameter is visible only when you select Magnetic flux density versus magnetic field strength characteristic for the Magnetization inductance parameterized by parameter. The default value is \(2 \mathrm{e}-4 \mathrm{~m}^{\wedge} 2\).

\section*{Anhysteretic \(B-H\) gradient when \(H\) is zero}

The gradient of the anhysteretic (no hysteresis) B-H curve around zero field strength. Set it to the average gradient of the positive-going and negative-going hysteresis curves. This parameter is visible only when you select Magnetic flux density versus magnetic field strength characteristic with hysteresis for the Magnetization inductance parameterized by parameter. The default value is \(0.005 \mathrm{~m} * \mathrm{~T} / \mathrm{A}\).

\section*{Flux density point on anhysteretic B-H curve}

Specify a point on the anhysteretic curve by providing its flux density value. Picking a point at high field strength where the positive-going and negative-going hysteresis curves align is the most accurate option. This parameter is visible only when you select Magnetic flux density versus magnetic field strength
characteristic with hysteresis for the Magnetization inductance parameterized by parameter. The default value is 1.49 T .

\section*{Corresponding field strength}

The corresponding field strength for the point that you define by the Flux density point on anhysteretic B-H curve parameter. This parameter is visible only when you select Magnetic flux density versus magnetic field strength characteristic with hysteresis for the Magnetization inductance parameterized by parameter. The default value is \(1000 \mathrm{~A} / \mathrm{m}\).

Coefficient for reversible magnetization, \(c\)
The proportion of the magnetization that is reversible. The value should be greater than zero and less than one. This parameter is visible only when you select Magnetic flux density versus magnetic field strength characteristic with hysteresis for the Magnetization inductance parameterized by parameter. The default value is 0.1 .

\section*{Bulk coupling coefficient, \(K\)}

The Jiles-Atherton parameter that primarily controls the field strength magnitude at which the B-H curve crosses the zero flux density line. This parameter is visible only when you select Magnetic flux density versus magnetic field strength characteristic with hysteresis for the Magnetization inductance parameterized by parameter. The default value is \(200 \mathrm{~A} / \mathrm{m}\).

\section*{Inter-domain coupling factor, alpha}

The Jiles-Atherton parameter that primarily affects the points at which the B-H curves intersect the zero field strength line. Typical values are in the range of \(1 \mathrm{e}-4\) to \(1 \mathrm{e}-3\). This parameter is visible only when you select Magnetic flux density versus magnetic field strength characteristic with hysteresis for the Magnetization inductance parameterized by parameter. The default value is 1e-4.

\section*{Interpolation option}

The lookup table interpolation option. This parameter is visible only when you select Magnetic flux versus current characteristic or Magnetic flux density versus magnetic field strength characteristic for the Magnetization inductance parameterized by parameter. Select one of the following interpolation methods:
- Linear - Uses a linear interpolation function.
- Cubic - Uses the Piecewise Cubic Hermite Interpolation Polynomial (PCHIP).

For more information on interpolation algorithms, see the PS Lookup Table (1D) block reference page.

\section*{Initial Conditions Tab}

\section*{Combined leakage inductance initial current}

The value of current through the combined leakage inductance Leq at time zero. This parameter is visible only when you select Combined primary and secondary values for the Winding parameterized by parameter on the Main tab. The default value is 0 A .

\section*{Primary leakage inductance initial current}

The value of current through the primary leakage inductance L1 at time zero. This parameter is visible only when you select Separate primary and secondary values for the Winding parameterized by parameter on the Main tab. The default value is 0 A .

\section*{Secondary leakage inductance initial current}

The value of current through the secondary leakage inductance \(L 2\) at time zero. This parameter is visible only when you select Separate primary and secondary values for the Winding parameterized by parameter on the Main tab. The default value is 0 A .

\section*{Specify magnetization inductance initial state by}

Select the appropriate initial state specification option:
- Current - Specify the initial state of the magnetization inductance Lm by the initial current. This is the default option.
- Magnetic flux - Specify the initial state of the magnetization inductance Lm by the magnetic flux.

This parameter is not visible when you select Magnetic flux density versus magnetic field strength characteristic with hysteresis for the Magnetization inductance parameterized by parameter on the Magnetization tab.

\section*{Magnetization inductance initial current}

The initial current value used to calculate the value of magnetic flux within the magnetization inductance \(L m\) at time zero. This is the current passing through the magnetization inductance Lm. Total magnetization current consists of current passing through the magnetization resistance \(R m\) and current passing through the
magnetization inductance Lm. This parameter is visible only when you select Current for the Specify magnetization inductance initial state by parameter. The default value is 0 A .

\section*{Magnetization inductance initial magnetic flux}

The value of the magnetic flux in the magnetization inductance \(L m\) at time zero. This parameter is visible only when you select Magnetic flux for the Specify magnetization inductance initial state by parameter. The default is 0 Wb .

\section*{Magnetization inductance initial magnetic flux density}

The value of magnetic flux density at time zero. This parameter is visible only when you select Magnetic flux density versus magnetic field strength characteristic with hysteresis for the Magnetization inductance parameterized by parameter on the Magnetization tab. The default is 0 T .

\section*{Magnetization inductance initial field strength}

The value of magnetic field strength at time zero. This parameter is visible only when you select Magnetic flux density versus magnetic field strength characteristic with hysteresis for the Magnetization inductance parameterized by parameter on the Magnetization tab. The default is \(0 \mathrm{~A} / \mathrm{m}\).

\section*{Parasitics Tab}

Combined leakage inductance parasitic parallel conductance
Use this parameter to represent small parasitic effects in parallel to the combined leakage inductance Leq. A small parallel conductance may be required for the simulation of some circuit topologies. This parameter is visible only when you select Combined primary and secondary values for the Winding parameterized by parameter on the Main tab. The default value is 1e-9 1/0hm.

\section*{Primary leakage inductance parasitic parallel conductance}

Use this parameter to represent small parasitic effects in parallel to the primary leakage inductance L1. A small parallel conductance may be required for the simulation of some circuit topologies. This parameter is visible only when you select Separate primary and secondary values for the Winding parameterized by parameter on the Main tab. The default value is 1e-91/0hm.

\section*{Secondary leakage inductance parasitic parallel conductance}

Use this parameter to represent small parasitic effects in parallel to the secondary leakage inductance \(L 2\). A small parallel conductance may be required for the simulation of some circuit topologies. This parameter is visible only when you select

Separate primary and secondary values for the Winding parameterized by parameter on the Main tab. The default value is 1e-9 1/0hm.

\section*{Ports}

The block has the following ports:
+1
Electrical conserving port associated with the positive terminal of the primary winding
+2
Electrical conserving port associated with the positive terminal of the secondary winding
-1
Electrical conserving port associated with the negative terminal of the primary winding
-2
Electrical conserving port associated with the negative terminal of the secondary winding

\section*{See Also}

Nonlinear Inductor

Introduced in R2015b

\section*{Open Circuit}

Three-phase connection that draws no current
:

\section*{Library}

Connections

\section*{Description}

The Open Circuit block models a three-phase connection that draws no current on any of the three phases. In Simscape, physical network block diagrams do not allow unconnected conserving ports. Therefore, use the Open Circuit block to terminate threephase electrical ports on other blocks that you want to leave open-circuit.

\section*{Ports}

The block has the following ports:

Expandable three-phase port

\section*{See Also}

\author{
Simscape Blocks \\ Floating Neutral | Grounded Neutral | Neutral Port
}

\author{
Topics \\ "Three-Phase Three-Level PWM Generator" \\ "Three-Phase Bridge Cycloconverter" \\ "Three-Phase Voltage-Sourced Converter (FLB)" \\ Introduced in R2013b
}

\title{
Park to Clarke Angle Transform
}

\section*{Implement \(d q 0\) to \(\alpha \beta 0\) transform}

Library: Simscape / Power Systems / Simscape Components / Control / Mathematical Transforms

\section*{Description}

The Park to Clarke Angle Transform block converts the direct, quadrature, and zero components in a rotating reference frame to alpha, beta, and zero components in a stationary reference frame. For balanced systems, the zero components are equal to zero.

You can configure the block to align the phase \(a\)-axis of the three-phase system to either the \(q\) - or \(d\)-axis of the rotating reference frame at time, \(t=0\). The figures show the direction of the magnetic axes of the stator windings in the three-phase system, a stationary \(\alpha \beta 0\) reference frame, and a rotating \(d q 0\) reference frame where:
- The \(a\)-axis and the \(q\)-axis are initially aligned.

- The \(a\)-axis and the \(d\)-axis are initially aligned.

In both cases, the angle \(\theta=\omega t\), where
- \(\theta\) is the angle between the \(a\) and \(q\) axes for the \(q\)-axis alignment or the angle between the \(a\) and \(d\) axes for the \(d\)-axis alignment.
- \(\omega\) is the rotational speed of the \(d-q\) reference frame.
- \(t\) is the time, in s , from the initial alignment.

The figures show the time-response of the individual components of equivalent balanced \(d q 0\) and \(\alpha \beta 0\) for an:
- Alignment of the \(a\)-phase vector to the \(q\)-axis

- Alignment of the \(a\)-phase vector to the \(d\)-axis

\section*{Equations}

The Park to Clarke Angle Transform block implements the transform for an \(a\)-phase to \(q\) axis alignment as
\[
\left[\begin{array}{c}
\alpha \\
\beta \\
0
\end{array}\right]=\left[\begin{array}{ccc}
\sin (\theta) & \cos (\theta) & 0 \\
-\cos (\theta) & \sin (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
d \\
q \\
0
\end{array}\right]
\]
where:
- \(d\) and \(q\) are the direct-axis and quadrature-axis components of the two-axis system in the rotating reference frame.
- 0 is the zero component.
- \(\alpha\) and \(\beta\) are the alpha-axis and beta-axis components of the two-phase system in the stationary reference frame.

For an \(a\)-phase to \(d\)-axis alignment, the block implements the transform using this equation:
\[
\left[\begin{array}{c}
\alpha \\
\beta \\
0
\end{array}\right]=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
d \\
q \\
0
\end{array}\right]
\]

\section*{Ports}

\section*{Input}

\section*{\(d q 0-d-q\) axis and zero components \\ vector}

Direct-axis and quadrature-axis components and the zero component of the system in the rotating reference frame.

\section*{Data Types: single | double}

\section*{\(\theta_{\mathrm{abc}}\) - Rotational angle}
scalar | in radians
Angular position of the rotating reference frame. The value of this parameter is equal to the polar distance from the vector of the a-phase in the \(a b c\) reference frame to the initially aligned axis of the \(d q 0\) reference frame.

\section*{Data Types: single | double}

\section*{Output}
\(\alpha \beta 0-\alpha-\beta\) axis and zero components
vector

Alpha-axis component, \(\alpha\), beta-axis component, \(\beta\), and zero component of the two-phase system in the stationary reference frame.

\section*{Data Types: single | double}

\section*{Parameters}

Phase-a axis alignment - dq0 reference frame alignment Q-axis (default)|D-axis

Align the \(a\)-phase vector of the \(a b c\) reference frame to the \(d\) - or \(q\)-axis of the rotating reference frame.

\section*{References}
[1] Krause, P., O. Wasynczuk, S. D. Sudhoff, and S. Pekarek. Analysis of Electric Machinery and Drive Systems. Piscatawy, NJ: Wiley-IEEE Press, 2013.

\section*{See Also}

\section*{Blocks}

Clarke Transform | Clarke to Park Angle Transform | Inverse Clarke Transform | Inverse Park Transform | Park Transform

\section*{Introduced in R2017b}

\section*{Park Transform}

\author{
Implement \(a b c\) to \(d q 0\) transform \\ Library: Simscape / Power Systems / Simscape Components / Control / Mathematical Transforms
}

\section*{Description}

The Park Transform block converts the time-domain components of a three-phase system in an \(a b c\) reference frame to direct, quadrature, and zero components in a rotating reference frame. The block can preserve the active and reactive powers with the powers of the system in the \(a b c\) reference frame by implementing an invariant version of the Park transform. For a balanced system, the zero component is equal to zero.

You can configure the block to align the \(a\)-axis of the three-phase system to either the \(d\) or \(q\)-axis of the rotating reference frame at time, \(t=0\). The figures show the direction of the magnetic axes of the stator windings in an \(a b c\) reference frame and a rotating \(d q 0\) reference frame where:
- The \(a\)-axis and the \(q\)-axis are initially aligned.

- The \(a\)-axis and the \(d\)-axis are initially aligned.

In both cases, the angle \(\theta=\omega t\), where:
- \(\theta\) is the angle between the \(a\) and \(q\) axes for the \(q\)-axis alignment or the angle between the \(a\) and \(d\) axes for the \(d\)-axis alignment.
- \(\omega\) is the rotational speed of the \(d-q\) reference frame.
- \(t\) is the time, in s, from the initial alignment.

The figures show the time-response of the individual components of equivalent balanced \(a b c\) and \(d q 0\) for an:
- Alignment of the \(a\)-phase vector to the \(q\)-axis

- Alignment of the \(a\)-phase vector to the \(d\)-axis

\section*{Equations}

The Park Transform block implements the transform for an \(a\)-phase to \(q\)-axis alignment as
\[
\left[\begin{array}{l}
d \\
q \\
0
\end{array}\right]=\frac{2}{3}\left[\begin{array}{ccc}
\sin (\theta) & \sin \left(\theta-\frac{2 \pi}{3}\right) & \sin \left(\theta+\frac{2 \pi}{3}\right) \\
\cos (\theta) & \cos \left(\theta-\frac{2 \pi}{3}\right) & \cos \left(\theta+\frac{2 \pi}{3}\right) \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right],
\]
where:
- \(\quad a, b\), and \(c\) are the components of the three-phase system in the \(a b c\) reference frame.
- \(d\) and \(q\) are the components of the two-axis system in the rotating reference frame.
- 0 is the zero component of the two-axis system in the stationary reference frame.

For a power invariant \(a\)-phase to \(q\)-axis alignment, the block implements the transform using this equation:
\[
\left[\begin{array}{l}
d \\
q \\
0
\end{array}\right]=\sqrt{\frac{2}{3}}\left[\begin{array}{ccc}
\sin (\theta) & \sin \left(\theta-\frac{2 \pi}{3}\right) & \sin \left(\theta+\frac{2 \pi}{3}\right) \\
\cos (\theta) & \cos \left(\theta-\frac{2 \pi}{3}\right) & \cos \left(\theta+\frac{2 \pi}{3}\right) \\
\sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}}
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
\]

For an \(a\)-phase to \(d\)-axis alignment, the block implements the transform using this equation:
\[
\left[\begin{array}{l}
d \\
q \\
0
\end{array}\right]=\frac{2}{3}\left[\begin{array}{ccc}
\cos (\theta) & \cos \left(\theta-\frac{2 \pi}{3}\right) & \cos \left(\theta+\frac{2 \pi}{3}\right) \\
-\sin (\theta) & -\sin \left(\theta-\frac{2 \pi}{3}\right) & -\sin \left(\theta+\frac{2 \pi}{3}\right) \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] .
\]

The block implements a power invariant \(a\)-phase to \(d\)-axis alignment as
\(\left[\begin{array}{l}d \\ q \\ 0\end{array}\right]=\sqrt{\frac{2}{3}}\left[\begin{array}{ccc}\cos (\theta) & \cos \left(\theta-\frac{2 \pi}{3}\right) & \cos \left(\theta+\frac{2 \pi}{3}\right) \\ -\sin (\theta) & -\sin \left(\theta-\frac{2 \pi}{3}\right) & -\sin \left(\theta+\frac{2 \pi}{3}\right) \\ \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}}\end{array}\right]\left[\begin{array}{l}a \\ b \\ c\end{array}\right]\).

\section*{Ports}

\section*{Input}

\section*{abc - a-, b-, and c-phase components}
vector
Components of the three-phase system in the \(a b c\) reference frame.

\section*{Data Types: single | double}

\section*{\(\boldsymbol{\theta}_{\mathrm{abc}}\) - Rotational angle}
scalar | in radians
Angular position of the rotating reference frame. The value of this parameter is equal to the polar distance from the vector of the a-phase in the \(a b c\) reference frame to the initially aligned axis of the \(d q 0\) reference frame.
Data Types: single | double

\section*{Output}

\section*{\(d q 0-d-q\) axis and zero components}
vector
Direct-axis and quadrature-axis components and the zero component of the system in the rotating reference frame.
```

Data Types: single | double

```

\section*{Parameters}

\section*{Power Invariant - Power invariant transform}
off (default) | on
Option to preserve the active and reactive power of the abc reference frame.
Phase-a axis alignment - dq0 reference frame alignment
Q-axis (default)|D-axis

Align the \(a\)-phase vector of the \(a b c\) reference frame to the \(d\) - or \(q\)-axis of the rotating reference frame.

\section*{References}
[1] Krause, P., O. Wasynczuk, S. D. Sudhoff, and S. Pekarek. Analysis of Electric Machinery and Drive Systems. Piscatawy, NJ: Wiley-IEEE Press, 2013.

\section*{See Also}

\section*{Blocks}

Clarke Transform | Clarke to Park Angle Transform | Inverse Clarke Transform | Inverse Park Transform | Park to Clarke Angle Transform

\section*{Introduced in R2017b}

\section*{Permanent Magnet Synchronous Motor}

Permanent magnet synchronous motor with sinusoidal flux distribution

\section*{Library}

Simscape / Power Systems / Simscape Components / Machines / Permanent Magnet Rotor

\section*{Description}

The Permanent Magnet Synchronous Motor block models a permanent magnet synchronous motor with a three-phase wye-wound stator. The figure shows the equivalent electrical circuit for the stator windings.

\section*{Motor Construction}

This figure shows the motor construction with a single pole-pair on the rotor.

Permanent magnets generate a rotor magnetic field that creates a sinusoidal rate of change of flux with rotor angle.

For the axes convention in the preceding figure, the \(a\)-phase and permanent magnet fluxes are aligned when rotor mechanical angle, \(\theta_{r}\), is zero. The block supports a second rotor axis definition in which rotor mechanical angle is defined as the angle between the \(a\)-phase magnetic axis and the rotor \(q\)-axis.

\section*{Electrical Defining Equations}

Voltages across the stator windings are defined by:
\[
\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right]=\left[\begin{array}{ccc}
R_{s} & 0 & 0 \\
0 & R_{s} & 0 \\
0 & 0 & R_{s}
\end{array}\right]\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right]+\left[\begin{array}{l}
\frac{d \psi_{a}}{d t} \\
\frac{d \psi_{b}}{d t} \\
\frac{d \psi_{c}}{d t}
\end{array}\right],
\]
where:
- \(v_{a}, v_{b}\), and \(v_{c}\) are the individual phase voltages across the stator windings.
- \(R_{s}\) is the equivalent resistance of each stator winding.
- \(i_{a}, i_{b}\), and \(i_{c}\) are the currents flowing in the stator windings.
-
\(\frac{d \psi_{a}}{d t}, \frac{d \psi_{b}}{d t}\), and \(\frac{d \psi_{c}}{d t}\) are the rates of change of magnetic flux in each stator winding.
The permanent magnet and the three windings contribute to the total flux linking each winding. The total flux is defined by:
\[
\left[\begin{array}{l}
\psi_{a} \\
\psi_{b} \\
\psi_{c}
\end{array}\right]=\left[\begin{array}{lll}
L_{a a} & L_{a b} & L_{a c} \\
L_{b a} & L_{b b} & L_{b c} \\
L_{c a} & L_{c b} & L_{c c}
\end{array}\right]\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right]+\left[\begin{array}{l}
\psi_{a m} \\
\psi_{b m} \\
\psi_{c m}
\end{array}\right],
\]
where:
- \(\psi_{a}, \psi_{b}\), and \(\psi_{c}\) are the total fluxes linking each stator winding.
- \(L_{a a}, L_{b b}\), and \(L_{c c}\) are the self-inductances of the stator windings.
- \(L_{a b}, L_{a c}, L_{b a}\), and so on, are the mutual inductances of the stator windings.
- \(\psi_{a m}, \psi_{b m}\), and \(\psi_{c m}\) are the permanent magnet fluxes linking the stator windings.

The inductances in the stator windings are functions of rotor electrical angle, defined by:
\[
\begin{aligned}
& \theta_{e}=N \theta_{r}, \\
& L_{a a}=L_{s}+L_{m} \cos \left(2 \theta_{e}\right), \\
& L_{b b}=L_{s}+L_{m} \cos \left(2\left(\theta_{e}-2 \pi / 3\right)\right), \\
& L_{c c}=L_{s}+L_{m} \cos \left(2\left(\theta_{e}+2 \pi / 3\right)\right), \\
& L_{a b}=L_{b a}=-M_{s}-L_{m} \cos \left(2\left(\theta_{e}+\pi / 6\right)\right), \\
& L_{b c}=L_{c b}=-M_{s}-L_{m} \cos \left(2\left(\theta_{e}+\pi / 6-2 \pi / 3\right)\right),
\end{aligned}
\]
and
\[
L_{c a}=L_{a c}=-M_{s}-L_{m} \cos \left(2\left(\theta_{e}+\pi / 6+2 \pi / 3\right)\right)
\]
where:
- \(\theta_{r}\) is the rotor mechanical angle.
- \(\theta_{e}\) is the rotor electrical angle.
- \(L_{s}\) is the stator self-inductance per phase. This value is the average self-inductance of each of the stator windings.
- \(L_{m}\) is the stator inductance fluctuation. This value is the amplitude of the fluctuation in self-inductance and mutual inductance with changing rotor angle.
- \(M_{s}\) is the stator mutual inductance. This value is the average mutual inductance between the stator windings.

The permanent magnet flux linking winding \(a\) is a maximum when \(\theta_{e}=0^{\circ}\) and zero when \(\theta_{e}=90^{\circ}\). Therefore, the linked motor flux is defined by:
\[
\left[\begin{array}{l}
\psi_{a m} \\
\psi_{b m} \\
\psi_{c m}
\end{array}\right]=\left[\begin{array}{c}
\psi_{m} \cos \theta_{e} \\
\psi_{m} \cos \left(\theta_{e}-2 \pi / 3\right) \\
\psi_{m} \cos \left(\theta_{e}+2 \pi / 3\right)
\end{array}\right] .
\]
where \(\psi_{m}\) is the permanent magnet flux linkage.

\section*{Simplified Electrical Equations}

Applying Park's transformation to the block electrical equations produces an expression for torque that is independent of the rotor angle.

Park's transformation is defined by:
\[
P=2 / 3\left[\begin{array}{ccc}
\cos \theta_{e} & \cos \left(\theta_{e}-2 \pi / 3\right) & \cos \left(\theta_{e}+2 \pi / 3\right) \\
-\sin \theta_{e} & -\sin \left(\theta_{e}-2 \pi / 3\right) & -\sin \left(\theta_{e}+2 \pi / 3\right) \\
0.5 & 0.5 & 0.5
\end{array}\right] .
\]
where \(\theta_{e}\) is the electrical angle defined as \(N \theta_{r} . N\) is the number of pole pairs.
Using Park's transformation on the stator winding voltages and currents transforms them to the dq0 frame, which is independent of the rotor angle:
\[
\left[\begin{array}{l}
v_{d} \\
v_{q} \\
v_{0}
\end{array}\right]=P\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right]
\]
and
\[
\left[\begin{array}{l}
i_{d} \\
i_{q} \\
i_{0}
\end{array}\right]=P\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right] .
\]

Applying Park's transformation to the first two electrical equations produces the following equations that define the block behavior:
\[
\begin{aligned}
& v_{d}=R_{s} i_{d}+L_{d} \frac{d i_{d}}{d t}-N \omega i_{q} L_{q}, \\
& v_{q}=R_{s} i_{q}+L_{q} \frac{d i_{q}}{d t}+N \omega\left(i_{d} L_{d}+\psi_{m}\right), \\
& v_{0}=R_{s} i_{0}+L_{0} \frac{d i_{0}}{d t},
\end{aligned}
\]
and
\[
T=\frac{3}{2} N\left(i_{q}\left(i_{d} L_{d}+\psi_{m}\right)-i_{d} i_{q} L_{q}\right),
\]
where:
- \(L_{d}=L_{s}+M_{s}+3 / 2 L_{m} . L_{d}\) is the stator \(d\)-axis inductance.
- \(L_{q}=L_{s}+M_{s}-3 / 2 L_{m}\). \(L_{q}\) is the stator \(q\)-axis inductance.
- \(L_{0}=L_{s}-2 M_{s} . L_{0}\) is the stator zero-sequence inductance.
- \(\omega\) is the rotor mechanical rotational speed.
- \(N\) is the number of rotor permanent magnet pole pairs.
- \(T\) is the rotor torque. Torque flows from the motor case (block physical port C) to the motor rotor (block physical port R).

The PMSM block uses the original, non-orthogonal implementation of the Park transform. If you try to apply the alternative implementation, you get different results for the dq0 voltage and currents.

\section*{Alternative Flux Linkage Parameterization}

You can parameterize the motor using the back EMF or torque constants which are more commonly given on motor datasheets by using the Permanent magnet flux linkage option.

The back EMF constant is defined as the peak voltage induced by the permanent magnet in each of the phases per unit rotational speed. It is related to peak permanent magnet flux linkage by:
\[
k_{e}=N \psi_{m} .
\]

From this definition, it follows that the back EMF \(e_{p h}\) for one phase is given by:
\[
e_{p h}=k_{e} \omega .
\]

The torque constant is defined as the peak torque induced by each of the phases per unit current. It is numerically identical in value to the back EMF constant when both are expressed in SI units:
\[
k_{t}=N \psi_{m} .
\]

When \(L_{d}=L_{q}\), and when the currents in all three phases are balanced, it follows that the combined torque \(T\) is given by:
\[
T=\frac{3}{2} k_{t} i_{q}=\frac{3}{2} k_{t} I_{p k},
\]
where \(I_{p k}\) is the peak current in any of the three windings.
The factor \(3 / 2\) follows from this being the steady-state sum of the torques from all phases. Therefore the torque constant \(k_{t}\) could also be defined as:
\[
k_{t}=\frac{2}{3}\left(\frac{T}{I_{p k}}\right),
\]
where \(T\) is the measured total torque when testing with a balanced three-phase current with peak line voltage \(I_{p k}\). Writing in terms of RMS line voltage:
\[
k_{t}=\sqrt{\frac{2}{3}}\left(\frac{T}{i_{\text {line }, \text { mus }}}\right) .
\]

\section*{Variables}

Use the Variables settings to specify the priority and initial target values for the block variables before simulation. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape) .

Unlike block parameters, variables do not have conditional visibility. The Variables settings include all the existing block variables. If a variable is not used in the set of equations corresponding to the selected block configuration, the values specified for this variable are ignored.

\section*{Ports}

Expandable three-phase port
n
Electrical conserving port associated with the neutral phase
R
Mechanical rotational conserving port associated with the motor rotor
C
Mechanical rotational conserving port associated with the motor case

\section*{Parameters}

\section*{Main}

\section*{Number of pole pairs}

Number of permanent magnet pole pairs on the rotor. The default value is 6 .

\section*{Permanent magnet flux linkage parameterization}

Choose Specify flux linkage, the default value, Specify torque constant, or Specify back EMF constant.

\section*{Permanent magnet flux linkage}

Peak permanent magnet flux linkage with any of the stator windings. This parameter is visible only if you set Permanent magnet flux linkage to Specify flux linkage.The default value is 0.03 Wb .

\section*{Torque constant}

Torque constant with any of the stator windings. This parameter is visible only if you set Permanent magnet flux linkage to Specify torque constant. The default value is \(0.18 \mathrm{~N} * \mathrm{~m} / \mathrm{A}\).

\section*{Back EMF constant}

Back EMF constant with any of the stator windings. This parameter is visible only if you set Permanent magnet flux linkage to Specify back EMF constant. The default value is \(0.18 \mathrm{~V} * \mathrm{~s} / \mathrm{rad}\).

\section*{Stator parameterization}

Choose Specify Ld, Lq, and L0, the default value, or Specify Ls, Lm, and Ms.

\section*{Stator d-axis inductance, Ld}

Direct-axis inductance. This parameter is visible only if you set Stator parameterization to Specify Ld, Lq, and L0. The default value is 0.00019 H .

\section*{Stator q-axis inductance, Lq}

Quadrature-axis inductance. This parameter is visible only if you set Stator parameterization to Specify Ld, Lq, and L0. The default value is 0.00025 H .

\section*{Stator zero-sequence inductance, L0}

Zero-sequence inductance. This parameter is visible only if you set Stator parameterization to Specify Ld, Lq, and L0. The default value is 0.00016 H .

\section*{Stator self-inductance per phase, Ls}

Average self-inductance of each of the three stator windings. This parameter is visible only if you set Stator parameterization to Specify Ls, Lm, and Ms. The default value is 0.0002 H .

\section*{Stator inductance fluctuation, \(\mathbf{L m}\)}

Amplitude of the fluctuation in self-inductance and mutual inductance of the stator windings with rotor angle. This parameter is visible only if you set Stator parameterization to Specify Ls, Lm, and Ms. The default value is -0.00002 H .

\section*{Stator mutual inductance, Ms}

Average mutual inductance between the stator windings. This parameter is visible only if you set Stator parameterization to Specify Ls, Lm, and Ms. The default value is 0.00002 H .

\section*{Stator resistance per phase, Rs}

Resistance of each of the stator windings. The default value is 0.0130 hm .

\section*{Zero sequence}

Option to neglect zero-sequence terms. Choices are:
- Include - Include zero-sequence terms. To prioritize model fidelity, use this default setting. Using this option results in an error for simulations that use the Partitioning solver. For more information, see "Increase Simulation Speed Using the Partitioning Solver" (Simscape).
- Exclude - Exclude zero-sequence terms. To prioritize simulation speed for desktop simulation or real-time deployment, select this option.

\section*{Rotor angle definition}

Reference point for the rotor angle measurement. The default value is Angle between the a-phase magnetic axis and the d-axis. This definition is shown in the "Motor Construction" on page 1-566 figure. When you select this value, the rotor and \(a\)-phase fluxes are aligned when the rotor angle is zero.

The other value you can choose for this parameter is Angle between the a-phase magnetic axis and the \(q\)-axis. When you select this value, the \(a\)-phase current generates maximum torque when the rotor angle is zero.

\section*{Mechanical}

\section*{Rotor Inertia}

Inertia of the rotor attached to mechanical translational port \(\mathbf{R}\). The default value is \(0.01 \mathrm{~kg}^{*} \mathrm{~m}^{\wedge} 2\). The value can be zero.

\section*{Rotor damping}

Rotary damping. The default value is \(0 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})\).

\section*{References}
[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.
[2] Anderson, P. M. Analysis of Faulted Power Systems. Hoboken, NJ: Wiley-IEEE Press, 1995.

\section*{See Also}

\section*{Simscape Blocks}

Brushless DC Motor | Hybrid Excitation Synchronous Machine

\section*{Blocks}

BLDC Commutation Logic | BLDC Current Controller | BLDC Current Controller with PWM Generation

\author{
Topics \\ "Expand and Collapse Three-Phase Ports on a Block" \\ "Electric Power Assisted Steering" \\ "Three-Phase PMSM Drive" \\ "Parameterize a Permanent Magnet Synchronous Motor" \\ Introduced in R2013b
}

\section*{Phase Permute}

\section*{Permute phases of three-phase system}

\section*{Library}

\section*{Connections}

\section*{Description}

The Phase Permute block cyclically permutes (changes the order of) the phases of a threephase system.

The block has two three-phase connections associated with its terminals. If you consider the side of the block labeled \(\mathbf{\sim 1 2 3}\) (\(\mathbf{a 1 , b 1 , c 1}\) in expanded view) as side 1 and the side of the block labeled \(\mathbf{\sim 2 3 1}(\mathbf{a} 2, \mathbf{b 2}, \mathbf{c 2})\) as side 2, then the block connects phases as shown in the table.
\begin{tabular}{|l|l|}
\hline Side 1 Phase & Connects to Side 2 Phase \\
\hline a1 & c2 \\
\hline b1 & a2 \\
\hline c1 & b2 \\
\hline
\end{tabular}

\section*{Ports}

The block has the following ports:
~123
Expandable three-phase port
~231
Expandable three-phase port

\section*{See Also}

\section*{Simscape Blocks}

Phase Splitter

\author{
Topics \\ "Three-Phase Asynchronous Machine Starting" \\ "Three-Phase Asynchronous Wind Turbine Generator" \\ "Marine Full Electric Propulsion Power System"
}

Introduced in R2013b

\section*{Phase Splitter}

Expand composite three-phase port

\section*{Library}

Connections

\section*{Description}

The Phase Splitter block expands a composite three-phase port into its constituent phases.

The expanded output ports are electrical conserving ports. Therefore, you can connect the output ports to electrical components from the Simscape and Simscape Electronics libraries.

\section*{Ports}

The block has the following ports:

Composite three-phase port
a, b, c
Constituent phases of the expanded three-phase port

\section*{See Also}

\section*{Simscape Blocks}

Phase Permute

\section*{Topics}
"Comparison of Three-Phase Port Types" "AC Cable with Bonded Sheaths"

\section*{Introduced in R2013b}

\section*{Phase Voltage Sensor}

Measure phase voltages in three-phase system

\section*{Library}

\section*{Sensors}

\section*{Description}

The Phase Voltage Sensor block represents an ideal three-phase voltage sensor. It measures the voltages across the three-phase ports \(\sim 1\) and \(\sim 2\) and outputs a single threeelement, physical signal vector. Each element of the physical signal output vector is equal to the voltage in the respective phase.

\section*{Ports}

The block has the following ports:
\(\sim 1\)
Expandable three-phase port
\(\sim 2\)
Expandable three-phase port
V
Three-element physical signal vector output port associated with the phase voltages

\section*{See Also}

Line Voltage Sensor

\section*{Topics}
"Expand and Collapse Three-Phase Ports on a Block"

\section*{Introduced in R2013b}

\section*{PMSM Current Controller}

Permanent magnet synchronous machine current controller
Library: Simscape / Power Systems / Simscape Components / Control / PMSM Control

\section*{Description}

The PMSM Current Controller block implements a discrete-time PI-based PMSM current controller in the rotor \(\mathrm{d}-\mathrm{q}\) reference frame.

You typically use this block in a series of blocks making up a control structure.
- You can generate a current reference in the d-q frame to be used as an input to this block with a PMSM Current Reference Generator.
- You can obtain a voltage reference in the abc domain by converting the output of this block using an Inverse Park Transform block.

You can see an example of a full control structure, from machine measurements to machine inputs, in the PMSM Field-Oriented Control block.

\section*{Equations}

The block is discretized using the backward Euler method due to its first-order simplicity and its stability.

Two PI current controllers implemented in the rotor reference frame produce the reference voltage vector:
\[
v_{d}^{r e f}=\left(K_{p_{-} i d}+K_{i_{-} i d} \frac{T_{s} z}{z-1}\right)\left(i_{d}^{r e f}-i_{d}\right)+v_{d_{-} F F},
\]
and
\[
v_{q}^{r e f}=\left(K_{p_{-} i q}+K_{i_{-} i q} \frac{T_{s} z}{z-1}\right)\left(i_{q}^{r e f}-i_{q}\right)+v_{q_{-} F F},
\]
where:
\(v_{d}^{\text {ref }}\) and \(v_{q}^{r e f}\) are the \(d\)-axis and \(q\)-axis reference voltages, respectively.
\(i_{d}^{\text {-ef }}\) and \(i_{q}^{i^{\text {ref }}}\) are the \(d\)-axis and \(q\)-axis reference currents, respectively.
\(i_{d}\) and \({ }^{i_{q}}\) are the \(d\)-axis and \(q\)-axis currents, respectively.
- \(K_{p \text { id }}\) and \(K_{p \text { iq }}\) are the proportional gains for the \(d\)-axis and \(q\)-axis controllers, respectively.
- \(K_{i \text { i } d}\) and \(K_{i i q}\) are the integral gains for the \(d\)-axis and \(q\)-axis controllers, respectively.
- \(\quad v_{d F F}\) and \(v_{q_{-} F F}\) are the feedforward voltages for the \(d\)-axis and \(q\)-axis, respectively, obtained from the machine mathematical equations and provided as inputs.
- \(T_{s}\) is the sample time of the discrete controller.

\section*{Zero Cancellation}

Using PI control results in a zero in the closed-loop transfer function, which can result in undesired overshoot in the closed-loop response. This zero can be canceled by introducing a zero-cancelation block in the feedforward path. The zero cancellation transfer functions in discrete time are:
\[
G_{Z C_{-} i d}(z)=\frac{\frac{T_{s} K_{i_{-} i d}}{K_{p_{-} i d}}}{z+\left(\frac{T_{s}-\frac{K_{p_{-} i d}}{K_{i_{-} i d}}}{\frac{K_{p_{-} i d}}{K_{i_{-} i d}}}\right)},
\]
and
\[
G_{Z C_{-} i q}(z)=\frac{\frac{T_{s} K_{i_{-} i q}}{K_{p_{-} i q}}}{z+\left(\frac{T_{s}-\frac{K_{p_{-} i q}}{K_{i_{-} i q}}}{\frac{K_{p_{-} i q}}{K_{i_{-} i q}}}\right)} .
\]

\section*{Voltage Saturation}

Saturation must be imposed when the stator voltage vector exceeds the voltage phase limit \(V_{\text {ph_max }}\) :
\[
\sqrt{v_{d}^{2}+v_{q}^{2}} \leq V_{p h_{-} \max },
\]
where \(v_{d}\) and \(v_{q}\) are the \(d\)-axis and \(q\)-axis voltages, respectively.
In the case of axis prioritization, the voltages \(v_{1}\) and \(v_{2}\) are introduced, where:
- \(v_{1}=v_{d}\) and \(v_{2}=v_{q}\) for \(d\)-axis prioritization.
- \(v_{1}=v_{q}\) and \(v_{2}=v_{d}\) for \(q\)-axis prioritization.

The constrained (saturated) voltages \(\nu_{1}^{\text {sat }}\) and \(v_{2}^{\text {sat }}\) are obtained as follows:
\[
v_{1}^{\text {sat }}=\min \left(\max \left(v_{1}^{\text {unsat }},-V_{p h_{-} \max }\right), V_{p h_{-} \max }\right)
\]
and
\[
v_{2}^{\text {sat }}=\min \left(\max \left(v_{2}^{\text {unsat }},-V_{2 _\max }\right), V_{2 _\max }\right),
\]
where:
- \(v_{1}^{\text {unsat }}\) and \(v_{2}^{\text {unsat }}\) are the unconstrained (unsaturated) voltages.
- \(v_{2 _\max }\) is the maximum value of \(v_{2}\) that does not exceed the voltage phase limit, given by \(v_{2_{-} \max }=\sqrt{\left(V_{p h _m a x}\right)^{2}-\left(v_{1}^{s a t}\right)^{2}}\).

In the case that the direct and quadrature axes have the same priority (d-q equivalence) the constrained voltages are obtained as follows:
\[
v_{d}^{\text {sat }}=\min \left(\max \left(v_{d}^{\text {unsat }},-V_{d_{-} \max }\right), V_{d_{-} \max }\right)
\]
and
\[
v_{q}^{\text {sat }}=\min \left(\max \left(v_{q}^{\text {unsat }},-V_{q_{-} \max }\right), V_{q_{-} \max }\right),
\]
where
\[
V_{d_{-} \max }=\frac{V_{\text {ph_max }}\left|v_{d}^{\text {unsat }}\right|}{\sqrt{\left(v_{d}^{\text {unsat }}\right)^{2}+\left(v_{q}^{\text {unsat }}\right)^{2}}}
\]
and
\[
V_{q_{-} \text {max }}=\frac{V_{\text {ph_max }}\left|v_{q}^{\text {unsat }}\right|}{\sqrt{\left(v_{d}^{\text {unsat }}\right)^{2}+\left(v_{q}^{\text {unsat }}\right)^{2}}} .
\]

\section*{Integral Anti-Windup}

An anti-windup mechanism is employed to avoid saturation of integrator output. In such a situation, the integrator gains become:
\[
K_{i_{-} i d}+K_{a w_{-} i d}\left(v_{d}^{\text {sat }}-v_{d}^{\text {unsat }}\right)
\]
and
\[
K_{i_{-} i q}+K_{a w_{-} i q}\left(v_{q}^{s a t}-v_{q}^{u n s a t}\right),
\]
where \(K_{a w_{-} d}\) and \(K_{a w-i q}\) are the anti-windup gains for the \(d\)-axis and \(q\)-axis, respectively.

\section*{Assumptions}
- The plant model for direct and quadrature axis can be approximated with a first-order system.
- This control solution is used only for permanent magnet synchronous motors with sinusoidal flux distribution and field windings.

\section*{Ports}

\section*{Input}

\section*{idqRef - Reference currents \\ vector}

Desired \(d\) - and \(q\)-axis currents for control of a PMSM, in A.
Data Types: single | double

\section*{idq - Measured currents \\ vector}

Actual \(d\) - and \(q\)-axis currents of the controlled PMSM, in A.

\section*{Data Types: single | double}

\section*{vdqFF - Feedforward voltages}
vector
Feedforward pre-control voltages, in V.
Data Types: single | double

\section*{VphMax - Maximum phase voltage}
scalar
Maximum allowable voltage in each phase, in V.
Data Types: single | double

\section*{Reset - External reset \\ scalar}

External reset signal (rising edge) for integrators.
Data Types: single | double

\section*{Output}

\section*{vdqRef - Reference voltages}
vector
Desired \(d\) - and \(q\)-axis voltages for control of a PMSM, in V.
Data Types: single | double

\section*{Parameters}

\section*{Control Parameters}

D-axis current proportional gain - D-axis proportional gain 1 (default) | positive number

Proportional gain of the PI controller used for direct-axis current control.

\section*{D-axis current integral gain - D-axis integral gain} 100 (default) | positive number

Integrator gain of the PI controller used for direct-axis current control.
D-axis current anti-windup gain - D-axis anti-windup gain 1 (default) | positive number

Anti-windup gain of the PI controller used for direct-axis current control.
\(\mathbf{Q}\)-axis current proportional gain - \(\mathbf{Q}\)-axis proportional gain 1 (default) | positive number

Proportional gain of the PI controller used for quadrature-axis current control.
Q-axis current integral gain - \(\mathbf{Q}\)-axis integral gain
100 (default) | positive number

Integrator gain of the PI controller used for quadrature-axis current control.
Q-axis current anti-windup gain - \(\mathbf{Q}\)-axis anti-windup gain
1 (default) | positive number
Anti-windup gain of the PI controller used for quadrature-axis current control.

\section*{Sample time (-1 for inherited) - Block sample time -1 (default)|-1 or positive number}

Sample time for the block (-1 for inherited). If you use this block inside a triggered subsystem, set the sample time to -1. If you use this block in a continuous variable-step model, you can specify the sample time explicitly.

\section*{Axis prioritization - Axis prioritization for voltage limiter \(q\)-axis (default)|d-axis|d-q equivalence}

Prioritize or maintain the ratio between the \(d\) - and \(q\)-axes when the block limits voltage.

\section*{Enable zero cancellation - Feedforward zero-cancellation} off (default) | on

Enable or disable zero-cancellation on the feedforward path.

\section*{Enable pre-control voltage - Pre-control voltage on (default) | off}

Enable or disable pre-control voltage.

\section*{References}
[1] Bernardes, T., V. F. Montagner, H. A. Gründling, and H. Pinheiro. "Discrete-time sliding mode observer for sensorless vector control of permanent magnet synchronous machine." IEEE Transactions on Industrial Electronics. Vol. 61, Number 4, 2014, pp. 1679-1691.
[2] Carpiuc, S., and C. Lazar. "Fast real-time constrained predictive current control in permanent magnet synchronous machine-based automotive traction drives." IEEE Transactions on Transportation Electrification. Vol.1, Number 4, 2015, pp. 326335.

\section*{See Also}

\author{
Blocks \\ PMSM Current Controller with Pre-Control | PMSM Current Reference Generator Introduced in R2017b
}

\section*{PMSM Current Controller with Pre-Control}

Permanent magnet synchronous machine current controller with pre-control
Library: Simscape / Power Systems / Simscape Components / Control / PMSM Control

\section*{Description}

The PMSM Current Controller with Pre-Control block implements a discrete-time PIbased PMSM current controller in the rotor d-q reference frame with internal feedforward pre-control.

You typically use this block in a series of blocks making up a control structure.
- You can generate a current reference in the d-q frame to be used as an input to this block with a PMSM Current Reference Generator.
- You can obtain a voltage reference in the abc domain by converting the output of this block using an Inverse Park Transform block.

You can see an example of a full control structure, from machine measurements to machine inputs, in the PMSM Field-Oriented Control block.

\section*{Equations}

The block is discretized using the backward Euler method due to its first-order simplicity and its stability.

Two PI current controllers implemented in the rotor reference frame produce the reference voltage vector:
\[
v_{d}^{r e f}=\left(K_{p_{-} i d}+K_{i_{-} i d} \frac{T_{s} z}{z-1}\right)\left(i_{d}^{r e f}-i_{d}\right)+v_{d_{-} F F},
\]
and
\[
v_{q}^{r e f}=\left(K_{p_{-} i q}+K_{i_{-} i q} \frac{T_{s} z}{z-1}\right)\left(i_{q}^{r e f}-i_{q}\right)+v_{q_{-} F F},
\]
where
\(v_{d}^{r e f}\) and \(v_{q}^{r e f}\) are the \(d\)-axis and \(q\)-axis reference voltages, respectively.
\(i_{d}^{r e f}\) and \({ }^{i_{q}^{r e f}}\) are the \(d\)-axis and \(q\)-axis reference currents, respectively.
- \(i_{d}\) and \({ }^{i_{q}}\) are the \(d\)-axis and \(q\)-axis currents, respectively.
- \(K_{p \text { id }}\) and \(K_{p \text { iq }}\) are the proportional gains for the \(d\)-axis and \(q\)-axis controllers, respectively.
- \(\quad K_{i \text { id }}\) and \(K_{i i q}\) are the integral gains for the \(d\)-axis and \(q\)-axis controllers, respectively.
- \(T_{s}\) is the sample time of the discrete controller.
- \(\quad v_{d_{-} F F}\) and \(v_{q_{_} F F}\) are the feedforward voltages for the \(d\)-axis and \(q\)-axis, respectively.

The feedforward voltages are obtained from the machine mathematical equations:
\[
v_{d_{-} F F}=-\omega_{e} L_{q} i_{q},
\]
and
\[
v_{q_{-} F F}=\omega_{e}\left(L_{d} i_{d}+\psi_{m}\right),
\]
where:
- \(\omega_{e}\) is the rotor electrical velocity.
- \(L_{d}\) and \(L_{q}\) are the \(d\)-axis and \(q\)-axis inductances, respectively.
- \(\psi_{m}\) is the permanent magnet flux linkage.

\section*{Zero Cancellation}

Using PI control results in a zero in the closed-loop transfer function, which can result in undesired overshoot in the closed-loop response. This zero can be canceled by introducing a zero-cancelation block in the feedforward path. The zero cancellation transfer functions in discrete time are:
\[
G_{Z C_{-} i d}(z)=\frac{\frac{T_{s} K_{i_{-} i d}}{K_{p_{-} i d}}}{z+\left(\frac{T_{s}-\frac{K_{p_{-} i d}}{K_{i_{-} i d}}}{\frac{K_{p_{-} i d}}{K_{i_{-} i d}}}\right)},
\]
and
\[
G_{Z C_{-} i q}(z)=\frac{\frac{T_{s} K_{i_{-} i q}}{K_{p_{-} i q}}}{z+\left(\frac{T_{s}-\frac{K_{p_{-} i q}}{K_{i_{-} i q}}}{\frac{K_{p_{-} i q}}{K_{i_{-} i q}}}\right)} .
\]

\section*{Voltage Saturation}

Saturation must be imposed when the stator voltage vector exceeds the voltage phase limit \(V_{\text {ph_max }}\) :
\[
\sqrt{v_{d}^{2}+v_{q}^{2}} \leq V_{p h_{-} \max },
\]
where \(v_{d}\) and \(v_{q}\) are the \(d\)-axis and \(q\)-axis voltages, respectively.
In the case of axis prioritization, the voltages \(v_{1}\) and \(v_{2}\) are introduced, where:
- \(v_{1}=v_{d}\) and \(v_{2}=v_{q}\) for \(d\)-axis prioritization.
- \(v_{1}=v_{q}\) and \(v_{2}=v_{d}\) for \(q\)-axis prioritization.

The constrained (saturated) voltages \(\nu_{1}^{\text {sat }}\) and \(\nu_{2}^{\text {sat }}\) are obtained as follows:
\[
v_{1}^{s a t}=\min \left(\max \left(v_{1}^{u n s a t},-V_{p h_{-} \max }\right), V_{p h_{-} \max }\right)
\]
and
\[
v_{2}^{\text {sat }}=\min \left(\max \left(v_{2}^{\text {unsat }},-V_{2 _} \max \right), V_{2_{-}} \max \right),
\]
where:
- \(v_{1}^{\text {unsat }}\) and \(v_{2}^{v_{2}^{\text {unsat }}}\) are the unconstrained (unsaturated) voltages.
- \(v_{2 \text { max }}\) is the maximum value of \(v_{2}\) that does not exceed the voltage phase limit, given
\[
\text { by } v_{2_{-} \max }=\sqrt{\left(V_{p h_{-} \max }\right)^{2}-\left(v_{1}^{s a t}\right)^{2}} \text {. }
\]

In the case that the direct and quadrature axes have the same priority (d-q equivalence), the constrained voltages are obtained as follows:
\[
v_{d}^{\text {sat }}=\min \left(\max \left(v_{d}^{\text {unsat }},-V_{d_{-} \max }\right), V_{d_{-} \max }\right)
\]
and
\[
v_{q}^{\text {sat }}=\min \left(\max \left(v_{q}^{\text {unsat }},-V_{q_{-} \max }\right), V_{q_{-} \max }\right),
\]
where:
\[
V_{d_{-} \max }=\frac{V_{p h_{-} \max }| |_{d}^{\text {unsat }} \mid}{\sqrt{\left(v_{d}^{u n s a t}\right)^{2}+\left(v_{q}^{\text {unsat }}\right)^{2}}}
\]
and
\[
V_{q_{-} \max }=\frac{V_{p_{-} \max }\left|v_{q}^{\text {unsat }}\right|}{\sqrt{\left(v_{d}^{\text {unsat }}\right)^{2}+\left(v_{q}^{\text {unsat }}\right)^{2}}} .
\]

\section*{Integral Anti-Windup}

An anti-windup mechanism is employed to avoid saturation of integrator output. In such a situation, the integrator gains become:
\[
K_{i_{-} i d}+K_{a w_{-} i d}\left(v_{d}^{\text {sat }}-v_{d}^{u n s a t}\right)
\]
and
\[
K_{i_{-} i q}+K_{a w_{-} i q}\left(v_{q}^{s a t}-v_{q}^{u n s a t}\right),
\]
where \(K_{a w i d}, K_{a w_{i} q}\), and \(K_{a w_{-} f}\) are the anti-windup gains for the \(d\)-axis, \(q\)-axis, and field controllers, respectively.

\section*{Assumptions}
- The plant model for direct and quadrature axis can be approximated with a first-order system.
- This control solution is used only for permanent magnet synchronous motors with sinusoidal flux distribution and field windings.

\section*{Ports}

\section*{Input}

\section*{idqRef - Reference currents \\ vector}

Desired \(d\) - and \(q\)-axis currents for control of a PMSM, in A.
Data Types: single | double

\section*{idq - Measured currents \\ vector}

Actual \(d\) - and \(q\)-axis currents of the controlled PMSM, in A.

\section*{Data Types: single | double}
wElectrical - Measured electrical velocity vector

Rotor electrical velocity used for feedforward pre-control, in rad/s.
Data Types: single | double

\section*{VphMax - Maximum phase voltage scalar}

Maximum allowable voltage in each phase, in V.
Data Types: single | double

\section*{Reset - External reset \\ scalar}

External reset signal (rising edge) for integrators.
Data Types: single | double

\section*{Output}

\section*{vdqRef - Reference voltages \\ vector}

Desired \(d\) - and \(q\)-axis voltages for control of a PMSM, in V.
Data Types: single | double

\section*{Parameters}

\section*{Control Parameters}

D-axis current proportional gain - D-axis proportional gain
1 (default) | positive number

Proportional gain of the PI controller used for direct-axis current control.

\section*{D-axis current integral gain - D-axis integral gain 100 (default) | positive number}

Integrator gain of the PI controller used for direct-axis current control.
D-axis current anti-windup gain - D-axis anti-windup gain 1 (default) | positive number

Anti-windup gain of the PI controller used for direct-axis current control.

\section*{Q-axis current proportional gain - Q-axis proportional gain} 1 (default) | positive number

Proportional gain of the PI controller used for quadrature-axis current control.
\(\mathbf{Q}\)-axis current integral gain \(\mathbf{-} \mathbf{Q}\)-axis integral gain 100 (default) | positive number

Integrator gain of the PI controller used for quadrature-axis current control.
Q-axis current anti-windup gain - \(\mathbf{Q}\)-axis anti-windup gain 1 (default) | positive number

Anti-windup gain of the PI controller used for quadrature-axis current control.

\section*{Sample time (-1 for inherited) - Block sample time}
-1 (default) |-1 or positive number
Sample time for the block (-1 for inherited). If you use this block inside a triggered subsystem, set the sample time to -1. If you use this block in a continuous variable-step model, you can specify the sample time explicitly.

Axis prioritization - Axis prioritization for voltage limiter q-axis (default)|d-axis|d-q equivalence

Prioritize or maintain the ratio between \(d\) - and \(q\)-axes when the block limits voltage.
```

Enable zero cancellation - Feedforward zero-cancellation off (default) | on

```

Enable or disable zero-cancellation on the feedforward path.

\section*{Enable pre-control voltage - Pre-control voltage on (default) | off}

Enable or disable pre-control voltage.

\section*{Pre-Control Parameters}

\section*{D-axis current vector, id (A) - D-axis current breakpoint vector}
[-200, 0, 200]A (default) | monotonically increasing vector
Direct-axis current vector used in the lookup tables for parameters determination. For constant machine parameters, do not change the default.
\(\mathbf{Q}\)-axis current vector, iq (A) - \(\mathbf{Q}\)-axis current breakpoint vector [-200, 0, 200]A (default) | monotonically increasing vector

Quadrature-axis current vector used in the lookup tables used to determine parameters. For constant machine parameters, do not change the default.

\section*{Ld matrix, Ld(id,iq) (H) - D-axis inductance lookup data} 0.0002 * ones \((3,3)\) H (default) | positive matrix
\(L_{d}\) matrix used as lookup-table data. For constant machine parameters change only the constant factor, for example, \(L_{d} *\) ones (3, 3).

\section*{Lq matrix, Lq(id,iq) (H) - Q-axis inductance lookup data} 0.0002 * ones \((3,3)\) H (default) | positive matrix
\(L_{q}\) matrix used as lookup-table data. For constant machine parameters change only the constant factor, e.g., \(L_{q}\) * ones (3, 3).

\section*{Permanent magnet flux linkage matrix, PM(id,iq) (Wb) - Flux linkage} lookup data

\subsection*{0.04 * ones (3, 3)Wb (default) | real matrix}

Permanent magnet flux linkage matrix used in the lookup table. For constant machine parameters change only the constant factor, for example psim * ones (3, 3).

\section*{References}
[1] Bernardes, T., V. F. Montagner, H. A. Gründling, and H. Pinheiro. "Discrete-time sliding mode observer for sensorless vector control of permanent magnet synchronous
machine." IEEE Transactions on Industrial Electronics. Vol. 61, Number 4, 2014, pp. 1679-1691.

\title{
[2] Carpiuc, S., and C. Lazar. "Fast real-time constrained predictive current control in permanent magnet synchronous machine-based automotive traction drives." IEEE Transactions on Transportation Electrification. Vol.1, Number 4, 2015, pp. 326335.
}

\author{
See Also
}

\section*{Blocks}

PMSM Current Controller | PMSM Current Reference Generator

Introduced in R2017b

\section*{PMSM Current Reference Generator}

Permanent magnet synchronous machine current reference generator Library: Simscape / Power Systems / Simscape Components / Control / PMSM Control

\section*{Description}

The PMSM Current Reference Generator block implements a current reference generator for PMSM current control in the rotor d-q reference frame.

You typically use this block in a series of blocks making up a control structure.
- You can generate a voltage reference in the d-q frame by placing this block before a PMSM Current Control or PMSM Current Control with Pre-Control block.
- You can implement velocity control by placing this block after a Velocity Controller block.

You can see an example of a full control structure, from machine measurements to machine inputs, in the PMSM Field-Oriented Control block.

\section*{Equations}

The PMSM Current Reference Generator block can obtain the current reference using one of these methods:
- Zero d-axis control (ZDAC)
- User defined lookup tables
- Automatically generated lookup tables

For the ZDAC method, the block sets the \(d\)-axis current reference \({ }_{d}^{i_{d}^{r e f}}\) to zero and determines the \(q\)-axis current reference \({ }^{i_{q}^{r e f}}\) using the torque equation:
\[
i_{d}^{r e f}=0,
\]
and
\[
i_{q}^{r e f}=\frac{2 T_{r e f}}{3 p \psi_{m}}
\]
where:
- \(T_{\text {ref }}\) is the reference torque input.
- \(\quad p\) is the number of pole pairs.
- \(\psi_{m}\) is the permanent magnet flux linkage.

For operation below the base speed of the synchronous machine, ZDAC is a suitable method. Above base speed, a field weakening controller is required to adjust the \(d\)-axis reference.

To pregenerate optimal current references for several operating points offline, define two lookup tables using the user-defined lookup table approach:
\[
i_{d}^{r e f}=\mathrm{f}\left(n_{m}, T_{r e f}, v_{d c}\right),
\]
and
\[
i_{q}^{r e f}=\mathrm{g}\left(n_{m}, T_{r e f}, v_{d c}\right),
\]
where:
- \(n_{m}\) is the rotor angular velocity.
- \(v_{d c}\) is the DC-link voltage of the converter.

To let the block create the lookup tables, choose the automatically generated lookup table approach. The block generates the lookup table using two strategies:
- Maximum torque per ampere
- Field weakening

The selection between the two strategies is based on the modulation factor, which can be computed as follows:
\[
M_{f}=\frac{V_{s}}{V_{p h_{-} \max }},
\]
where \(V_{s}\) is the stator voltage amplitude and \(V_{p h \max }\) is the maximum allowable phase voltage. In the case that the modulation factor is greater than 1, the block generates current references using the field weakening procedure. Otherwise, current references are computed using the maximum torque per ampere procedure.

\section*{Maximum Torque Per Ampere}

You can generate current references in the constant torque region (occurring below rated speed) by using the maximum torque per ampere (MTPA) strategy.

The direct and quadrature components of the stator current are written in terms of angle and magnitude as:
\[
i_{d}=-I_{s} \sin \beta
\]
and
\[
i_{q}=I_{s} \cos \beta,
\]
where:
- \(\beta\) is the angle of the stator current vector.
- \(I_{s}\) is the stator current amplitude.

Using the angle-magnitude variant of the d-q currents, the PMSM torque equation is written as:
\[
T_{e}=\frac{3 p}{2} \psi_{m} I_{s} \cos \beta+\frac{3 p}{4}\left(L_{q}-L_{d}\right) I_{s}{ }^{2} \sin 2 \beta,
\]
where \(L_{d}\) and \(L_{q}\) are the direct and quadrature inductances, respectively.
To obtain fast transient response and maximize torque with the smallest possible stator current amplitude, MTPA imposes \(\left(d T_{e}\right) / d \beta=0\) to the torque equation, which yields
\[
-\frac{3 p}{2} \psi_{m} I_{s} \sin \beta+\frac{3 p}{2}\left(L_{q}-L_{d}\right) I_{s}^{2}\left(\cos ^{2} \beta-\sin ^{2} \beta\right)=0
\]

The MTPA \(d\)-axis current \(i_{d_{-} m t p a}\) is written in terms of the \(q\)-axis component \(i_{q_{-} m t p a}\) by substituting the \(\mathrm{d}-\mathrm{q}\) currents back from their angle and magnitude variants:
\[
i_{d_{-} m t p a}=\frac{\psi_{m}}{2\left(L_{q}-L_{d}\right)}-\sqrt{\frac{\psi_{m}^{2}}{4\left(L_{q}-L_{d}\right)^{2}}+i_{q_{-} m t p a}^{2}} .
\]

Finally, by plugging the previous equation into the \(d-q\) variant of the PMSM torque equation, the following polynomial is obtained:
\[
9 p^{2}\left(L_{q}-L_{d}\right)^{2} i_{q_{-} m t p a}^{4}+6 T_{r e f} p \psi_{m} i_{q_{-} m t p a}-4 T_{r e f}^{2}=0
\]

The \(q\)-axis component is obtained by solving this polynomial.

\section*{Field Weakening}

You can generate current references in the above rated speed region by using the field weakening (FW) strategy.

Above the rated speed, the stator voltage is limited by the power converter and the available DC-link voltage. The maximum stator voltage is:
\[
V_{s}=\sqrt{v_{d}^{2}+v_{q}^{2}} \leq V_{p h_{-} \max },
\]
where \(V_{p h _m a x}\) is the maximum available stator phase voltage.
The steady-state voltage equations for PMSMs are
\[
v_{d}=R_{s} i_{d}-\omega_{e} L_{q} i_{q},
\]
and
\[
v_{q}=R_{s} i_{q}+\omega_{e}\left(L_{d} i_{d}+\psi_{m}\right) .
\]

For rotor speeds above rated, the stator resistance is negligible, and the field weakening \(d\)-axis current component \(i_{d f w}\) is obtained in terms of the \(q\)-axis component \(i_{q f w}\) from the \(v_{q}\) steady-state equation:
\[
i_{d_{-} f w}=-\frac{\psi_{m}}{L_{d}}+\frac{1}{L_{d}} \sqrt{\frac{V_{p h_{-} \max }^{2}}{\omega_{e}{ }^{2}}-\left(L_{q} i_{q_{-}} f w\right)^{2}},
\]

Finally, by plugging the \(i_{d f w}\) equation into the PMSM torque equation, the following polynomial is obtained:
\[
9 p^{2}\left(L_{d}-L_{q}\right)^{2} L_{q}^{2} \omega_{e}^{2} i_{q_{-} f w}^{4}+\left(9 p^{2} \psi_{m}^{2} L_{q}^{2} \omega_{e}^{2}-9 p^{2}\left(L_{d}-L_{q}\right)^{2} V_{p h_{-} \max }^{2}\right) i_{q_{-} f w}^{2}-12 T_{r e f} p \psi_{m} L_{d} L_{q} \omega_{e}^{2} i_{q_{f w}}+4 T_{r_{e}}^{2}
\]

The \(q\)-axis component is obtained by solving this polynomial.

\section*{Assumptions}

The machine parameters are constants.

\section*{Limitations}

The automatically generated current references introduce latency in the presimulation phase. For medium-power PMSM drives the latency is around 300 ms .

\section*{Ports}

\section*{Input}

\section*{TqRef - Reference torque \\ scalar}

Desired mechanical torque produced by the PMSM, in N*m.
Data Types: single | double

\section*{wMechanical - Rotor mechanical speed}
scalar

Mechanical angular velocity of the rotor, obtained via direct measurement of the PMSM, in rad/s.

\section*{Data Types: single | double}

\section*{Vdc - DC-link voltage}
scalar
DC-link voltage of the converter, in V. For the ZDAC method, this value is used to limit the output reference torque and torque limit. For the lookup table method, this value is used as an input to the lookup tables.
Data Types: single | double

\section*{Output}

\section*{idqRef - Reference currents \\ vector}

Reference \(d\) - and \(q\)-currents to be given as inputs to a PMSM current controller, in A.
Data Types: single | double

\section*{TqRefSat - Reference torque scalar}

Reference torque saturated by the calculated torque limit TqLim, in \(\mathrm{N}^{*} \mathrm{~m}\).
Data Types: single | double

\section*{TqLim - Torque limit \\ scalar}

Torque limit imposed by both the electrical and mechanical constraints of the system, in \(\mathrm{N}^{*}\) m.

Data Types: single | double

\section*{Parameters}

\section*{General Parameters}

\section*{Nominal dc-link voltage (V) - Rated DC voltage 300V (default) | positive number}

Nominal DC-link voltage of the electrical source.
Maximum power (W) - Rated power
30000W (default) | positive number
Maximum allowable PMSM power.

\section*{Maximum torque (\(N * m\)) - Rated torque}

250N*m (default) | positive number
Maximum allowable PMSM torque

\section*{Sample time (-1 for inherited) - Block sample time -1 (default) |-1 or positive number}

Sample time for the block (-1 for inherited). If you use this block inside a triggered subsystem, set the sample time to -1. If you use this block in a continuous variable-step model, you can specify the sample time explicitly.

\section*{Reference Generation Strategy}

Current references - Current reference strategy
Zero d-axis control (default)|Lookup-table based|Automatically generated lookup-table

Select the strategy for determining current references.
Mechanical speed vector, wMechanical (rpm) - Rotor speed lookup vector [0, 3000] rpm (default) | positive monotonically increasing vector

Speed vector used in the lookup tables for determining current references.
Torque reference vector, TqRef (\(N * m\)) - Torque reference lookup vector
[-100, 0, 100]N*m (default) | positive monotonically increasing vector
Torque vector used in the lookup tables for determining current references.

\section*{DC-link voltage vector, Vdc (V) - DC-link voltage lookup vector} [300, 350]V (default) | positive monotonically increasing vector

DC-link voltage vector used in the lookup tables for determining current references.

\section*{D-axis current reference matrix, id(wMechanical,TqRef,Vdc) (A) Reference d-axis current values}
zeros (2,3,2) A (default) | real matrix
Direct-axis current reference lookup data.
Q-axis current reference matrix, iq(wMechanical,TqRef,Vdc) (A) -
Reference \(q\)-axis current values
zeros (2, 3, 2) A (default) | real matrix
Quadrature-axis current reference lookup data.

\section*{Number of pole pairs - Pole pairs}

8 (default) | positive integer
Number of permanent magnet pole pairs on the rotor.

\section*{Permanent magnet flux linkage (Wb) - PM Flux Linkage 0.04 Wb (default) | positive scalar}

Peak permanent magnet flux linkage.
D-axis inductance (H) - Inductance of d-axis
0.00024 (default) | positive scalar

Direct-axis inductance.
\(\mathbf{Q}\)-axis inductance (H) - Inductance of \(\mathbf{q}\)-axis
0.00029 (default) | positive scalar

Quadrature-axis inductance.

\section*{Stator resistance (0hm) - Resistance of stator}
0.01 (default) | positive scalar

Stator resistance per phase.

\section*{References}
[1] Haque, M. E., L. Zhong, and M. F. Rahman. "Improved trajectory control for an interior permanent magnet synchronous motor drive with extended operating limit." Journal of Electrical \& Electronics Engineering. Vol. 22, Number 1, 2003, p. 49.
[2] Yang, N., G. Luo, W. Liu, and K. Wang. "Interior permanent magnet synchronous motor control for electric vehicle using look-up table." In 7th International Power Electronics and Motion Control Conference. Vol. 2, 2012, pp. 1015-1019.
[3] Carpiuc, S., C. Lazar, and D. I. Patrascu. "Optimal Torque Control of the Externally Excited Synchronous Machine." Control Engineering and Applied Informatics. Vol. 14, Number 2, 2012, pp. 80-88.

\section*{See Also}

Blocks
PMSM Current Controller | PMSM Current Controller with Pre-Control

\section*{Introduced in R2017b}

\section*{PMSM Field-Oriented Control}

Permanent magnet synchronous machine field-oriented control Library: Simscape / Power Systems / Simscape Components / Control / PMSM Control

\section*{Description}

The PMSM Field-Oriented Control block implements a PMSM field-oriented control structure. Field Oriented Control (FOC) is a performant AC motor control strategy that decouples torque and flux by transforming the stationary phase currents to a rotating frame. Use FOC when rotor speed and position are known and your application requires:
- High torque and low current at startup.
- High efficiency.

\section*{Equations}

The PMSM FOC structure decouples the torque and flux by using the rotor d-q reference frame. This diagram shows the overall architecture of the block.

In the diagram:
- \(\omega\) and \(\omega_{\text {ref }}\) are the measured and reference angular velocities, respectively.
- \(T_{\text {ref }}\) is the reference electromagnetic torque.
- \(\quad i\) and \(v\) are stator currents and voltages and subscripts \(d\) and \(q\) represent the \(d\)-axis and \(q\)-axis, and subscripts \(a, b\), and \(c\), represent the three stator windings.
- \(\theta_{e}\) is the rotor electrical angle.
- \(G\) is a gate pulse, subscripts \(H\) and \(L\), represent high and low, and subscripts \(a, b\), and \(c\) represent the three stator windings.

You can choose to implement either velocity or torque control with the Control mode parameter. The block implements velocity control exactly as shown in the diagram. The block implements torque control by removing the Velocity Controller block and accepting the reference torque directly.

\section*{Assumptions}

The machine parameters are known.

\section*{Limitations}

The control structure is implemented with a single sample rate.

\section*{Ports}

\section*{Input}

Reference - System reference
scalar
System reference specified as torque reference in \(\mathrm{N}^{*} \mathrm{~m}\) or velocity reference in rad/s, depending on the control mode selected.

\section*{Data Types: single | double}

\section*{iabcSens - Measured phase currents \\ vector}

Measured stator phase currents, in A.
Data Types: single | double
wSens - Rotor speed
scalar
Measured mechanical angular velocity of rotor, in rad/s.
Data Types: single | double

\section*{thSens - Rotor angle}
scalar
Measured mechanical angle of rotor, in rad.
Data Types: single|double
vdcSens - DC-link voltage
scalar
Measured DC-link voltage, in V.

\section*{Data Types: single | double}

\section*{Output}

\section*{G - Gate pulses}
vector
Six pulse waveforms that determine switching behavior in the attached power converter.
Data Types: single | double

\section*{Visualization - Visualization signals}
bus
Bus containing signals for visualization, including:
- Reference
- wElectrical
- iabc
- theta
- Vdc
- PwmEnable
- TqRef
- TqLim
- idqRef
- idq
- vdqRef
- modWave

Data Types: single | double

\section*{Parameters}

\section*{General}

\section*{Control Mode - Control mode strategy}

Torque control (default)|Velocity control

Specify either a torque control or velocity control strategy.

\section*{Nominal dc-link voltage (V) - Rated DC voltage} 300 V (default) | positive number

Nominal DC-link voltage of the electrical source.
Maximum power (W) - Maximum power 35000 W (default) | positive number

Maximum machine power.
Maximum torque (\(\mathrm{N} * \mathrm{~m}\)) - Maximum torque 250 N*m (default) | positive number

Maximum machine torque.
Number of rotor pole pairs - Pole pairs
8 (default) | positive integer
Number of permanent magnet pole pairs on the rotor.

\section*{Inverter dc-link voltage threshold (V) - DC-link voltage threshold 100 V (default) | positive number}

Voltage threshold to activate the power inverter.

\section*{Fundamental sample time (s) - Block sample time}

5e-6 (default) | positive number
Fundamental sample time for the block.

\section*{Control sample time (s) - Control sample time}

1e-4 (default) | positive number
Sample time for the control system.
Outer Loop
Control Type - Control type strategy
PI control (default) | \(P\) control|P-PI control
Specify the type of the control strategy.

\section*{Controller proportional gain - Proportional gain of PI controller 1 (default) | positive number}

Proportional gain of the PI controller.

\section*{Controller integral gain - Integral gain of PI controller 1 (default)| positive number}

Integral gain of the PI controller.
P controller proportional gain - Proportional gain of P controller
1 (default) | positive number
Proportional gain of P controller.

\section*{Integral anti-windup gain - Anti-windup gain 1 (default) | positive number}

Anti-windup gain of the PI controller.

\section*{Current references - Current reference strategy \\ Zero d-axis control (default)|Lookup-table based|Automatically generated lookup-table}

Select the current reference strategy.
Mechanical speed vector, wMechanical (rpm) - Rotor speed lookup vector [0, 3000] rpm (default) | positive monotonically increasing vector

Speed vector used in the lookup tables for determining current references.

\section*{Torque reference vector, TqRef (\(\mathrm{N} * \mathrm{~m}\)) - Torque reference lookup vector [-100, 0, 100] N*m (default)| positive monotonically increasing vector}

Torque vector used in the lookup tables for determining current references.
DC-Link voltage vector, Vdc (V) - DC-link voltage lookup vector [300, 350] V (default) | positive monotonically increasing vector
: DC-link voltage vector used in the lookup tables for determining current references.

\section*{D-axis current reference matrix, id(wMechanical,TqRef,Vdc) (A) Reference d-axis current values}
zeros (2,3,2) A (default) | real matrix
Direct-axis current reference lookup data.
Q-axis current reference matrix, iq(wMechanical,TqRef,Vdc) (A) Reference \(\mathbf{q}\)-axis current values
zeros (2, 3,2) A (default) | real matrix
Quadrature-axis current reference lookup data.

\section*{Permanent magnet flux linkage (Wb) - PM Flux Linkage}
0.04 Wb (default) | positive scalar

Peak permanent magnet flux linkage.
D-axis inductance (\(H\)) - Inductance of d-axis
0.00024 (default) | positive scalar

Direct-axis inductance.
Q-axis inductance (H) - Inductance of \(\mathbf{q}\)-axis
0.00029 (default) | positive scalar

Quadrature-axis inductance.

\section*{Stator resistance (0 hm) - Resistance of stator 0.01 (default) | positive scalar}

Stator resistance per phase.

\section*{Inner Loop}

D-axis current proportional gain - D-axis proportional gain
1 (default) | positive number
Proportional gain of the PI controller used for direct-axis current control.
D-axis current integral gain - D-axis integral gain 100 (default) | positive number

Integrator gain of the PI controller used for direct-axis current control.

\section*{D-axis current anti-windup gain - D-axis anti-windup gain 1 (default) | positive number}

Anti-windup gain of the PI controller used for direct-axis current control.
Q-axis current proportional gain - \(\mathbf{Q}\)-axis proportional gain
1 (default) | positive number
Proportional gain of the PI controller used for quadrature-axis current control.
Q-axis current integral gain - Q-axis integral gain 100 (default) | positive number

Integrator gain of the PI controller used for quadrature-axis current control.
Q-axis current anti-windup gain - \(\mathbf{Q}\)-axis anti-windup gain 1 (default) | positive number

Anti-windup gain of the PI controller used for quadrature-axis current control.

\section*{Axis prioritization - Axis prioritization for voltage limiter}
q-axis (default)|d-axis|d-q equivalence
Prioritize or maintain ratio between \(d\) - and \(q\)-axis when the block limits voltage.

\section*{Enable zero cancellation - Feedforward zero cancellation} off (default) | on

Enable or disable zero cancellation on the feedforward path.
Enable pre-control voltage - Precontrol voltage on (default) | off

Enable or disable precontrol voltage.

\section*{Machine parameters - Machine parameterization}

Constant parameters (default)| Lookup table based parameters
Specify how to parameterize the machine.
- Constant parameters - Specify machine parameters that are constant throughout the simulation.
- Lookup table based parameters - Specify machine parameters as lookup tables that depend on current.

D-axis inductance for feed-forward pre-control (H) - Feedforward daxis inductance
0.00024 (default) | positive scalar

Direct-axis inductance for feedforward precontrol.
```

Q-axis inductance for feedforward precontrol (H) - Feedforward q-axis inductance
0.00029 (default) | positive scalar

```

Quadrature-axis inductance for feed-forward pre-control.
Permanent magnet flux linkage for feedforward pre-control (H) Feedforward flux linkage
0.04 (default) | scalar

Permanent magnet flux linkage for feedforward pre-control.
\(D\)-axis current vector, id (A) - D-axis current breakpoint vector [-200, 0, 200] A (default) | monotonically increasing vector

Direct-axis current vector used in the lookup tables for parameters determination. For constant machine parameters, do not change the default.

Q-axis current vector, iq (\(A\)) - \(\mathbf{Q}\)-axis current breakpoint vector [-200, 0, 200] A (default) | monotonically increasing vector

Quadrature-axis current vector used in the lookup tables for parameters determination. For constant machine parameters, do not change the default.
```

Ld matrix, Ld(id,iq) (H) - D-axis inductance lookup data 0.0002 * ones (3, 3) H (default) | positive matrix

```
\(L_{d}\) matrix used as lookup table data. For constant machine parameters change only the constant factor, for example, \(L_{d}\) * ones (3, 3).

Lq matrix, Lq(id,iq) (H) - Q-axis inductance lookup data 0.0002 * ones (3, 3) H (default) | positive matrix
\(L_{q}\) matrix used as lookup table data. For constant machine parameters change only the constant factor, for example, \(L_{q} *\) ones (3, 3).

\section*{Permanent magnet flux linkage matrix, PM(id,iq) (Wb) - Flux linkage lookup data}
```

0.04 * ones (3, 3) Wb (default) | real matrix

```

Permanent magnet flux linkage matrix used in the lookup table. For constant machine parameters change only the constant factor, for example, psim * ones (3, 3).

\section*{PWM}

\section*{PWM method - Pulse width modulation method}

SVM: space vector modulation (default)|SPWM: sinusoidal PWM
Specify the waveform technique.

\section*{Sampling mode - Wave-sampling method \\ Natural (default) | Asymmetric | Symmetric}

Specify whether the block samples the modulation waveform when the waves intersect or when the carrier wave is at one or both of its boundary conditions.

\section*{Switching frequency (Hz) - Switching rate 1000 (default) | positive integer}

Specify the rate at which you want the switches in the power converter to switch.

\section*{References}
[1] Bernardes, T., V. F. Montagner, H. A. Gründling, and H. Pinheiro. "Discrete-time sliding mode observer for sensorless vector control of permanent magnet synchronous machine." IEEE Transactions on Industrial Electronics. Vol. 61, Number 4, 2014, pp. 1679-1691.
[2] Carpiuc, S., and C. Lazar. "Fast real-time constrained predictive current control in permanent magnet synchronous machine-based automotive traction drives." IEEE Transactions on Transportation Electrification. Vol.1, Number 4, 2015, pp. 326335.
[3] Haque, M. E., L. Zhong, and M. F. Rahman. "Improved trajectory control for an interior permanent magnet synchronous motor drive with extended operating
limit." Journal of Electrical \& Electronics Engineering. Vol. 22, Number 1, 2003, p. 49.
[4] Yang, N., G. Luo, W. Liu, and K. Wang. "Interior permanent magnet synchronous motor control for electric vehicle using look-up table." In 7th International Power Electronics and Motion Control Conference. Vol. 2, 2012, pp. 1015-1019.

\section*{See Also}

\section*{Blocks}

PMSM Current Controller | PMSM Current Controller with Pre-Control | PMSM Current Reference Generator

Introduced in R2017b

\section*{PMSM Field-Weakening Controller}

Permanent magnet synchronous machine field-weakening controller
Library: Simscape / Power Systems / Simscape Components / Control / PMSM Control

\section*{Description}

The PMSM Field-Weakening Controller block implements a field-weakening controller for PMSM machines.

Use this block to enforce phase voltage constraints on a current-controlled PMSM. The block decreases the PMSM phase voltage by adjusting the angle of the reference current vector when the voltage vector magnitude exceeds its limit. The block does not adjust the amplitude of the current vector.

You can use this block as part of a PMSM control system:
- Use the zero \(d\)-axis control technique to generate an unconstrained current reference vector to drive the PMSM. You can implement this strategy with the PMSM Current Reference Generator block.
- Use this block to adjust the angle of the current reference vector in order to satisfy voltage phase constraints.
- Use a PMSM Current Controller to generate a voltage reference vector to drive the PMSM.

\section*{Equations}

An internal integral controller outputs a factor \(\beta \in[0,1]\), which is determined by how closely the required stator voltage approaches the saturated voltage value at any instant in time:
- When the required stator voltage exceeds the limit, \(\beta\) tends to 0 , decreasing the \(q\)-axis current.
- When the required stator voltage is within its limit, \(\beta\) tends to 1 and the angle remains unchanged.

This diagram shows the structure of the field-weakening controller.

In the diagram, you provide the modulation index threshold \(M_{t h}\) as an input parameter to the block, and the block computes the modulation index \(M\) as the ratio between the actual phase voltage and the maximum available phase voltage \(V_{p h _m a x}:\)
\[
M=\frac{\sqrt{v_{d}^{2}+v_{q}^{2}}}{V_{p h_{-} \max }},
\]
where \(v_{d}\) and \(v_{q}\) are the \(d\)-axis and \(q\)-axis components of the voltage vector.

\section*{Ports}

\section*{Input}

\section*{idqRef - Reference currents \\ vector}

Desired \(d\) - and \(q\)-axis currents for control of permanent magnet synchronous motor, in A.

\section*{Data Types: single | double}

\section*{vdq - Voltages}
vector
Direct and quadrature axis voltages of permanent magnet synchronous motor, in V.

\section*{Data Types: single | double}

\section*{VphMax - Maximum phase voltage}
scalar
Maximum allowable voltage in each phase, in V.
Data Types: single | double

\section*{Output}

\section*{idqRefFW - Field-weakening reference currents \\ vector}

Field-weakening reference direct and quadrature axis currents, in A.

\section*{Data Types: single | double}

\section*{Parameters}

\section*{Modulation index threshold - Modulation index threshold 1 (default) | positive number}

Reference modulation index.

\section*{Field-weakening controller integral gain - Integral gain 100 (default) | positive number}

Integrator gain of the field-weakening controller.
Integral anti-windup gain - Anti-windup gain 10 (default) | positive number

Anti-windup gain of the field-weakening controller.

\section*{Sample time (-1 for inherited) - Block sample time}
-1 (default)|-1 or positive number
Sample time for the block (-1 for inherited). If you use this block inside a triggered subsystem, set the sample time to -1. If you use this block in a continuous variable-step model, set the sample time explicitly.

\section*{References}
[1] Wai, J., and T. M. Jahns. "A new control technique for achieving wide constant power speed operation with an interior PM alternator machine." In Industry Applications Conference. Vol. 2, 2001, pp. 807-814.

\section*{See Also}

\author{
Blocks \\ PMSM Current Controller | PMSM Current Reference Generator
}

\section*{Introduced in R2017b}

\section*{PMSM Torque Estimator}

Permanent magnet synchronous machine torque estimator
Library: Simscape / Power Systems / Simscape Components /
Control / PMSM Control

\section*{Description}

The PMSM Torque Estimator block implements a torque estimator for permanent magnet synchronous machines (PMSM).

Use this block to estimate the mechanical torque of a motor when it is not directly measurable. The block estimates torque using known machine parameters and the measured phase current vector in the \(d q 0\) reference frame.

Use the Park Transform block to convert the measured phase current vector in the abc reference frame to the \(d q 0\) reference frame.

\section*{Equations}

The block estimates the mechanical torque \(T_{e}\) of the PMSM using the torque equation in the \(d-q\) rotor reference frame:
\[
T_{e}=\frac{3 p}{2}\left(\psi_{m} i_{q}+\left(L_{d}-L_{q}\right) i_{d} i_{q}\right),
\]
where
- \(\quad p\) is the number of pole pairs of the PMSM.
- \(\psi_{m}\) is the flux linkage of the permanent magnet.
- \(L_{d}\) and \(L_{q}\) are the \(d\) - and \(q\)-axis inductances of the PMSM.
- \(i_{d}\) and \(i_{q}\) are the \(d\) - and \(q\)-axis currents of the PMSM.

In practice, the machine parameters are not constants and depend on some physical phenomena. You can choose to define these parameters simply as constants or, more realistically, as functions of currents by using lookup tables.

\section*{Assumptions}

The machine parameters are known.

\section*{Ports}

\section*{Input}

\section*{idq - Stator currents \\ vector}

Stator direct and quadrature currents of the PMSM, in A.
Data Types: single | double

\section*{Output}

\section*{TqEst - Torque estimate}
scalar
Estimated mechanical torque value of the PMSM, in N*m.
Data Types: single | double

\section*{Parameters}

\section*{Machine parameters - Parameter selection strategy}

Constant parameters (default)|Lookup table based parameters
Specify the type of machine parameters, which can be in the form of constant values or tabulated data.

\section*{Number of pole pairs - Pole pairs}

8 (default) | positive integer

Number of permanent magnet pole pairs on the rotor.
D-axis current vector, id (A) - D-axis current breakpoint vector [-200, 0, 200]A (default) | monotonically increasing vector

Direct-axis current vector used in the lookup tables for parameters determination.
Q-axis current vector, iq (A) - Q-axis current breakpoint vector [-200, 0, 200]A (default) | monotonically increasing vector

Quadrature-axis current vector used in the lookup tables for parameters determination.
Ld matrix, Ld(id,iq) (H) - D-axis inductance lookup data 0.0002 * ones \((3,3) H\) (default) | positive matrix
\(L_{d}\) matrix used as lookup table data.

\section*{Lq matrix, Lq(id,iq) (H) - Q-axis inductance lookup data} 0.0002 * ones (3, 3)H (default) | positive matrix
\(L_{q}\) matrix used as lookup table data.

\section*{Permanent magnet flux linkage matrix, PM(id,iq) (Wb) - Flux linkage lookup data \\ 0.04 * ones (3, 3)Wb (default) | real matrix}

Permanent magnet flux linkage matrix used in the lookup table.

\section*{D-axis inductance (H) - Inductance of d-axis}
0.0002 (default) | positive scalar

Direct-axis inductance.
Q-axis inductance (H) - Inductance of \(\mathbf{q}\)-axis
0.0002 (default) | positive scalar

Quadrature-axis inductance.

\section*{Permanent magnet flux linkage (Wb) - PM Flux Linkage \\ 0.04 Wb (default)| positive scalar}

Peak permanent magnet flux linkage.

\section*{Sample time (-1 for inherited) - Block sample time}
-1 (default) |-1 or positive number
Sample time for the block (-1 for inherited). If you use this block inside a triggered subsystem, set the sample time to -1. If you use this block in a continuous variable-step model, set the sample time explicitly.

\section*{See Also}

\section*{Blocks}

PMSM Current Controller | PMSM Current Controller with Pre-Control | PMSM Current Reference Generator

Introduced in R2017b

\section*{Power Measurement}

Measure single-phase real and reactive power
Library: Simscape / Power Systems / Simscape Components / Control / Measurements

\section*{Description}

The Power Measurement block measures the real and reactive power of an element in a single-phase network. The block outputs the power quantities for each frequency component you specify. For three-phase measurements, consider using the Three-Phase Power Measurement block.

Use this block to measure power for both sinusoidal and nonsinusoidal periodic signals.
Set the Sample time parameter to 0 for continuous-time operation, or explicitly for discrete-time operation.

Specify a vector of all frequency components to include in the power output using the Harmonic numbers parameter:
- To output the DC component, specify 0 .
- To output the component corresponding to the fundamental frequency, specify 1.
- To output components corresponding to higher-order harmonics, specify \(\mathrm{n}>1\).

\section*{Equations}

For each specified harmonic \(k\), the block calculates the real power \(P_{k}\) and reactive power \(Q_{k}\) from the phasor equation:
\[
P_{k}+j Q_{k}=G\left(V_{k} e^{j \theta_{V_{k}}}\right)\left(\overline{I_{k} e^{j \theta_{l_{k}}}}\right),
\]
where:
- \(G\) is equal to 0.25 for the DC component \((k=0)\) and 0.5 for the AC components \((k>\) 0).
- \(V_{k} e^{j \theta_{V_{k}}}\) is the phasor representation of the \(k\)-component input voltage.
- \(\overline{I_{k} e^{j \theta_{I_{k}}}}\) is the complex conjugate of \(I_{k} e^{j \theta_{I_{k}}}\), the phasor representation of the \(k\) component input current.

The block estimates the real-time \(k\)-component voltage and current phasors using these relationships:
\[
\begin{gathered}
V_{k} e^{j \theta_{V_{k}}}=\frac{2}{T} \int_{t-T}^{t} V(t) \sin (2 \pi k F t) d t+j \frac{2}{T} \int_{t-T}^{t} V(t) \cos (2 \pi k F t) d t \\
I_{k} e^{j \theta_{t_{k}}}=\frac{2}{T} \int_{t-T}^{t} I(t) \sin (2 \pi k F t) d t+j \frac{2}{T} \int_{t-T}^{t} I(t) \cos (2 \pi k F t) d t .
\end{gathered}
\]

In these phasor equations:
- \(V(t)\) and \(I(t)\) are the input voltage and current, respectively.
- \(T\) is the period of the input signal, or equivalently the inverse of its base frequency \(F\).

If the input signals have a finite number of harmonics \(n\), the total real power \(P\) and total reactive power \(Q\) can be calculated from their components:
\[
\begin{aligned}
& P=\sum_{k=0}^{n} P_{k} \\
& Q=\sum_{k=1}^{n} Q_{k} .
\end{aligned}
\]

The summation for \(Q\) does not include the DC component \((k=0)\) because this component only contributes to real power.

\section*{Ports}

\section*{Input}

\section*{v - Input voltage}
scalar
Voltage across element from which to measure power, in V.
Data Types: single | double

\section*{i - Input current \\ scalar}

Current through element from which to measure power, in A.
Data Types: single | double

\section*{Output}

P - Real power
vector
Real power for selected frequency components, in W.
Data Types: single | double

\section*{P - Reactive power \\ vector}

Reactive power for selected frequency components, in var.
Data Types: single | double

\section*{Parameters}

\section*{Base frequency (Hz) - Fundamental frequency}

60 (default) | positive number
Fundamental frequency corresponding to component \(k=1\).

\section*{Harmonic numbers - Frequency components}

\section*{[0 12 3] (default)| scalar or vector}

Frequency components to include in the output. Specify either a scalar value corresponding to the desired component or a vector of all desired components.
- The value \(k=0\) corresponds to the DC component.
- The value \(k=1\) corresponds to the fundamental frequency.
- Values \(k>1\) correspond to higher-level harmonics.

If you specify a vector, the order of the power outputs correspond to the order of this vector.

\section*{Sample time - Block sample time}

0 (default) | positive number
Sample time for the block. For continuous operation, set this property to 0. For discrete operation, specify the sample time explicitly. This block does not support inherited sample time.

\section*{See Also}

\section*{Blocks}

RMS Measurement | Sinusoidal Measurement (PLL) | Three-Phase Sinusoidal Measurement (PLL) | Three-Phase Power Measurement

Introduced in R2017b

\section*{Primary Winding}
(To be removed) Linear nonideal transformer winding

Note The Primary Winding block will be removed in a future release. Use the Winding, Eddy Current, and Fundamental Reluctance blocks instead. To learn how to create a custom transformer without this block, refer to "Push-Pull Buck Converter in Continuous Conduction Mode".

\section*{Library}

Simscape / Power Systems / Simscape Components / Passive Devices / Transformers / Fundamental Components

\section*{Description}

The Primary Winding block models linear nonideal winding of a transformer with linear winding leakage and linear core magnetization effects. Although magnetization effects occur in the magnetic core, it is common practice to place mathematically equivalent electrical components on the electrical winding and parameterize them using electrical parameters. The figure shows the equivalent circuit diagram for the primary winding.

- \(R_{l}\) is the leakage resistance.
- \(\mathrm{L}_{l}\) is the leakage inductance.
- \(\mathrm{R}_{\mathrm{m}}\) is the magnetization resistance.
- \(\mathrm{L}_{\mathrm{m}}\) is the magnetization inductance.

\section*{Variables}

Use the Variables settings to specify the priority and initial target values for the block variables before simulation. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape) .

Unlike block parameters, variables do not have conditional visibility. The Variables settings include all the existing block variables. If a variable is not used in the set of equations corresponding to the selected block configuration, the values specified for this variable are ignored.

\section*{Parameters}

\section*{Main Tab}

\section*{Number of winding turns}

Number of wire turns on the transformer winding. The default value is 10.

\section*{Leakage resistance}

Power loss in the winding. The default value is 1e-3 0 hm .

\section*{Leakage inductance}

Magnetic flux loss in the winding. The default value is \(1 \mathrm{e}-3 \mathrm{H}\).

\section*{Core-loss resistance}

Magnetic losses in the transformer core. The default value is 1e6 0 hm .

\section*{Magnetization inductance}

Magnetic effects in the transformer core when operating in its linear region. The default value is le6 H.

\section*{Ports}

The block has the following ports:
\(+\)
Positive electrical conserving port

Negative electrical conserving port
N
North magnetic conserving port
S
South magnetic conserving port

\section*{See Also}

Electromagnetic Converter | Secondary Winding

\section*{Topics}
"Custom Zigzag Transformer"
"Push-Pull Buck Converter in Continuous Conduction Mode"
"Push-Pull Buck Converter in Discontinuous Conduction Mode"

Introduced in R2013b

\section*{PWM Generator}

Generate pulse width modulated signal
Library: Simscape / Power Systems / Simscape Components / Control / Pulse Width Modulation

\section*{Description}

The PWM Generator block implements a PWM generator. The pulse width modulation technique controls power transfer from one electrical component to another by quickly switching between full power transfer and no power transfer.

\section*{Working Principle}

The PWM generator block outputs either 1 when the duty cycle is greater than the carrier counter value, or 0 otherwise. You can set the period of each cycle by specifying the timer period Tper. You can change the initial output, or phase, of the PWM output by specifying one of three types of carrier counters:
- Up counter - The PWM output signal initializes at the start of the on cycle. This graphic shows the carrier counter signal and the corresponding PWM output.

- Down counter - The PWM output signal initializes at the start of the off cycle. This graphic shows the carrier counter signal and the corresponding PWM output.

- Up-down counter - The PWM output signal initializes halfway through the on cycle. This graphic shows the carrier counter signal and the corresponding PWM output.

\section*{Ports}

\section*{Input}

\section*{DC - Duty cycle}

\author{
scalar
}

Duty cycle in the range \([0,1]\).
Data Types: single | double

\section*{Output}

\section*{PWM - PWM signal}
scalar
Pulse width modulation signal.
Data Types: single | double

\section*{Parameters}

\section*{Carrier counter - Carrier counter strategy \\ Up (default) | Down | Up-Down}

Use the carrier counter strategy to change the initial behavior of the PWM output:
- Up counter - PWM output begins at the start of the on state.
- Down counter - PWM output begins at the start of the off state.
- Up-down counter - PWM output begins in the middle of the on state.

\section*{Timer period (s) - PWM period}
0.001 (default) | positive number

PWM timer period.

\section*{Sample time (s) - Block sample time}

5e-5 (default) | positive number
Sample time for the block. If this block is used in a continuous variable-step model, then the sample time can be explicitly specified. To ensure adequate resolution in the generated signal, set this value to be less than or equal to \(10 * T_{\text {per }}\), where \(T_{\text {per }}\) is the Timer period (s).

\section*{See Also}

\section*{Blocks}

PWM Generator | PWM Generator (Three-phase, Three-level) | PWM Generator (Threephase, Two-level) | Thyristor 6-Pulse Generator

Introduced in R2017b

\section*{PWM Generator (Three-phase, Three-level)}

Generate three-phase, three-level pulse width modulated waveform Library: Simscape / Power Systems / Simscape Components / Control / Pulse Width Modulation

\section*{Description}

The PWM Generator (Three-phase, Three-level) block controls switching behavior for a three-phase, three-level power converter. The block:

1 Calculates on- and off-gating times based on the block inputs:
- Three sinusoidal reference voltages
- A DC-link voltage
- A DC-link neutral point balance control signal

2 Uses the gating times to generate 12 switch-controlling pulses.
3 Uses the gating times to generate modulation waveforms.

\section*{Sampling Mode}

This block allows you to choose natural, symmetric, or asymmetric sampling of the modulation wave.

The PWM Generator (Three-phase, Two-level) block does not perform carrier-based pulse width modulation (PWM). Instead, the block uses input signals to calculate gating times and then uses the gating times to generate both the switch-controlling pulses and the modulation waveforms that it outputs.

Carrier-based PWM is, however, useful for showing how the sampling mode that you select relates to the switch-on and switch-off behavior of the pulses that the block generates. A generator that uses a three-level, carrier-based PWM method:

1 Samples a reference wave.
2 Compares the sample to two parallel triangle carrier waves, separated by one level.

3 Generates a switch-on pulse if a sample is higher than the carrier signal or a switchoff pulse if a sample is lower than the carrier wave.

To determine switch-on and switch-off pulse behavior, a three-level carrier-based PWM generator uses these methods to sample each of the triangle waves:
- Natural - The sampling and comparison occur at the intersection points of the modulation wave and the carrier wave.

- Asymmetric - Sampling occurs at the upper and lower boundaries of the carrier wave. The comparison occurs at the intersection that follows the sampling.

- Symmetric - Sampling occurs only at the upper boundary of the carrier wave. The comparison occurs at the intersection that follows the sampling.

\section*{Overmodulation}

The modulation index, which measures the ability of the power converter to output a given voltage, is defined as
\[
m=\frac{V_{M}}{V_{C}}
\]
where
- \(m\) is the modulation index.
- \(V_{m}\) is the peak value of the modulation wave.
- \(V_{c}\) is the peak value of the triangle carrier wave.

For three-phase SPWM,
\[
V_{p e a k}=m \frac{v_{d c}}{2},
\]
where
- \(V_{\text {peak }}\) is the peak value of the fundamental component of the phase-to-neutral voltage.
- \(v_{d c}\) is the DC-link voltage.

For three-phase space-vector PWM (SVM),
\[
V_{p e a k}=m \frac{v_{d c}}{\sqrt{3}}
\]

For normal steady-state operation, \(0<m \leq 1\). If a transient, such as a load increase, causes the amplitude of \(V_{m}\) to exceed the amplitude of \(V_{c}\), overmodulation (\(m>1\)) occurs

If overmodulation occurs, the output voltage of the power converter clamps to the positive or negative DC rail.

In the Three-Phase Three-Level PWM Generator example, the Three-Level Controller subsystem contains a \(1800-\mathrm{V}\) DC-link input, and a modulation index, \(m\), of 0.8 . For SVM, the maximal input voltage is \(1800 / \sqrt{3} \mathrm{~V}\), that is 1039.23 V . To demonstrate overmodulation, a transient is added at the beginning of the simulation. The transient forces the amplitudes of the reference voltages to exceed the amplitude of \(1 / \sqrt{3}\) of the DC-link voltage. To highlight overmodulation, the scope includes simulation results for only one of the 12 output pulses and only the \(a\)-phase of the reference voltages, modulation waveforms, and output voltages.

The modulation index is greater than one between 0.03-0.09 seconds. During overmodulation:
- The pulse remains in the on or off position.
- The output voltage clamps to the positive or negative DC rail.

\section*{Input/Output Ports}

\section*{Input}

\section*{Vabc - Three-phase sinusoidal reference signal vector}

Specify the three sinusoidal voltages, one per phase, that you want the attached converter to output.

\section*{vdc - DC-link voltage signal}
scalar
Specify a positive real number for the DC-link voltage of the converter.

\section*{vneutral - DC-link neutral point balance control scalar}

This signal is the output from a feedback-control loop that balances the DC supply. The value of the signal must be a real number between -1 and +1 .

\section*{Output}
g - Gate control
vector
12 pulse waveforms that determine switching behavior in the attached power converter.

\section*{ModWave - Modulation wave}
vector
If you are generating code for a platform that has hardware with PWM capability, you can deploy the modulation wave to the hardware. Otherwise, this data is for reference only.

\section*{Parameters}

\author{
Continuous PWM - Continuous pulse width modulation method SPWM: sinusoidal PWM (default)|SVM: space vector modulation
}

Specify the waveform technique.

\section*{Sampling mode - Wave-sampling method \\ Natural (default)|Asymmetric|Symmetric}

The sampling mode determines whether the block samples the modulation waveform when the waves intersect or when the carrier wave is at one or both of its boundary conditions.

\section*{Switching frequency (Hz) - Switching rate \\ 1e3 (default) | positive number}

Specify the rate at which you want the switches in the power converter to switch.

\section*{Sample time (s) - Block sample time}

5e-5 (default) | positive number
Specify the time interval between successive block executions (output calculations). To ensure adequate resolution in the generated signal, set this value to be less than or equal to \(10 / F_{\text {sw }}\) where \(F_{\text {sw }}\) is the Switching frequency (\(\mathbf{H z}\)).

\section*{References}
[1] Chung, D. W., J. S. Kim, and S. K. Sul. "Unified Voltage Modulation Technique for Real Time Three-Phase Power Conversion." IEEE Transactions on Industry Applications, Vol. 34, No. 2, 1998, pp. 374-380.
[2] Seo, J. H., C. H. Choi, and D. S. Hyun. "A new simplified space-vector PWM method for three-level inverters." IEEE Transactions on Power Electronics, Vol. 16, No. 4, 2001, pp. 545-550.

\section*{See Also}

Simscape Blocks
Converter

\section*{Blocks}

PWM Generator | PWM Generator (Three-phase, Two-level) | Thyristor 6-Pulse Generator

\section*{Introduced in R2016b}

\section*{PWM Generator (Three-phase, Two-level)}

Generate three-phase, two-level pulse width modulated waveform Library: Simscape / Power Systems / Simscape Components / Control / Pulse Width Modulation

\section*{Description}

The PWM Generator (Three-phase, Two-level) block controls switching behavior for a three-phase, two-level power converter. The block:

1 Calculates on- and off-gating times based on the block inputs:
- Three sinusoidal reference voltages, one per phase
- A DC-link voltage

2 Uses the gating times to generate six switch-controlling pulses.
3 Uses the gating times to generate modulation waveforms.

\section*{Continuous and Discontinuous PWM}

The block provides modes for both continuous and discontinuous pulse width modulation (PWM). The figure shows the general difference between continuous sinusoidal PWM (SPWM) and continuous space vector modulation (SVM) waveforms.

For discontinuous PWM (DPWM), the block clamps the modulation wave to the positive or negative DC rail for a total of 120 degrees during each fundamental period. During the clamping intervals, modulation discontinues.

A waveform with 30-degree DPWM has four 30-degree intervals per fundamental period.

Selecting a positive or negative 30-degree phase shift affects the clamping intervals for 60-degree DPWM.

The figure shows the waveforms for positive and negative DC clamping for 120-degree DPWM.

\section*{Sampling Mode}

This block allows you to choose natural, symmetric, or asymmetric sampling of the modulation wave.

The PWM Generator (Three-phase, Two-level) block does not perform carrier-based PWM. Instead, the block uses input signals to calculate gating times and then uses the gating times to generate both the switch-controlling pulses and the modulation waveforms that it outputs.

Carrier-based PWM is, however, useful for showing how the sampling mode that you select relates to the switch-on and switch-off behavior of the pulses that the block generates. A generator that uses a two-level, carrier-based PWM method:

1 Samples a reference wave.
2 Compares the sample to a triangle carrier wave.

3 Generates a switch-on pulse if a sample is higher than the carrier signal or a switchoff pulse if a sample is lower than the carrier wave.

To determine switch-on and switch-off pulse behavior, a two-level carrier-based PWM generator uses these methods to sample the triangle wave:
- Natural - The sampling and comparison occur at the intersection points of the modulation wave and the carrier wave.

- Asymmetric - Sampling occurs at the upper and lower boundaries of the carrier wave. The comparison occurs at the intersection that follows the sampling.

- Symmetric - Sampling occurs at only the upper boundary of the carrier wave. The comparison occurs at the intersection that follows the sampling.

\section*{Overmodulation}

The modulation index, which measures the ability of the power converter to output a given voltage, is defined as
\[
m=\frac{V_{M}}{V_{C}}
\]
where
- \(m\) is the modulation index.
- \(V_{m}\) is the peak value of the modulation wave.
- \(V_{c}\) is the peak value of the triangle carrier wave.

For three-phase SPWM,
\[
V_{\text {peak }}=m \frac{v_{d c}}{2},
\]
where
- \(V_{\text {peak }}\) is the peak value of the fundamental component of the phase-to-neutral voltage.
- \(v_{d c}\) is the DC-link voltage.

For three-phase space-vector PWM (SVM) and DPWM,
\[
V_{p e a k}=m \frac{v_{d c}}{\sqrt{3}}
\]

For normal steady-state operation, \(0<m \leq 1\). If a transient, such as a load increase, causes the amplitude of \(V_{m}\) to exceed the amplitude of \(V_{c}\), overmodulation (\(m>1\)) occurs.

If overmodulation occurs, the output voltage of the power converter clamps to the positive or negative DC rail.

In the Three-Phase Two-Level PWM Generator example, the Two-Level Controller subsystem contains a \(400-\mathrm{V}\) DC-link input, and a modulation index, \(m\), of 0.8 . For SPWM, the maximal input voltage is \(400 \mathrm{~V} / 2\), that is, 200 V . To demonstrate overmodulation, a transient is added at the beginning of the simulation. The transient forces the amplitudes of the reference voltages to exceed the amplitude of \(1 / 2\) of the DC-link voltage. To highlight overmodulation, the scope includes simulation results for only one of the six
output pulses and only the \(a\)-phase of the reference voltages, modulation waveforms, and output voltages.

The modulation index is greater than one between \(0.03-0.09\) seconds. During overmodulation:
- The pulse remains in the on or off position.
- The output voltage, \(V_{a o}\), clamps to the positive or negative DC rail.

\section*{Input/Output Ports}

\section*{Input}

\section*{Vabc - Three-phase sinusoidal reference signal vector}

Specify the three sinusoidal voltages, one per phase, that you want the attached converter to output.

\section*{vdc - DC-link voltage signal}
scalar
Specify a positive real number for the DC-link voltage of the converter.

\section*{Output}

\section*{g - Gate control}
vector
Six pulse waveforms that determine switching behavior in the attached power converter.

\section*{ModWave - Modulation wave \\ vector}

If you are generating code for a platform that has hardware with PWM capability, you can deploy the modulation wave to the hardware. Otherwise, this data is only for your reference.

\section*{Parameters}

\section*{PWM mode - Pulse width modulation method}

Continuous PWM (CPWM) (default)|Discontinuous PWM (DPWM)

Discontinuous PWM clamps the waveform to the DC rail for a total of 120 degrees in each fundamental period. Continuous PWM does not.

\section*{Continuous PWM - Continuous pulse width modulation method \\ SPWM: sinusoidal PWM (default)|SVM: space vector modulation}

\section*{Dependencies}

The Continuous PWM parameter is only available when you set the PWM mode parameter to Continuous PWM (CPWM).

\section*{Sampling mode - Wave-sampling method}

Natural (default)|Asymmetric|Symmetric
The sampling mode determines whether the block samples the modulation waveform when the waves intersect or when the carrier wave is at one or both of its boundary conditions.

\section*{Switching frequency (Hz) - Switching rate 1e3 (default) | positive number}

Specify the rate at which you want the switches in the power converter to switch.

\section*{Sample time (s) - Block sample time \\ 5e-5 (default) | positive number}

Specify the time interval between successive block executions (output calculations). To ensure adequate resolution in the generated signal, set this value to be less than or equal to \(10 / F_{\text {sw }}\), where \(F_{\text {sw }}\) is the Switching frequency (\(\mathbf{H z)}\).

\section*{Discontinuous PWM (DPWM) - Clamping method}

60 DPWM: 60 degree discontinuous PWM (default)
Specify the method for distributing the 120 degrees per period during which the block clamps the modulation wave to the DC rail. Other options are:
- 60 DPWM (+30 degree shift): +30 degree shift from 60 DPWM
- 60 DPWM (-30 degree shift): -30 degree shift from 60 DPWM
- 30 DPWM: 30 degree discontinuous PWM
- 120 DPWM: positive dc component
- 120 DPWM: negative dc component

When the wave is clamped, modulation discontinues.

\section*{Dependencies}

The Discontinuous PWM parameter is only available when you set the PWM mode parameter to Discontinuous PWM (DPWM).

\section*{References}

\author{
[1] Chung, D. W., J. S. Kim, and S. K. Sul. "Unified Voltage Modulation Technique for Real Time Three-Phase Power Conversion." IEEE Transactions on Industry Applications, Vol. 34, No. 2, 1998, pp. 374-380. \\ [2] Hava, A. M., R. J. Kerkman, and T. A. Lipo. "Simple Analytical and Graphical Methods for Carrier-Based PWM-VSI Drives." IEEE Transactions on Power Electronics, Vol. 14, No. 1, 1999, pp. 49-61.
}

\section*{See Also}

\section*{Simscape Blocks \\ Converter}

\section*{Blocks \\ PWM Generator | PWM Generator (Three-phase, Three-level) | Thyristor 6-Pulse \\ Generator}

\section*{Introduced in R2016b}

\section*{Rectifier}

Convert three-phase AC voltage to DC voltage

\section*{Library}

Semiconductors

\section*{Description}

The Rectifier block models a three-arm diode bridge circuit that converts a three-phase AC voltage to a DC voltage. The figure shows the equivalent circuit for the three-arm diode bridge.

Using the Charge Dynamics tab of the block dialog box, you can choose the type of diode that the three-arm bridge circuit uses. The table shows you how to set the Model dynamics parameter based on your goals.
\begin{tabular}{|l|l|l|}
\hline Goal & Value to Select & Block Behavior \\
\hline Prioritize simulation speed. & No dynamics & \begin{tabular}{l}
Each arm of the bridge \\
circuit uses a copy of the \\
Diode block. The block \\
dialog box does not display \\
additional parameters.
\end{tabular} \\
\hline \begin{tabular}{l}
Precisely specify reverse- \\
mode charge dynamics.
\end{tabular} & Model charge dynamics & \begin{tabular}{l}
Each arm of the bridge \\
circuit uses a copy of the \\
Commutation Diode block. \\
The block dialog box shows \\
parameters relating to the \\
Commutation Diode block.
\end{tabular} \\
\hline
\end{tabular}

\section*{Parameters}
- "Main Tab" on page 1-661
- "Charge Dynamics Tab" on page 1-662

\section*{Main Tab}

\section*{Forward voltage}

Minimum voltage required across the + and - ports of each diode for the gradient of the diode i-v characteristic to be \(1 / \mathrm{R}_{\text {on }}\), where \(\mathrm{R}_{\text {on }}\) is the value of On resistance. The default forward voltage value is 0.8 V .

\section*{On resistance}

Rate of change of voltage versus current above the forward voltage for each diode. The default value is 0.0010 hm .

\section*{Off conductance}

Conductance of each reverse-biased diode. The default value is \(1 \mathrm{e}-51 / 0 \mathrm{hm}\).

\section*{Charge Dynamics Tab}

\section*{Model dynamics}

Diode charge dynamics. The default value is No dynamics.
The charge dynamics options you can select are:
- No dynamics
- Model charge dynamics

When you select Model charge dynamics, additional parameters appear.

\section*{Additional Parameters for Model charge dynamics}

\section*{Junction capacitance}

Diode junction capacitance. The default value is 50 nF .

\section*{Peak reverse current, iRM}

Peak reverse current measured by an external test circuit. This value must be less than zero. The default value is -235 A.

\section*{Initial forward current when measuring iRM}

Initial forward current when measuring peak reverse current. This value must be greater than zero. The default value is 300 A .

\section*{Rate of change of current when measuring iRM}

Rate of change of current when measuring peak reverse current. This value must be less than zero. The default value is \(-50 \mathrm{~A} / \mu \mathrm{s}\).

\section*{Reverse recovery time parameterization}

Determines how you specify reverse recovery time in the block. The default value is Specify reverse recovery time directly.

If you select Specify stretch factor or Specify reverse recovery charge, you specify a value that the block uses to derive the reverse recovery time. For more information on these options, see "Alternatives to Specifying trr Directly" on page 1254.

\section*{Reverse recovery time, trr}

Interval between the time when the current initially goes to zero (when the diode turns off) and the time when the current falls to less than \(10 \%\) of the peak reverse current. The default value is \(15 \mu \mathrm{~s}\).

This parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery time directly.

The value of the Reverse recovery time, trr parameter must be greater than the value of the Peak reverse current, iRM parameter divided by the value of the Rate of change of current when measuring iRM parameter.

\section*{Reverse recovery time stretch factor}

Value that the block uses to calculate Reverse recovery time, trr. This value must be greater than 1 . The default value is 3 .

This parameter is visible only if you set Reverse recovery time parameterization to Specify stretch factor.

Specifying the stretch factor is an easier way to parameterize the reverse recovery time than specifying the reverse recovery charge. The larger the value of the stretch factor, the longer it takes for the reverse recovery current to dissipate.

\section*{Reverse recovery charge, Qrr}

Value that the block uses to calculate Reverse recovery time, trr. Use this parameter if the data sheet for your diode device specifies a value for the reverse recovery charge instead of a value for the reverse recovery time.

The reverse recovery charge is the total charge that continues to dissipate when the diode turns off. The value must be less than \(-\frac{i^{2}{ }_{R M}}{2 a}\), where:
- \(i_{R M}\) is the value specified for Peak reverse current, iRM.
- \(a\) is the value specified for Rate of change of current when measuring iRM.

The default value is \(1500 \mu \mathrm{As}\).
The parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery charge.

For more information on these parameters, see Commutation Diode.

\section*{Ports}

The block has the following ports:

Expandable three-phase port
\(+\)
Electrical conserving port associated with the positive terminal

Electrical conserving port associated with the negative terminal

\author{
See Also \\ Average-Value Inverter | Average-Value Rectifier | Converter \\ \section*{Topics} \\ "Expand and Collapse Three-Phase Ports on a Block" \\ \section*{Introduced in R2013b}
}

\title{
Reluctance with Hysteresis
}

Nonlinear reluctance with magnetic hysteresis
\(\begin{array}{ll}\text { Library: } \quad \text { Simscape / Power Systems / Simscape Components / } \\ & \text { Passive Devices / Fundamental Components }\end{array}\)

\section*{Description}

The Reluctance with Hysteresis block models a nonlinear reluctance with magnetic hysteresis. Use this block to build custom inductances and transformers that exhibit magnetic hysteresis.

The length and area parameters in the Geometry section let you define the geometry for the part of the magnetic circuit that you are modeling. The block uses the geometry information to map the magnetic domain Through and Across variables to flux density and field strength, respectively:
\[
\begin{aligned}
& B=\Phi / A_{e} \\
& M M F=l_{e} \cdot H
\end{aligned}
\]
where:
- \(M M F\) is magnetomotive force (mmf) across the component.
- \(\Phi\) is flux through the component.
- \(B\) is flux density.
- \(H\) is field strength.
- \(A_{\mathrm{e}}\) is the effective cross-sectional area of the section being modeled.
- \(l_{\mathrm{e}}\) is the effective length of the section being modeled.

The block then implements the relationship between \(B\) and \(H\) according to the JilesAtherton [1 on page 1-671, 2 on page 1-671] equations. The equation that relates \(B\) and \(H\) to the magnetization of the core is:
\[
B=\mu_{0}(H+M)
\]
where:
- \(\mu_{0}\) is the permeability constant.
- \(M\) is magnetization of the core.

The magnetization acts to increase the magnetic flux density, and its value depends on both the current value and the history of the field strength \(H\). The block uses the JilesAtherton equations to determine \(M\) at any given time.

The figure below shows a typical plot of the resulting relationship between \(B\) and \(H\).

In this case, the magnetization starts as zero, and hence the plot starts at \(B=H=0\). As the field strength increases, the plot tends to the positive-going hysteresis curve; then on reversal the rate of change of \(H\), it follows the negative-going hysteresis curve. The difference between positive-going and negative-going curves is due to the dependence of \(M\) on the trajectory history. Physically the behavior corresponds to magnetic dipoles in the core aligning as the field strength increases, but not then fully recovering to their original position as field strength decreases.

The starting point for the Jiles-Atherton equation is to split the magnetization effect into two parts, one that is purely a function of effective field strength (\(H_{\text {eff }}\)) and the other an irreversible part that depends on past history:
\[
M=c M_{a n}+(1-c) M_{i r r}
\]

The \(M_{\mathrm{an}}\) term is called the anhysteretic magnetization because it exhibits no hysteresis. It is described by the following function of the current value of the effective field strength, \(H_{\text {eff: }}\)
\[
M_{a n}=M_{s}\left(\operatorname{coth}\left(\frac{H_{e f f}}{\alpha}\right)-\frac{\alpha}{H_{e f f}}\right)
\]

This function defines a saturation curve with limiting values \(\pm M_{s}\) and point of saturation determined by the value of \(\alpha\), the anhysteretic shape factor. It can be approximately thought of as describing the average of the two hysteretic curves. In the block interface,
you provide values for \(d M_{a n} / d H_{e f f}\) when \(H_{\text {eff }}=0\) and a point \(\left[H_{1}, B_{1}\right.\)] on the anhysteretic B-H curve, and these are used to determine values for \(\alpha\) and \(M_{s}\).

The parameter \(c\) is the coefficient for reversible magnetization, and dictates how much of the behavior is defined by \(M_{\mathrm{an}}\) and how much by the irreversible term \(M_{\mathrm{irr}}\). The JilesAtherton model defines the irreversible term by a partial derivative with respect to field strength:
\[
\begin{aligned}
& \frac{d M_{i r r}}{d H}=\frac{M_{a n}-M_{i r r}}{K \delta-\alpha\left(M_{a n}-M_{i r r}\right)} \\
& \delta= \begin{cases}1 & \text { if } H \geq 0 \\
-1 & \text { if } H<0\end{cases}
\end{aligned}
\]

Comparison of this equation with a standard first order differential equation reveals that as increments in field strength, \(H\), are made, the irreversible term \(M_{\text {irr }}\) attempts to track
the reversible term \(M_{\mathrm{an}}\), but with a variable tracking gain of \(1 /\left(K \delta-\alpha\left(M_{a n}-M_{i r r}\right)\right)\). The tracking error acts to create the hysteresis at the points where \(\delta\) changes sign. The main parameter that shapes the irreversible characteristic is \(K\), which is called the bulk coupling coefficient. The parameter \(\alpha\) is called the inter-domain coupling factor, and is also used to define the effective field strength used when defining the anhysteretic curve:
\[
H_{e f f}=H+\alpha M
\]

The value of \(\alpha\) affects the shape of the hysteresis curve, larger values acting to increase the B-axis intercepts. However, notice that for stability the term \(K \delta-\alpha\left(M_{a n}-M_{i r r}\right)\) must be positive for \(\delta>0\) and negative for \(\delta<0\). Therefore not all values of \(\alpha\) are permissible, a typical maximum value being of the order \(1 \mathrm{e}-3\).

\section*{Procedure for Finding Approximate Values for Jiles-Atherton Equation Coefficients}

You can determine representative parameters for the equation coefficients by using the following procedure:

1 Provide a value for the Anhysteretic B-H gradient when H is zero parameter
\(\left(d M_{a n} / d H_{\text {eff }}\right.\) when \(\left.H_{\text {eff }}=0\right)\) plus a data point \(\left[H_{1}, B_{1}\right]\) on the anhysteretic B-H curve. From these values, the block initialization determines values for \(\alpha\) and \(M_{\mathrm{s}}\).
2 Set the Coefficient for reversible magnetization, c parameter to achieve correct initial B-H gradient when starting a simulation from [HB] \(=[00]\). The value of \(c\) is approximately the ratio of this initial gradient to the Anhysteretic B-H gradient when \(H\) is zero. The value of \(c\) must be greater than 0 and less than 1 .
3 Set the Bulk coupling coefficient, \(\mathbf{K}\) parameter to the approximate magnitude of \(H\) when \(B=0\) on the positive-going hysteresis curve.

4 Start with \(\alpha\) very small, and gradually increase to tune the value of \(B\) when crossing \(H=0\) line. A typical value is in the range of \(1 \mathrm{e}-4\) to \(1 \mathrm{e}-3\). Values that are too large will cause the gradient of the B-H curve to tend to infinity, which is nonphysical and generates a run-time assertion error.

Sometimes you need to iterate on these four steps to get a good match against a predefined B-H curve.

\section*{Variables}

Use the Variables section of the block interface to set the priority and initial target values for the block variables prior to simulation. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape).

\section*{Ports}

\section*{Conserving}

\section*{N - North terminal}
magnetic
Magnetic conserving port associated with the block North terminal.

\section*{S - South terminal \\ magnetic}

Magnetic conserving port associated with the block South terminal.

\section*{Parameters}

\section*{Geometry}

Effective length - Effective length of the section being modeled 0.032 m (default)

Effective length of the section being modeled, that is, the average distance of the magnetic path.

\section*{Effective cross-sectional area - Effective cross-sectional area of the section being modeled}

\section*{\(1.6 \mathrm{e}-5 \mathrm{~m}\) ^2 (default)}

Effective cross-sectional area of the section being modeled, that is, the average area of the magnetic path.

\section*{Averaging period for power logging - Excitation period used for averaging} 0 s (default)

Averaging period for the hysteresis losses calculation. These losses are proportional to the area enclosed by the B-H trajectory. If the block is excited at a known, fixed frequency, you can set this value to the corresponding excitation period to calculate the hysteresis loss. In this case, the block logs the hysteresis loss once per AC cycle to the variable
power_dissipated. If you are using a fixed-step solver, this value must be an integer multiple of the simulation step size.

If the block is not excited at a known, fixed frequency, set this parameter to 0 . In this case, the block sets power_dissipated to zero, and you can calculate the actual hysteresis loss by post-processing the logged variable power_instantaneous.

\section*{Dependencies}

This parameter is visible only when you select Magnetic flux density versus magnetic field strength characteristic with hysteresis for the Parameterized by parameter.

\section*{B-H Curve}

Anhysteretic B-H gradient when H is zero - Gradient of the anhysteretic B-H curve around zero field strength

\section*{\(0.005 \mathrm{~m} * \mathrm{~T} / \mathrm{A}\) (default)}

The gradient of the anhysteretic (no hysteresis) B-H curve around zero field strength. Set it to the average gradient of the positive-going and negative-going hysteresis curves.

Flux density point on anhysteretic B-H curve - Flux density of the point for field strength measurement
```

1.49 T (default)

```

Specify a point on the anhysteretic curve by providing its flux density value. Picking a point at high field strength where the positive-going and negative-going hysteresis curves align is the most accurate option.

\section*{Corresponding field strength - Field strength at measurement point 1000 A/m (default)}

The corresponding field strength for the point that you define by the Flux density point on anhysteretic B-H curve parameter.

Coefficient for reversible magnetization, c - Proportion of magnetization that is reversible
0.1 (default)

The proportion of the magnetization that is reversible. The value must be greater than zero and less than one.

\section*{Bulk coupling coefficient, K - Jiles-Atherton equations parameter 200 A/m (default)}

The Jiles-Atherton parameter that primarily controls the field strength magnitude at which the B-H curve crosses the zero flux density line.

\section*{Inter-domain coupling factor, alpha - Jiles-Atherton equations parameter 0.0001 (default)}

The Jiles-Atherton parameter that primarily affects the points at which the B-H curves intersect the zero field strength line. Typical values are in the range of \(1 \mathrm{e}-4\) to \(1 \mathrm{e}-3\).

\section*{References}
[1] Jiles, D. C. and D. L. Atherton. "Theory of ferromagnetic hysteresis." Journal of Magnetism and Magnetic Materials. Vol. 61, 1986, pp. 48-60.
[2] Jiles, D. C. and D. L. Atherton. "Ferromagnetic hysteresis." IEEE Transactions on Magnetics. Vol. 19, No. 5, 1983, pp. 2183-2184.

\section*{See Also}

Nonlinear Inductor | Nonlinear Transformer

Introduced in R2017b

\section*{RLC}

Three-phase line impedance

\section*{Library}

Passive Devices

\section*{Description}

The RLC block models a three-phase impedance with two three-phase connections. Each of the three identical impedance components can include any combination of a resistor \((\mathrm{R})\), capacitor \((\mathrm{C})\), and inductor \((\mathrm{L})\), connected in series or in parallel.

Define the values for the \(\mathrm{R}, \mathrm{L}\), and C components by specifying the appropriate block parameters. Do not set the parameter values to zero or infinity to remove terms; instead, select the correct option for the Component structure parameter.

For certain combinations of \(R, L\), and \(C\), for some circuit topologies, specify parasitic resistance or conductance values that help the simulation to converge numerically. These parasitic terms ensure that an inductor has a small parallel resistive path and that a capacitor has a small series resistance.

\section*{Parameters}
- "Main Tab" on page 1-673
- "Parasitics Tab" on page 1-673
- "Initial Conditions Tab" on page 1-673

\section*{Main Tab}

\section*{Component structure}

Select the desired combination of a resistor (R), capacitor (C), and inductor (L), connected in series or in parallel. The default is R , resistor.

\section*{Resistance}

Resistance of each of the line impedances. This parameter is visible only when you select a component structure that includes a resistor. The default value is 10 hm .

\section*{Inductance}

Inductance of each of the line impedances. This parameter is visible only when you select a component structure that includes an inductor. The default value is 0.001 H .

\section*{Capacitance}

Capacitance in each of the line impedances. This parameter is visible only when you select a component structure that includes a capacitor. The default value is 1e-6 F.

\section*{Parasitics Tab}

\section*{Parasitic series resistance}

Represents small parasitic effects. The parameter value corresponds to the series resistance value added to all instances of capacitors in the load. The default value is 1e-6 Ohm.

\section*{Parasitic parallel conductance}

Represents small parasitic effects. The parameter value corresponds to the parallel conductance value added across all instances of inductors in the load. The default value is \(1 \mathrm{e}-61 / 0 \mathrm{hm}\).

\section*{Initial Conditions Tab}

\section*{Initial inductor current [Ia Ib Ic]}

Initial current in the \(\mathrm{a}, \mathrm{b}\), and c phase inductors, respectively. This parameter is visible only when you select a component structure that includes an inductor. The default value is [0 0 0] A.

\section*{Initial capacitor voltage [Va Vb Vc]}

Initial voltage across the \(\mathrm{a}, \mathrm{b}\), and c phase capacitors, respectively. This parameter is visible only when you select a component structure that includes a capacitor. The default value is \(\left[\begin{array}{lll}0 & 0 & 0\end{array}\right] \mathrm{V}\).

\section*{Block Parameterization}

The following table lists the block parameters for each of the configurations, based on the selected Component structure option.
\begin{tabular}{|c|c|c|c|}
\hline Component Structure & Main Tab & Parasitics Tab & Initial Conditions Tab \\
\hline R & Resistance & None & None \\
\hline L & Inductance & Parasitic parallel conductance & Initial inductor current [Ia Ib Ic] \\
\hline C & Capacitance & Parasitic series resistance & Initial capacitor voltage [Va Vb Vc] \\
\hline Series RL & \begin{tabular}{l}
Resistance \\
Inductance
\end{tabular} & Parasitic parallel conductance & Initial inductor current [Ia Ib Ic] \\
\hline Series RC & \begin{tabular}{l}
Resistance \\
Capacitance
\end{tabular} & None & Initial capacitor voltage [Va Vb Vc] \\
\hline Series LC & \begin{tabular}{l}
Inductance \\
Capacitance
\end{tabular} & Parasitic parallel conductance & \begin{tabular}{l}
Initial inductor current [Ia Ib Ic] \\
Initial capacitor voltage [Va Vb Vc]
\end{tabular} \\
\hline Series RLC & \begin{tabular}{l}
Resistance \\
Inductance \\
Capacitance
\end{tabular} & Parasitic parallel conductance & \begin{tabular}{l}
Initial inductor current [Ia Ib Ic] \\
Initial capacitor voltage [Va Vb Vc]
\end{tabular} \\
\hline Parallel RL & \begin{tabular}{l}
Resistance \\
Inductance
\end{tabular} & None & Initial inductor current [Ia Ib Ic] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Component Structure & Main Tab & Parasitics Tab & Initial Conditions Tab \\
\hline Parallel RC & \begin{tabular}{l}
Resistance \\
Capacitance
\end{tabular} & \begin{tabular}{l}
Parasitic series \\
resistance
\end{tabular} & \begin{tabular}{l}
Initial capacitor voltage \\
[Va Vb Vc]
\end{tabular} \\
\hline Parallel LC & \begin{tabular}{l}
Inductance \\
Capacitance
\end{tabular} & \begin{tabular}{l}
Parasitic series \\
resistance
\end{tabular} & \begin{tabular}{l}
Initial inductor current \\
[Ia Ib Ic] \\
Initial capacitor voltage \\
[Va Vb Vc]
\end{tabular} \\
\hline Parallel RLC & \begin{tabular}{l}
Resistance \\
Inductance \\
Capacitance
\end{tabular} & \begin{tabular}{l}
Parasitic series \\
resistance
\end{tabular} & \begin{tabular}{l}
Initial inductor current \\
[Ia Ib Ic] \\
Initial capacitor voltage \\
[Va Vb Vc]
\end{tabular} \\
\hline
\end{tabular}

\section*{Ports}

The block has two expandable three-phase ports, \(\sim 1\) and \(\sim 2\), representing the two terminals of the three-phase line.

\section*{See Also}

Delta-Connected Load | Wye-Connected Load

\section*{Topics}
"Three-Phase Asynchronous Machine Starting"
"Expand and Collapse Three-Phase Ports on a Block"

\section*{Introduced in R2013b}

\section*{Resolver}

Model rotary transformer that measures motor rotation angle
\[
\begin{array}{ll}
\text { Library: } & \text { Simscape / Power Systems / Simscape Components / } \\
& \text { Sensors }
\end{array}
\]

\section*{Description}

The Resolver block models a generic resolver, which measures the electrical phase angle of a signal through electromagnetic coupling. The resolver consists of a rotary transformer that couples an AC voltage applied to the primary winding to two secondary windings. These secondary windings are physically oriented at 90 degrees to each other. As the rotor angle changes, the relative coupling between the primary and the two secondary windings varies. In the Resolver block model, the first secondary winding is oriented such that peak coupling occurs when the rotor is at zero degrees, and therefore the second secondary winding has minimum coupling when the rotor is at zero degrees.

Without loss of generality, it is assumed that the transformer between primary and rotor circuit is ideal with a ratio of 1:1. This results in the rotor current and voltage being equivalent to the primary current and voltage.

You have two options for defining the block equations:
- Omit the dynamics by neglecting the transformer inductive terms. This model is only valid if the sensor is driven by a sine wave because any DC component on the primary side will pass to the output side.
- Include the inductive terms, thereby capturing voltage amplitude loss and phase differences. This model is valid for any input waveform. Within this option, you can either specify the inductances and the peak coupling coefficient directly, or specify the transformation ratio and measured impedances, in which case the block uses these values to determine the inductive terms.

\section*{Equations when Omitting Dynamics}

The equations are based on the superposition of two ideal transformers, both with coupling coefficients that depend on rotor angle. The two ideal transformers have a common primary winding. See the Simscape Ideal Transformer block reference page for more information on modeling ideal transformers. The equations are:
\(K_{\mathrm{x}}=R \cos (N \Theta)\)
\(K_{\mathrm{y}}=R \sin (N \Theta)\)
\(v_{\mathrm{x}}=K_{\mathrm{x}} v_{\mathrm{p}}\)
\(v_{\mathrm{y}}=K_{\mathrm{y}} v_{\mathrm{p}}\)
\(i_{\mathrm{p}}=-K_{\mathrm{x}} i_{\mathrm{x}}-K_{\mathrm{y}} i_{\mathrm{y}}\)
where:
- \(v_{\mathrm{p}}\) and \(i_{\mathrm{p}}\) are the rotor (or equivalently primary) voltage and current, respectively.
- \(v_{\mathrm{x}}\) and \(i_{\mathrm{x}}\) are the first secondary voltage and current, respectively.
- \(v_{\mathrm{y}}\) and \(i_{\mathrm{y}}\) are the second secondary voltage and current, respectively.
- \(K_{\mathrm{x}}\) is the coupling coefficient for the first secondary winding.
- \(K_{y}\) is the coupling coefficient for the second secondary winding.
- \(R\) is the transformation ratio.
- \(N\) is the number of pole pairs.
- \(\Theta\) is the rotor angle.

\section*{Equations when Including Dynamics}

The equations are based on the superposition of two mutual inductors, both with coupling coefficients that depend on rotor angle. The two mutual inductors have a common primary winding. See the Simscape Mutual Inductor block reference page for more information on modeling mutual inductors. The equations are:
\[
\begin{aligned}
& v_{p}=R_{p} i_{p}+L_{p} \frac{d i_{p}}{d t}+\sqrt{L_{p} L_{s}} k\left(\cos (N \theta) \frac{d i_{x}}{d t}+\sin (N \theta) \frac{d i_{y}}{d t}\right) \\
& v_{x}=R_{s} i_{x}+L_{s} \frac{d i_{x}}{d t}+\sqrt{L_{p} L_{s}} k \cos (N \theta) \frac{d i_{p}}{d t} \\
& v_{y}=R_{s} i_{y}+L_{s} \frac{d i_{y}}{d t}+\sqrt{L_{p} L_{s}} k \sin (N \theta) \frac{d i_{p}}{d t}
\end{aligned}
\]
where:
- \(v_{\mathrm{p}}\) and \(i_{\mathrm{p}}\) are the rotor (or equivalently primary) voltage and current, respectively.
- \(v_{\mathrm{x}}\) and \(i_{\mathrm{x}}\) are the first secondary voltage and current, respectively.
- \(v_{\mathrm{y}}\) and \(i_{\mathrm{y}}\) are the second secondary voltage and current, respectively.
- \(R_{\mathrm{p}}\) is the rotor (or primary) resistance.
- \(L_{\mathrm{p}}\) is the rotor (or primary) inductance.
- \(R_{\mathrm{s}}\) is the stator (or secondary) resistance.
- \(L_{\mathrm{s}}\) is the stator (or secondary) inductance.
- \(N\) is the number of pole pairs.
- \(k\) is the coefficient of coupling.
- \(\Theta\) is the rotor angle.

It is assumed that coupling between the two secondary windings is zero.

Datasheets typically do not quote the coefficient of coupling and inductance parameters, but instead give the transformation ratio \(R\) and measured impedances. If you select Specify transformation ratio and measured impedances for the Parameterization parameter, then the values you provide are used to determine values for the equation coefficients, as defined above.

\section*{Variables}

Use the Variables section of the block interface to set the priority and initial target values for the block variables prior to simulation. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape).

\section*{Assumptions and Limitations}

The model is based on the following assumptions:
- The resolver draws no torque between the mechanical rotational ports R and C .
- The transformer between primary and rotor circuit is ideal with a ratio of 1:1.
- The coupling between the two secondary windings is zero.

\section*{Ports}

\section*{Conserving}

\section*{p1 - Primary winding positive terminal}
electrical
Electrical conserving port associated with the positive terminal of the primary winding.

\section*{p2 - Primary winding negative terminal \\ electrical}

Electrical conserving port associated with the negative terminal of the primary winding.

\author{
R - Resolver rotor \\ mechanical rotational
}

Mechanical rotational conserving port connected to the rotor.

\section*{C - Resolver case}
mechanical rotational
Mechanical rotational conserving port connected to the resolver case.

\section*{x1 - Secondary winding x positive terminal}
electrical
Electrical conserving port associated with the positive terminal of secondary winding \(x\).

\section*{x2 - Secondary winding \(x\) negative terminal}
electrical
Electrical conserving port associated with the negative terminal of secondary winding \(\chi\).

\section*{y1 - Secondary winding y positive terminal electrical}

Electrical conserving port associated with the positive terminal of secondary winding \(y\).

\section*{y2 - Secondary winding y negative terminal electrical}

Electrical conserving port associated with the negative terminal of secondary winding \(y\).

\section*{Parameters}

\section*{Parameterization - Resolver parameterization}

Specify transformation ratio and omit dynamics (default)|Specify transformation ratio and measured impedances|Specify equation parameters directly

Select one of the following methods for block parameterization:
- Specify transformation ratio and omit dynamics - Provide values for transformation ratio, number of pole pairs, and initial rotor angle only. This model neglects the transformer inductive terms, and is only valid if the sensor is driven by a sine wave. The equations are based on the superposition of two ideal transformers,
both with coupling coefficients that depend on rotor angle. For more information, see "Equations when Omitting Dynamics" on page 1-677.
- Specify transformation ratio and measured impedances - Provide additional values to determine the transformer inductive terms, to model the voltage amplitude loss and phase differences. This model is valid for any input waveform. The equations are based on the superposition of two mutual inductors, both with coupling coefficients that depend on rotor angle. For more information, see "Equations when Including Dynamics" on page 1-678.
- Specify equation parameters directly - Model the dynamics, but provide values for rotor and stator inductances and the peak coefficient of coupling, instead of transformation ratio and measured impedances. For more information, see "Equations when Including Dynamics" on page 1-678. This model is valid for any input waveform.

\section*{Transformation ratio - Peak output to input voltage ratio}

\section*{0.5 (default) | positive number}

Ratio between the peak output voltage and the peak input voltage assuming negligible secondary voltage drop due to resistance and inductance.

\section*{Dependencies}

To enable this parameter, set the Parameterization parameter to Specify transformation ratio and omit dynamics or Specify transformation ratio and measured impedances. If you select Specify transformation ratio and measured impedances for the Parameterization parameter, then the transformation ratio takes the voltage drop due to primary winding resistance into account.

\section*{Rotor resistance - Primary resistance \\ 70 Ohm (default) | positive number}

Rotor ohmic resistance. This resistance is also referred to as the primary resistance.
Dependencies
To enable this parameter, set the Parameterization parameter to Specify transformation ratio and measured impedances or Specify equation parameters directly.

\section*{Stator resistance - Secondary resistance}

180 Ohm (default) | positive number

Stator ohmic resistance. This resistance is also referred to as the secondary resistance. It is assumed that both secondaries have the same resistance.

\section*{Dependencies}

To enable this parameter, set the Parameterization parameter to Specify transformation ratio and measured impedances or Specify equation parameters directly.

\section*{Rotor reactance - Primary reactance} 100 Ohm (default) | positive number

Rotor reactance when the secondary windings are open-circuit. This reactance is also referred to as the primary reactance.

\section*{Dependencies}

To enable this parameter, set the Parameterization parameter to Specify transformation ratio and measured impedances.

\section*{Stator reactance - Secondary reactance}

300 Ohm (default) | positive number
Stator reactance when the primary winding is open-circuit. This reactance is also referred to as the secondary reactance.

\section*{Dependencies}

To enable this parameter, set the Parameterization parameter to Specify transformation ratio and measured impedances.

Frequency at which reactances and transformation ratio are specified - Sinusoidal source frequency

10 kHz (default) | positive number
Frequency of the sinusoidal source used when measuring the reactances.

\section*{Dependencies}

To enable this parameter, set the Parameterization parameter to Specify transformation ratio and measured impedances.

\section*{Rotor inductance - Primary reactance}
0.0016 H (default) | positive number

Rotor or primary inductance, \(L_{\mathrm{p}}\).

\section*{Dependencies}

To enable this parameter, set the Parameterization parameter to Specify equation parameters directly.

\section*{Stator inductance - Secondary reactance}
0.0048 H (default) | positive number

Stator or secondary inductance, \(L_{s}\).

\section*{Dependencies}

To enable this parameter, set the Parameterization parameter to Specify equation parameters directly.

\section*{Peak coefficient of coupling - Maximum coupling coefficient}

\subsection*{0.35 (default) | number between zero and one, exclusive}

Peak coefficient of coupling between the primary and secondary windings.

\section*{Dependencies}

To enable this parameter, set the Parameterization parameter to Specify equation parameters directly.

\section*{Number of pole pairs - Rotor pole pairs}

\section*{1 (default) | positive number}

Number of pole pairs on the rotor.

\section*{See Also}

Incremental Shaft Encoder

\section*{Introduced in R2018a}

\section*{RMS Measurement}

Measure root-mean-square (RMS) properties of a signal
Library: Simscape / Power Systems / Simscape Components / Control / Measurements

\section*{Description}

The RMS Measurement block measures root-mean-square (RMS) properties of the input signal. You can use it to measure one of these properties:
- The total RMS of the input signal
- The RMS of the individual harmonics of the input signal that you specify.

Use the total RMS configuration with appropriate sensors to perform RMS voltage, current, or power analyses in your system.

You can use the harmonics configuration to perform total harmonic distortion analyses on systems with nonlinear loads such as:
- Converters
- Motor drives
- Inverters

\section*{Equations}

The total RMS value is calculated from the input signal \(x_{R M S}\) as:
\[
x_{R M S}(t)=\sqrt{\frac{1}{T} \int_{t-T}^{t} x(t)^{2} d t},
\]
where:
- \(T\) is the period of the input signal, or equivalently the inverse of its base frequency \(F\).
- \(x\) is the input signal.

Because the calculation is performed over a period of time, the block requires \(T\) seconds to respond to a step change in the input signal. This condition also applies to startup.

The harmonic RMS component \(x_{k, R M S}\) for harmonic \(k\) is calculated as:
\[
x_{k, R M S}(t)=G\left(\frac{2}{T}\right) \sqrt{\left(\int_{t-T}^{t} x(t) \sin \left(\frac{2 \pi k t}{T}\right) d t\right)^{2}+\left(\int_{t-T}^{t} x(t) \cos \left(\frac{2 \pi k t}{T}\right) d t\right)^{2}}
\]
where \(G\) is equal to 0.5 for the DC component \((k=0)\) and \(1 / \sqrt{2}\) for the AC components (\(k>0\)).

\section*{Ports}

\section*{Input}

\section*{u - Input signal}
scalar
Periodic input signal.
Data Types: single | double

\section*{Output}

\section*{RMS - Root-mean-square}

\section*{scalar or vector}

Estimated RMS of the input signal. If you select Specify harmonics, the output is a vector with each element corresponding to a specified harmonic. Otherwise, the output is a scalar representing the total RMS.
Data Types: single | double

\section*{Parameters}

\section*{Base frequency (Hz) - Fundamental frequency}

\section*{60 Hz (default) |scalar}

Base frequency of the input signal corresponding to the first harmonic.

\section*{Specify harmonics - RMS output mode} off (default) | on

Specify whether to output the total RMS of the input signals, or the individual harmonics that you specify.

\section*{Harmonic numbers - Harmonics specification}

\section*{[0 1 12 2] (default)|vector}

Specify the harmonics for which to output an RMS.

\section*{Dependencies}

To enable this parameter, select the Specify harmonics parameter.

\section*{Sample time - Block sample time}

0 (default) | positive number
Sample time for the block. For continuous operation, set this property to 0. For discrete operation, specify the sample time explicitly. This block does not support inherited sample time.

\section*{See Also}

\section*{Blocks}

Sinusoidal Measurement (PLL) | Three-Phase Sinusoidal Measurement (PLL)

\section*{Introduced in R2017b}

\section*{RST Controller}

Predictive control using a polynomial representation
Library: Simscape / Power Systems / Simscape Components / Control / General Control

\section*{Description}

The RST Controller block implements a generalized predictive controller using a reference signal tracking polynomial representation. The diagram shows the equivalent circuit for the control algorithm.

\section*{Equations}

A controlled auto-regressive integrated moving average (CARIMA) model describes the plant:
\[
\begin{aligned}
& A\left(z^{-1}\right) y(k)=z^{-d} B\left(z^{-1}\right) u(k-1)+\frac{e(k) C\left(z^{-1}\right)}{D\left(z^{-1}\right)} \\
& A\left(z^{-1}\right)=1+a_{1} z^{-1}+\cdots+a_{n_{A}} z^{-n_{A}} \\
& B\left(z^{-1}\right)=b_{0}+b_{1} z^{-1}+\cdots+b_{n_{B}} z^{-n_{B}} \\
& C\left(z^{-1}\right)=1 \\
& D\left(z^{-1}\right)=1-z^{-1}
\end{aligned}
\]
where:
- \(d\) is the system dead-time.
- \(y(k)\) is the plant output.
- \(u(k)\) is the controller output.
- \(e(k)\) is white noise with a zero-mean value.
- \(A\left(z^{-1}\right)\) and \(B\left(z^{-1}\right)\) are the system polynomials.
- \(n_{A}\) and \(n_{B}\) are the polynomials degrees.
- \(C\left(z^{-1}\right)\) and \(D\left(z^{-1}\right)\) are the disturbance polynomials for obtaining the steady-state error.

The prediction model is given as
\[
\hat{y}(k+j \mid k)=G_{j-d}\left(z^{-1}\right) D\left(z^{-1}\right) z^{-d-1} u(k+j)+\frac{H_{j-d}\left(z^{-1}\right) D\left(z^{-1}\right)}{C\left(z^{-1}\right)} u(k-1)+\frac{F_{j-d}\left(z^{-1}\right)}{C\left(z^{-1}\right)} y(k)
\]
and
\[
j=\overline{h i, h p}
\]
where:
- hi is the minimum prediction.
- \(h p\) is the prediction horizon.

The future control sequence, computed at time \(k\), is
\[
u(k+j-1 \mid k)
\]
where
\[
j=\overline{1, h c}
\]
and \(h c\) is the control horizon.
The predicted values of the output is
\[
\hat{y}(k+j \mid k) .
\]

To determine the system polynomials, \(F_{j-d}\left(z^{-1}\right), G_{j-d}\left(z^{-1}\right)\), and \(H_{j-d}\left(z^{-1}\right)\), the block uses two Diophantine equations. The first Diophantine equation is
\[
\frac{C\left(z^{-1}\right)}{A\left(z^{-1}\right) D\left(z^{-1}\right)}=E_{j-d}\left(z^{-1}\right)+z^{-j+d} \frac{F_{j-d}\left(z^{-1}\right)}{A\left(z^{-1}\right) D\left(z^{-1}\right)},
\]
where:
\[
\begin{aligned}
& E_{j-d}\left(z^{-1}\right)=1+1+e_{1} z^{-1}+\cdots+e_{n_{E}} z^{-n_{E}} \\
& F_{j-d}\left(z^{-1}\right)=f_{0}+f_{1} z^{-1}+\cdots+f_{n_{F}} z^{-n_{F}} \\
& n_{E}=j-d-1 \\
& n_{F}=\max \left(n_{A}+n_{D}-1, n_{C}-j+d\right)
\end{aligned}
\]

The second Diophantine equation is
\[
E_{j-d}\left(z^{-1}\right) B\left(z^{-1}\right)=C\left(z^{-1}\right) G_{j-d}\left(z^{-1}\right)+z^{-j+d} H_{j-d}\left(z^{-1}\right)
\]
where:
\[
\begin{aligned}
& G_{j-d}\left(z^{-1}\right)=g_{0}+g_{1} z^{-1}+\cdots+g_{n_{G}} z^{-n_{G}} \\
& H_{j-d}\left(z^{-1}\right)=h_{0}+h_{1} z^{-1}+\cdots+h_{n_{H}} z^{-n_{H}} \\
& n_{G}=j-d-1 \\
& n_{H}=\max \left(n_{C}, n_{B}+d\right)-1
\end{aligned}
\]

The resulting prediction model is
\[
\hat{y}(k+j \mid k)=G_{j-d}\left(z^{-1}\right) D\left(z^{-1}\right) z^{-d-1} u(k+j)+\hat{y}_{0}(k+j \mid k),
\]
where
\[
\hat{y}_{0}(k+j \mid k)=\frac{H_{j-d}\left(z^{-1}\right) D\left(z^{-1}\right)}{C\left(z^{-1}\right)} u(k-1)+\frac{F_{j-d}\left(z^{-1}\right)}{C\left(z^{-1}\right)} y(k)
\]
represents the free response of the system.
Using the matrix notation, the prediction model can be written as
\[
\hat{\mathrm{y}}=\mathrm{Gu}_{d}+\hat{\mathrm{y}}_{0}
\]
where:
\[
\hat{\mathbf{y}}=[\hat{y}(k+h i \mid k), \hat{y}(k+h i+1 \mid k), \cdots, \hat{y}(k+h p \mid k)]^{T}
\]
\[
\begin{aligned}
& \mathrm{G}=\left[\begin{array}{cccccc}
g_{h i-d-1} & \cdots & g_{0} & 0 & \cdots & 0 \\
g_{h i-d} & \cdots & g_{1} & g_{0} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
g_{h c-1} & \cdots & \cdots & \cdots & \cdots & g_{0} \\
g_{h p-d-1} & \cdots & \cdots & \cdots & \cdots & g_{h p-h c-1}
\end{array}\right] \\
& \mathrm{u}_{d}=\left[D\left(z^{-1}\right) u(k), \cdots, D\left(z^{-1}\right) u(k+h c-1)\right]^{T} \\
& \hat{\mathrm{y}}_{0}=\left[\hat{y}_{0}(k+h i \mid k), \hat{y}_{0}(k+h i+1 \mid k), \cdots, \hat{y}_{0}(k+h p \mid k)\right]^{T}
\end{aligned}
\]

To minimize tracking error and controller output, the block uses a cost function. To trade off between the minimization of the tracking error and the minimization of the controller output, the block uses a weighting factor, \(\lambda\), such that
\[
J=\left(\mathrm{Gu}_{d}+\hat{\mathrm{y}}_{0}-\mathrm{w}\right)^{T}\left(\mathrm{Gu}_{d}+\hat{\mathrm{y}}_{0}-\mathrm{w}\right)+\lambda \mathrm{u}_{d}^{T} \mathrm{u}_{d}
\]
for
\[
D\left(z^{-1}\right) u(k+i)=0
\]
and
\[
i \in[h c, h p-d-1],
\]
where \(w\) is the reference trajectory vector. Minimizing the cost function, yields the equation for the optimal control sequence:
\[
\mathrm{u}_{d}^{*}=\left(\mathrm{G}^{T} \mathrm{G}+\lambda \mathrm{I}_{h c}\right) \mathrm{G}^{T}\left[\mathrm{w}-\mathrm{y}_{0}\right] .
\]

As \(\gamma_{j}\) and \(j=\overline{h i, h p}\) are elements in the first row of the matrix \(\left(\mathrm{G}^{T} \mathrm{G}+\lambda \mathrm{I}_{h c}\right)^{-1} \mathrm{G}^{T}\), applying the receding horizon principle yields the control algorithm equation as
\[
\begin{aligned}
& \qquad D\left(z^{-1}\right) u(k)=\sum_{j=h i}^{h p} \gamma_{j}\left[w(k+j \mid k)-\hat{y}_{0}(k+j \mid k)\right] . \\
& \qquad \hat{y}_{0}(k+j \mid k)=\frac{H_{j-d}\left(z^{-1}\right) D\left(z^{-1}\right)}{C\left(z^{-1}\right)} u(k-1)+\frac{F_{j-d}\left(z^{-1}\right)}{C\left(z^{-1}\right)} y(k) \\
& \text { Substitution using } \\
& \text { form of the control algorithm equation: }
\end{aligned}
\]
\[
C\left(z^{-1}\right) D\left(z^{-1}\right) u(k)=-\sum_{j=h i}^{h p} \gamma_{j} H_{j-d}\left(z^{-1}\right) D\left(z^{-1}\right) u(k-1)-\sum_{j=h i}^{h p} \gamma_{j} F_{j-d}\left(z^{-1}\right) y(k)+\sum_{j=h i}^{h p} \gamma_{j} C\left(z^{-1}\right) w(k+
\]

The polynomial form of the control algorithm follows as
\[
R\left(z^{-1}\right) u(k)+S\left(z^{-1}\right) y(k)=T\left(z^{-1}\right) w(k+h p)
\]
where:
\[
\begin{aligned}
& R\left(z^{-1}\right)=\left(C\left(z^{-1}\right)+\sum_{j=h i}^{h p} \gamma_{j} z^{-1} H_{j-d}\left(z^{-1}\right)\right) D\left(z^{-1}\right) \\
& S\left(z^{-1}\right)=\sum_{j=h i}^{h p} \gamma_{j} F_{j-d}\left(z^{-1}\right)
\end{aligned}
\]
and
\[
T\left(z^{-1}\right)=C\left(z^{-1}\right) \sum_{j=h i}^{h p} \gamma_{j} z^{-h p+j}
\]

\section*{Limitations}

To obtain the \(R, R\), and \(T\) polynomials, use the discrete-time instead of the continuoustime transfer function.

\section*{Ports}

\section*{Input}

\section*{r - Plant reference}
scalar
Plant system reference signal.
Data Types: single | double

\section*{y - Plant output}
scalar
Plant system output signal.
Data Types: single | double

\section*{Output}
u - Controller output
scalar
Control system output signal.
Data Types: single | double

\section*{Parameters}

\section*{Controller parameterization - Parameterization method \\ Controller polynomials (default)|Generate polynomials}

Method for parameterizing the controller. If you know the discrete-time \(R, S\), and \(T\) polynomial values, select Controller polynomials. Otherwise, select Generate polynomials.

Dependencies
Selecting a parameterization method enables other parameters.

\section*{R polynomial - \(\boldsymbol{R}\) polynomial values}

\section*{1 (default) | positive, scalar or vector}

Vector of the \(R\) polynomials for the RST control.

\section*{Dependencies}

Selecting Controller polynomials for the Controller parameterization parameter enables this parameter.

\section*{S polynomial - S polynomial values}

1 (default) | positive, scalar or vector
Vector of the \(S\) polynomials for the RST control.

\section*{Dependencies}

Selecting Controller polynomials for the Controller parameterization parameter enables this parameter.

\section*{T polynomial - T polynomial values}

1 (default) | positive, scalar or vector
Vector of the \(T\) polynomials for the RST control.

\section*{Dependencies}

Selecting Controller polynomials for the Controller parameterization parameter enables this parameter.

\section*{Model discrete transfer function numerator - Transfer function numerator 1 (default) | scalar or vector}

Numerator of the system discretized transfer function. To determine the discrete transfer function, if you have a license for Control System Toolbox \({ }^{\text {TM }}\), use the c2d function.

\section*{Dependencies}

Selecting Generate polynomials for the Controller parameterization parameter enables this parameter.

\section*{Model discrete transfer function denominator - Transfer function denominator}
[1 0.5] (default)|vector

Denominator of the system discretized transfer function. To determine the discrete transfer function, if you have a license for Control System Toolbox, use the c2d function.

\section*{Dependencies}

Selecting Generate polynomials for the Controller parameterization parameter enables this parameter.

\section*{Control horizon (samples) - Number of control-horizon samples}

5 (default) | positive integer
Number of samples in the control horizon.

\section*{Dependencies}

Selecting Generate polynomials for the Controller parameterization parameter enables this parameter.

\section*{Control weighting factor - Weighting factor}
0.5 (default) | positive number

Weighting factor for the RST controller.

\section*{Dependencies}

Selecting Generate polynomials for the Controller parameterization parameter enables this parameter.

\section*{System dead time (samples) - Number of dead-time samples \\ 2 (default) | 0 or a positive integer}

Number of samples of the dead time.

\section*{Dependencies}

Selecting Generate polynomials for the Controller parameterization parameter enables this parameter.

\section*{Sample time (-1 for inherited) - Sampling interval}
```

-1 (default) | default value or a positive number

```

Time interval between samples. If the block is inside a triggered subsystem, inherit the sample time by setting this parameter to -1. If this block is in a continuous variable-step model, specify the sample time explicitly. For more information, see "What Is Sample Time?" (Simulink) and "Specify Sample Time" (Simulink).

\section*{References}
[1] Camacho, E. F. and C. Bordons. Model Predictive Control. Second Edition, London: Springer, 2007.

\section*{See Also}

\author{
Blocks \\ Smith Predictor Controller | State-Feedback Controller \\ Introduced in R2017b
}

\section*{Secondary Winding}
(To be removed) Linear nonideal transformer winding

Note The Secondary Winding block will be removed in a future release. Use the Winding block instead. To learn how to create a custom transformer without this block, refer to "Push-Pull Buck Converter in Continuous Conduction Mode".

\section*{Library}

Simscape / Power Systems / Simscape Components / Passive Devices / Transformers / Fundamental Components

\section*{Description}

The Secondary Winding block models linear nonideal winding of a transformer with linear winding leakage effects. The figure shows the equivalent circuit diagram for the secondary winding.

- \(R_{l}\) is the leakage resistance.
- \(L_{l}\) is the leakage inductance.

\section*{Variables}

Use the Variables settings to specify the priority and initial target values for the block variables before simulation. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape) .

Unlike block parameters, variables do not have conditional visibility. The Variables settings include all the existing block variables. If a variable is not used in the set of equations corresponding to the selected block configuration, the values specified for this variable are ignored.

\section*{Parameters}

\section*{Main Tab}

\section*{Number of winding turns}

Number of wire turns on the transformer winding. The default value is 10.

\section*{Leakage resistance}

Power loss in the winding. The default value is \(1 \mathrm{e}-30 \mathrm{hm}\).

\section*{Leakage inductance}

Magnetic flux loss in the winding. The default value is \(1 \mathrm{e}-3 \mathrm{H}\).

\section*{Ports}

The block has the following ports:
\(+\)
Positive electrical conserving port
-
Negative electrical conserving port
N
North magnetic conserving port
S
South magnetic conserving port

\author{
See Also \\ Electromagnetic Converter | Winding \\ \section*{Topics} \\ "Custom Zigzag Transformer" \\ "Push-Pull Buck Converter in Continuous Conduction Mode" \\ "Push-Pull Buck Converter in Discontinuous Conduction Mode" \\ Introduced in R2013b
}

\section*{Single-Phase Circuit Breaker}

\author{
Single-pole single-throw circuit breaker
}

\section*{Library}

Switches \& Breakers / Fundamental Components

\section*{Description}

The Single-Phase Circuit Breaker block models a single-phase circuit breaker that uses an external signal and phase current information to break an electrical circuit.

The table shows how the external signal vT controls the block behavior.
\begin{tabular}{|l|l|l|}
\hline Condition & Block Behavior & \begin{tabular}{l}
Resistance \\
Parameter Used
\end{tabular} \\
\hline vT < Threshold & \begin{tabular}{l}
The breaker is closed. Port 1 connects to port \\
2.
\end{tabular} & Closed Resistance \\
\hline vT \(\geq\) Threshold & \begin{tabular}{l}
When the current in port 1 goes through zero, \\
the phase disconnects from port 2. The breaker \\
is open.
\end{tabular} & Open Conductance \\
\hline
\end{tabular}

\section*{Parameters}

\section*{Closed resistance}

Resistance between ports 1 and 2 when the breaker is closed. The default value is 0.001 hhm.

\section*{Open conductance}

Conductance between ports 1 and 2 when the breaker is open. The default value is 1e-6 1/0hm.

\section*{Threshold}

Threshold voltage for the control port vT. The block uses the threshold voltage and the value of \(v T\) at the start of the simulation to determine whether the breaker is initially open or closed. When the voltage rises above the threshold, the breaker opens. When the control port voltage falls below the threshold, the breaker closes. The default value is 0 V .

\section*{Ports}

The block has the following ports:
1
Electrical conserving port
2
Electrical conserving port

\section*{vT}

Scalar control port, which is either a physical signal or an electrical port.

\section*{See Also}

Circuit Breaker | Single-Phase Circuit Breaker (with arc)

\section*{Topics}
"Switch Between Physical Signal and Electrical Ports"

\section*{Introduced in R2013b}

\section*{Single-Phase Circuit Breaker (with arc)}

Single-pole single-throw circuit breaker with Mayr arc representation

\section*{Library}

Switches \& Breakers / Fundamental Components

\section*{Description}

The Single-Phase Circuit Breaker (with arc) block represents a single-phase circuit breaker with Mayr arc representation controlled by an external control signal vT. If vT is less than the threshold, then the breaker is closed. If vT is greater than or equal to the threshold, then the breaker opens with an arc during the current interruption. The external signal can open and close the breaker repeatedly.

The table shows how the external signal vT controls the block behavior.
\begin{tabular}{|l|l|}
\hline Condition & Block Behavior \\
\hline VT < Threshold & The circuit breaker is closed. Port 1 is connected to port 2. \\
\hline VT \(\geq\) Threshold & \begin{tabular}{l}
The circuit breaker is either opening or open. Port 1 is \\
connected to port 2 via a nonlinear conductance.
\end{tabular} \\
\hline
\end{tabular}

The Single-Phase Circuit Breaker (with arc) block has a higher computational overhead than the Single-Phase Circuit Breaker block. If the fidelity of the representation of arc current or voltage is your overriding requirement, use the Single-Phase Circuit Breaker (with arc) block and use a global Simulink variable-step solver. Otherwise, use the SinglePhase Circuit Breaker block.

\section*{Mayr Arc Model Equations}

The defining equations for the breaker are
\[
x=\ln (g)
\]
and
\[
i=g v,
\]
where:
- \(g\) is the arc conductance.
- \(x\) is an internal state variable.
- \(v\) is the voltage across the breaker.
- \(i\) is the current through the breaker.

When the breaker is open,
\[
\frac{d x}{d t}=0 .
\]

When the breaker is closed,
\[
\frac{d x}{d t}=\frac{1}{\tau}\left(\frac{g v^{2}}{P}-1\right)
\]
where:
- \(\tau\) is the arc time constant.
- \(\quad P\) is the cooling power.

\section*{Parameters}

\section*{Arc time constant, tau}

The default value is \(0.3 e-6 \mathrm{~s}\).

\section*{Cooling power, \(\mathbf{P}\)}

The default value is 30900 W .

\section*{Initial arc conductance, g0}

Conductance between ports 1 and 2 when the breaker is closed. The default value is 1e4 S.

\section*{Threshold}

Threshold voltage for the control port vT. The block uses the threshold voltage and the value of \(v T\) at the start of the simulation to determine whether the breaker is initially open or closed. When the voltage rises above the threshold, the breaker opens. When the control port voltage falls below the threshold, the breaker closes. The default value is 0 V .

\section*{Ports}

The block has the following ports:
1
Electrical conserving port
2
Electrical conserving port
vT
Scalar control port, which is either a physical signal or an electrical port

\section*{References}
[1] Schavemaker, P. H., and L. Van der Sluis. "The Arc Model Blockset." Proceedings of the Second IASTED International Conference POWER AND ENERGY SYSTEMS (EuroPES). Crete, Greece, June 25-28, 2002, pp. 644-648.

\section*{See Also}

Circuit Breaker | Single-Phase Circuit Breaker

\section*{Topics}
"Switch Between Physical Signal and Electrical Ports"

\section*{Introduced in R2015b}

\section*{Single-Phase Switch}

\section*{Single-pole single-throw switch}

\section*{Library}

Switches \& Breakers / Fundamental Components

\section*{Description}

The Single-Phase Switch block models a single-pole single-throw switch that uses an external signal to connect port 1 to port 2 via internal resistance.

The table shows how the external signal vT controls the block behavior.
\begin{tabular}{|l|l|l|}
\hline Condition & Block Behavior & \begin{tabular}{l}
Resistance \\
Parameter Used
\end{tabular} \\
\hline VT \(\leq\) Threshold & \begin{tabular}{l}
The switch is open. Port 1 is connected to port \\
2 via large internal resistance.
\end{tabular} & Open conductance \\
\hline VT > Threshold & \begin{tabular}{l}
The switch is closed. Port 1 is connected to \\
port 2 via small internal resistance.
\end{tabular} & Closed resistance \\
\hline
\end{tabular}

\section*{Parameters}

\section*{Closed resistance}

Resistance between ports 1 and 2 when the switch is closed. The default value is 0.001 Ohm.

\section*{Open conductance}

Conductance between ports 1 and 2 when the switch is open. The default value is 1e-6 1/0hm.

\section*{r Threshold}

Threshold voltage for the control port vT. When the voltage is above the threshold, the switch is closed. The default value is 0 V .

\section*{Ports}

The block has the following ports:
1
Electrical conserving port
2
Electrical conserving port
vT
Scalar control port, which is either a physical signal or an electrical port.

\section*{See Also}

Single-Phase Two-Way Switch | Switch | Two-Way Switch

\section*{Topics}
"Switch Between Physical Signal and Electrical Ports"

Introduced in R2013b

\section*{Single-Phase Two-Way Switch}

\section*{Single-pole double-throw switch}

\section*{Library}

Switches \& Breakers / Fundamental Components

\section*{Description}

The Single-Phase Two-Way Switch block models a single-pole double-throw switch that uses an external signal to connect the port 1 to either of two ports 2 or 3 via internal resistance.

The table shows how the external signal vT controls the block behavior.
\begin{tabular}{|l|l|l|}
\hline Condition & Block Behavior & \begin{tabular}{l}
Resistance \\
Parameter Used
\end{tabular} \\
\hline vT \(\leq\) Threshold & \begin{tabular}{l}
Port 1 is connected to port 2 via internal \\
resistance. Port 3 is unconnected.
\end{tabular} & \begin{tabular}{l}
Open conductance \\
(port 1 to port \\
3).Closed \\
resistance (port 1 to \\
port 2)
\end{tabular} \\
\hline vT > Threshold & \begin{tabular}{l}
Port 1 is connected to port 3 via internal \\
resistance. Port 2 is unconnected.
\end{tabular} & \begin{tabular}{l}
Open conductance \\
(port 1 to port \\
2).Closed \\
resistance (port 1 to \\
port 3)
\end{tabular} \\
\hline
\end{tabular}

\section*{Parameters}

\section*{Closed resistance}

Resistance between ports 1 and 3 when the switch is closed. The default value is 0. 001 Ohm.

\section*{Open conductance}

Conductance between ports 1 and 2 when the switch is open. The default value is 1e-6 1/0hm.

\section*{Threshold}

Threshold voltage for the control port vT. When the voltage is above the threshold, the switch is closed. The default value is 0 V .

\section*{Ports}

The block has the following ports:
1
Electrical conserving port
2
Electrical conserving port
3
Electrical conserving port
vT
Scalar control port, which is either a physical signal or an electrical port.

\section*{See Also}

Single-Phase Switch | Switch | Two-Way Switch

\section*{Topics}
"Switch Between Physical Signal and Electrical Ports"

Introduced in R2013b

\section*{Sinusoidal Measurement (PLL)}

\author{
Estimate sinusoidal characteristics using a phase-locked loop
}

Library: Simscape / Power Systems / Simscape Components / Control / Measurements

\section*{Description}

The Sinusoidal Measurement (PLL) block estimates the frequency, phase angle, and magnitude of a single-phase sinusoidal signal or individual phases of a multiphase sinusoidal signal. The block uses an enhanced phase-locked loop (PLL) strategy to estimate these sinusoidal characteristics of the input signal.

Use this block in control applications when the frequency, phase angle, or magnitude is required and cannot be measured directly. To provide faster phase locking for balanced three-phase input signals, use the Three-Phase Sinusoidal Measurement (PLL) block.

\section*{Equations}

The phase-locked loop generates a sinusoid that approximates the input signal \(u(t)\) with the form:
\[
y(t)=A(t) \sin \left(\phi_{0}+\int 2 \pi f(t) d t\right),
\]
where:
- \(y\) is the estimate of the input signal.
- \(A\) is the estimate of the amplitude of the input signal.
- \(\phi_{0}\) is the initial phase angle of the input signal.

The estimated phase angle \(\phi\) is the angle of this generated sinusoid:
\[
\phi(t)=\phi_{0}+\int 2 \pi f(t) d t,
\]
where \(f\) if the frequency of the sinusoid, and \(\phi_{0}\) is the initial phase angle.
This diagram shows the overall structure of the phase-locked loop.

In the diagram:
- The phase detector produces an error signal relative to the phase difference \(e_{\phi}\) between the input sinusoid \(u\) and the synthesized sinusoid \(y\). It also outputs an estimate of the amplitude \(A\).
- The loop filter provides an estimate of the input angular frequency \(\omega\) by filtering out the high-frequency components of the phase difference. The block also outputs the converted frequency \(f\) in Hz .
- The voltage-controlled oscillator integrates the angular speed to produce the phase estimate \(\phi\). The oscillator also generates the normalized synthesized sinusoid (1/A)y which it sends to the Phase Detector for comparison.

\section*{Ports}

\section*{Input}

\section*{u - Input signal}
scalar or vector

Periodic input signal.
Data Types: single | double

\section*{Output}

\section*{freq - Frequency}
scalar or vector
Estimated frequency of the input signal, in Hz .
Data Types: single | double

\section*{angle - Phase angle}
scalar or vector
Estimated phase angle of the input signal, in rad.
Data Types: single | double

\section*{mag - Magnitude}
scalar or vector
Estimated magnitude of the input signal.
Data Types: single | double

\section*{Parameters}

\section*{Phase detector integral gain - PD integral gain}

1000 (default) | positive scalar or vector
Integral gain for the phase detector. This determines the aggressiveness of the PLL in tracking and locking to the magnitude.

If the input signal is a vector, use scalar parameters or use vector parameters that are the same size as the input signal.

Loop filter proportional gain - LF proportional gain 400 (default) | positive scalar or vector

Proportional gain for the loop filter. This determines the aggressiveness of the PLL in tracking and locking to the phase angle. Increase this value to improve reaction time of the tracking to step changes in the phase angle.

If the input signal is a vector, use scalar parameters or use vector parameters that are the same size as the input signal.

\section*{Loop filter integral gain - LF integral gain}

20000 (default) | positive scalar or vector
Integral gain for the loop filter. Increase this value to increase the rate at which steadystate error is eliminated in the phase angle. This value also determines the aggressiveness of the PLL in tracking and locking to the phase.

If the input signal is a vector, use scalar parameters or use vector parameters that are the same size as the input signal.

\section*{Initial frequency (Hz) - Initial frequency}

60 Hz (default) | scalar or vector
Initial estimate of the input frequency. If the input signal is a vector, use scalar parameters or use vector parameters that are the same size as the input signal.

\section*{Initial phase angle (rad) - Initial phase}

0 rad (default) | scalar or vector
Initial estimate of the phase angle. If the input signal is a vector, use scalar parameters or use vector parameters that are the same size as the input signal.

\section*{Initial magnitude - Initial magnitude}

1 (default) | scalar or vector
Initial estimate of the magnitude. If the input signal is a vector, use scalar parameters or use vector parameters that are the same size as the input signal.

\section*{Sample time (-1 for inherited) - Block sample time} -1 (default) |-1 or positive number

Sample time for the block (-1 for inherited). Set this to 0 for continuous operation, or explicitly for discrete operation. If you use this block inside a triggered subsystem, set the sample time to -1. If you use this block in a continuous variable-step model, you can specify the sample time explicitly.

\section*{References}
[1] Karimi-Ghartemani, M., and M. R. Iravani. "A New Phase-Locked Loop (PLL) System." IEEE Transactions on Industrial Electronics. Proceedings of the 44th IEEE Symposium on Circuits and Systems, vol. 1, pp. 421-424. IEEE, 2001..

\section*{See Also}

\author{
Blocks \\ RMS Measurement | Three-Phase Sinusoidal Measurement (PLL)
}

\section*{Introduced in R2017b}

\section*{Six-Pulse Gate Multiplexer}

Multiplex gate input signals to Converter block

\section*{Library}

Semiconductors

\section*{Description}

The Six-Pulse Gate Multiplexer block routes gate voltage signals to the six switching devices in a Converter block. The block multiplexes the six separate gate signals into a single vector.

If you want to use Simscape Electronics to model the electronics that drive the Converter block, you can switch the input ports of the Six-Pulse Gate Multiplexer block from physical signal ports to electrical ports.

When you switch the block inputs to electrical ports, the block shows additional electrical reference input ports. The additional electrical reference ports are associated with the individual phase voltages that connect to the high-side switching devices in the Converter block and the negative DC voltage common to each low-side switching device in the Converter block.

\section*{Ports}

The block has the following ports:
\(\mathrm{Ga}(\mathrm{H}), \mathrm{Gb}(\mathrm{H}), \mathrm{Gc}(\mathrm{H})\)
Ports associated with the gate terminals of the Converter block high-side switching devices. You can set the ports to either physical signal or electrical ports.
Ga(L), Gb(L), Gc(L)
Ports associated with the gate terminals of the Converter block low-side switching devices. You can set the ports to either physical signal or electrical ports.

G
Vector output port associated with the multiplexed gate signals. Connect this port to the G port of the Converter block.

\section*{a,b, c}

Electrical conserving ports associated with the individual phase voltages that connect to the high-side switching devices of the Converter block. These ports are visible only if you set the input ports of the Six-Pulse Gate Multiplexer block to electrical ports.
L
Electrical conserving port associated with the negative DC voltage common to each low-side switching device in the Converter block. These ports are visible only if you set the input ports of the Six-Pulse Gate Multiplexer block to electrical ports.

\section*{See Also}

Converter

\section*{Topics}
"SM Torque Control"
"SM Velocity Control"
"Switch Between Physical Signal and Electrical Ports"
"Synchronous Reluctance Machine Torque Control"
"Three-Phase Two-Level PWM Generator"
"Three-Phase Voltage-Sourced Converter (FLB)"

\section*{Introduced in R2013b}

\section*{Sliding Mode Controller}

\author{
Hysteresis-based sliding mode control \\ Library: \\ Simscape / Power Systems / Simscape Components / Control / General Control
}

\section*{Description}

The Sliding Mode Controller block implements hysteresis-based sliding mode control (SMC).

\section*{Ports}

\section*{Input}

\section*{r - Plant reference}
scalar
Plant system reference signal.
Data Types: single | double

\section*{y - Plant output \\ scalar}

Plant system output signal.
Data Types: single | double

\section*{Output}

\section*{u - Controller output}
scalar
Control system output signal.
Data Types: single | double

\section*{Parameters}

Hysteresis band - Hysteresis bandwidth
0.2 (default)

Total hysteresis bandwidth, distributed symmetrically about the set point.
Control action upper limit - Control signal upper limit, \(u_{\text {max }}\)
10 (default) | scalar greater than the value of the Control action lower limit parameter
Upper limit for the control output signal.

\section*{Control action lower limit - Control signal lower limit, \(u_{\text {min }}\) - 10 (default) | scalar}

Lower limit for the control output signal.

\section*{Sample time (-1 for inherited) - Block sample time} -1 (default) | positive scalar

Time, in s, between consecutive block executions. During execution, the block produces outputs and, if appropriate, updates its internal state. For more information, see "What Is Sample Time?" (Simulink) and "Specify Sample Time" (Simulink).

If this block is inside a triggered subsystem, inherit the sample time by setting this parameter to -1. If this block is in a continuous variable-step model, specify the sample time explicitly using a positive scalar.

\section*{See Also}

Introduced in R2018a

\section*{SM AC1C}

Synchronous machine AC1C excitation system including an Automatic Voltage Regulator (AVR) and an exciter

\section*{Library: \\ Simscape / Power Systems / Simscape Components /} Control / SM Control

\section*{Description}

The SM AC1C block implements a synchronous machine type AC1C excitation system model in conformance with IEEE 421.5-2016 \({ }^{[1]}\).

Use this block to model the control and regulation of the field voltage of a synchronous machine operating as a generator using an AC rotating exciter.

You can switch between continuous and discrete implementations of the block by using the Sample time parameter. To configure the integrator for continuous time, set the Sample time property to 0 . To configure the integrator for discrete time, set the Sample time property to a positive, nonzero value, or to -1 to inherit the sample time from an upstream block.

The SM AC1C block is made up of four major components:
- The Current Compensator modifies the measured terminal voltage as a function of terminal current.
- The Voltage Measurement Transducer simulates the dynamics of a terminal voltage transducer using a low-pass filter.
- The Excitation Control Elements component compares the voltage transducer output with a terminal voltage reference to produce a voltage error. This voltage error is then passed through a voltage regulator to produce the exciter field voltage.
- The AC Rotating Exciter models the AC rotating exciter, producing a field voltage to be applied to the controlled synchronous machine. The block also feeds the exciter field current (given the standard symbol \(V_{F E}\)) back to the excitation system.

This diagram shows the overall structure of the AC1C excitation system model:

In the diagram:
- \(\quad V_{T}\) and \(I_{T}\) are the measured terminal voltage and current of the synchronous machine.
- \(V_{C 1}\) is the current-compensated terminal voltage.
- \(V_{C}\) is the filtered, current-compensated terminal voltage.
- \(V_{R E F}\) is the reference terminal voltage.
- \(V_{S}\) is the power system stabilizer voltage.
- \(E_{F E}\) and \(V_{F E}\) are the exciter field voltage and current, respectively.
- \(E_{F D}\) and \(I_{F D}\) are the field voltage and current, respectively.

The following sections describe each of the major parts of the block in detail.

\section*{Current Compensator and Voltage Measurement Transducer}

The current compensator is modeled as:
\[
V_{C 1}=V_{T}+I_{T} \sqrt{R_{C}^{2}+X_{C}^{2}}
\]
where:
- \(R_{C}\) is the load compensation resistance.
- \(X_{C}\) is the load compensation reactance.

The voltage measurement transducer is implemented as a Low-Pass Filter block with time constant \(T_{R}\). Refer to the documentation for this block for the exact discrete and continuous implementations.

\section*{Excitation Control Elements}

This diagram illustrates the overall structure of the excitation control elements:

In the diagram:
- SP is the summation point input location for the overexcitation limiter (OEL), underexcitation limiter (UEL), and stator current limiter (SCL) voltages. For more information about using limiters with this block, see "Field Current Limiters" on page 1-723.
- The Lead-Lag block models additional dynamics associated with the voltage regulator. Here, \(T_{C}\) is the lead time constant and \(T_{B}\) is the lag time constant. Refer to the documentation for this block for the exact discrete and continuous implementations.
- The Low-Pass Filter block models the major dynamics of the voltage regulator. Here, \(K_{A}\) is the regulator gain and \(T_{A}\) is the major time constant of the regulator. The minimum and maximum anti-windup saturation limits for the block are \(V_{A \min }\) and \(V_{A \max }\), respectively.
- TO is the take-over point input location for the OEL, UEL, and SCL voltages. For more information about using limiters with this block, see "Field Current Limiters" on page 1-723.
- The Filtered Derivative block models the rate feedback path for stabilization of the excitation system. Here, \(K_{F}\) and \(T_{F}\) are the gain and time constant of this system,
respectively. Refer to the documentation for the Filtered Derivative block for the exact discrete and continuous implementations.
- \(E_{\text {FEmin }}\) and \(E_{\text {FEmax }}\) are the minimum and maximum saturation limits for the output exciter field voltage \(E_{F E}\).

\section*{Field Current Limiters}

You can use various field current limiters to modify the output of the voltage regulator under unsafe operating conditions:
- Use an overexcitation limiter to prevent overheating of the field winding due to excessive field current demand.
- Use an underexcitation limiter to boost field excitation when it is too low, risking desynchronization.
- Use a stator current limiter to prevent overheating of the stator windings due to excessive current.

Attach the output of any of these limiters at one of these points:
- The summation point as part of the AVR feedback loop
- The take-over point to override the usual behavior of the AVR

If you are using the stator current limiter at the summation point, use the single input \(V_{\text {SCLsum }}\). If you are using the stator current limiter at the take-over point, use both an overexcitation input \(V_{\text {SCLoel }}\) and an underexcitation input \(V_{\text {SCLuel }}\).

\section*{AC Rotating Exciter}

This diagram illustrates the overall structure of the AC rotating exciter:

In the diagram:
- The exciter field current \(V_{F E}\) is modeled as the summation of three signals:
- The nonlinear function \(S_{E}\left(V_{E}\right)\) models the saturation of the exciter output voltage.
- The proportional term \(K_{E}\) models the linear relationship between exciter output voltage and the exciter field current.
- The demagnetizing effect of the load current on the exciter output voltage is modelled using the demagnetization constant \(K_{D}\) in the feedback loop.
- The Integrator block integrates the difference between \(E_{F E}\) and \(V_{F E}\) to generate the exciter alternator output voltage \(V_{E} . T_{E}\) is the time constant for this process.
- The nonlinear function \(F_{E X}\) models the exciter output voltage drop from rectifier regulation. This function depends on the constant \(K_{C}\) which itself is a function of commutating reactance.

\section*{Ports}

\section*{Input}

\section*{V_REF - Voltage reference}
scalar

Voltage regulator reference set point, in per-unit representation.

\section*{Data Types: single | double}

\section*{V_S - Input from stabilizer \\ scalar}

Input from the power system stabilizer, in per-unit representation.

\section*{Data Types: single | double}

\section*{V_T - Terminal voltage \\ scalar}

Terminal voltage magnitude in per-unit representation.
Data Types: single | double

\section*{I_T - Terminal current}
scalar
Terminal current magnitude in per-unit representation.
Data Types: single | double

\section*{V_OEL - Overexcitation limit signal \\ scalar}

Input from the overexcitation limiter, in per-unit representation.

\section*{Dependencies}
- To ignore the input from the overexcitation limiter, set Alternate OEL input locations to Unused.
- To use the input from the overexcitation limiter at the summation point, set Alternate OEL input locations to Summation point.
- To use the input from the overexcitation limiter at the take-over point, set Alternate OEL input locations to Take-over.

\section*{Data Types: single | double}

\section*{V_UEL - Underexcitation limit signal \\ scalar}

Input from the underexcitation limiter, in per-unit representation.

\section*{Dependencies}
- To ignore the input from the underexcitation limiter, set Alternate UEL input locations to Unused.
- To use the input from the underexcitation limiter at the summation point, set Alternate UEL input locations to Summation point.
- To use the input from the underexcitation limiter at the take-over point, set Alternate UEL input locations to Take-over.

\section*{Data Types: single | double}

\section*{V_SCLsum - Summation point stator current limit signal \\ scalar}

Input from the stator current limiter when using the summation point, in per-unit representation.

\section*{Dependencies}
- To ignore the input from the stator current limiter, set Alternate SCL input locations to Unused.
- To use the input from the stator current limiter at the summation point, set Alternate SCL input locations to Summation point.

\section*{Data Types: single | double}

\section*{V_SCLoel - Take-over stator current limit (OEL) \\ scalar}

Input from the stator current limiter to prevent field overexcitation when using the takeover point, in per-unit representation.

\section*{Dependencies}
- To ignore the input from the stator current limiter, set Alternate SCL input locations to Unused.
- To use the input from the stator current limiter at the take-over point, set Alternate SCL input locations to Take-over.

\section*{Data Types: single|double}

\section*{V_SCLuel - Take-over stator current limit (UEL)}
scalar

Input from the stator current limiter to prevent field underexcitation when using the takeover point, in per-unit representation.

\section*{Dependencies}
- To ignore the input from the stator current limiter, set Alternate SCL input locations to Unused.
- To use the input from the stator current limiter at the take-over point, set Alternate SCL input locations to Take-over.

\section*{Data Types: single| double}

\section*{Ifd_pu - Measured field current}
scalar
Measured per-unit field current of the synchronous machine.

\section*{Data Types: single | double}

\section*{Output}

\section*{Efd_pu - Field voltage}
scalar
Per-unit field voltage to be applied to the field circuit of the synchronous machine.
Data Types: single | double

\section*{Parameters}

\section*{General}

\section*{Initial field voltage, Efd0 (pu) - Initial output voltage 1 (default) | real number}

Initial per unit voltage to be applied to the field circuit of the synchronous machine.

\author{
Sample time (-1 for inherited) - Sample time \\ -1 (default) |-1 or positive number
}

Block sample time. Set this to 0 to implement a continuous AC1C system. Set this to -1 or a positive number to implement a discrete system.

\section*{Pre-control}

Resistive component of load compensation, R_C (pu) - Compensation resistance
0 (default) | positive number
Resistance used in the current compensation system. Set this and \(X_{C}\) to 0 to disable current compensation.

Reactance component of load compensation, X_C (pu) - Compensation
reactance
0 (default) | positive number
Reactance used in the current compensation system. Set this and \(R_{C}\) to 0 to disable current compensation.
```

Regulator input filter time constant, T_R (s) - Regulator time constant
0 (default) | positive number

```

Equivalent time constant for the voltage transducer filtering.

\section*{Control}

Regulator output gain, K_A (pu) - Regulator gain 400 (default) | positive number

Gain associated with the voltage regulator.
Regulator output time constant, T_A (s) - Regulator time constant 0.02 (default) | positive number

Major time constant of the voltage regulator.
Regulator denominator (lag) time constant , T_B (s) - Regulator lag time constant

\section*{0 (default) | positive number}

Equivalent lag time constant in the voltage regulator. Set this to 0 when the additional lag dynamics are negligible.

\section*{Regulator numerator (lead) time constant, T_C (s) - Regulator lead time constant \\ 0 (default) | positive number}

Equivalent lead time constant in the voltage regulator. Set this to 0 when the additional lead dynamics are negligible.

Rate feedback excitation system stabilizer gain, K_F (pu) - Rate feedback gain
0.03 (default) | positive number

Rate feedback block gain for stabilization of excitation system.

\section*{Rate feedback time constant, T_F (s) - Rate feedback time constant} 1 (default) | positive number

Rate feedback block time constant for stabilization of excitation system.
Maximum regulator output, V_Amax (pu) - Regulator output upper limit 14.5 (default) | real number

Maximum per-unit output voltage of the regulator.

\section*{Minimum regulator output, V_Amin (pu) - Regulator output lower limit - 14.5 (default) | real number}

Minimum per-unit output voltage of the regulator.
Maximum exciter field voltage, E_FEmax (pu) - Exciter voltage upper limit 6.03 (default) | real number

Maximum per unit field voltage to be applied to exciter.
Minimum exciter field voltage, E_FEmin (pu) - Exciter voltage lower limit -5.43 (default) | real number

Minimum per unit field voltage to be applied to exciter.
Alternate OEL input locations (V_OEL) - OEL input location
Unused (default)|Summation point|Take-over
Select overexcitation limiter input location.

\section*{Alternate UEL input locations (V_UEL) - UEL input location Unused (default)|Summation point |Take-over}

Select underexcitation limiter input location.
Alternate SCL input locations (V_SCL) - SCL input location Unused (default)|Summation point | Take-over

Select stator current limiter input location. To specify the SCL input:
- If you select Summation point, use the V_SCLsum inport port.
- If you select Take-over, use the \(\mathbf{V}_{-}\)SCLoel and \(\mathbf{V}_{\mathbf{\prime}}\) SCLuel inport ports.

\section*{Exciter}

\section*{Exciter field proportional constant, K_E (pu) - Exciter field gain 1 (default) | positive number}

Proportional constant for exciter field.
Exciter field time constant, T_E (s) - Exciter field time constant 0.8 (default) | positive number

Time constant for exciter field.

\section*{Rectifier loading factor proportional to commutating reactance, K_C (pu) - Rectifier loading factor 0.2 (default) | positive number}

Rectifier loading factor proportional to commutating reactance.
Demagnetizing factor, function of exciter alternator reactances, K_D (pu) - Demagnetization factor
0.38 (default) | positive number

Demagnetization factor related to exciter alternator reactances.
```

Exciter output voltage for saturation factor S_E(E_1), E_1 (pu) - First saturation output voltage

```
4.18 (default) | positive number

Exciter output voltage for first saturation factor.

Exciter saturation factor at exciter output voltage E_1, S_E(E_1)
(1) - First saturation lookup voltage
0.1 (default) | positive number

First exciter saturation factor.
Exciter output voltage for saturation factor S_E(E_2), E_2 (pu) Second saturation output voltage
3.14 (default) | positive number

Exciter output voltage for second saturation factor.
Exciter saturation factor at exciter output voltage E_2, S_E(E_2)
(1) - Second saturation lookup voltage
0.03 (default) | positive number

Second exciter saturation factor.

\section*{References}
[1] IEEE Recommended Practice for Excitation System Models for Power System Stability Studies. IEEE Std 421.5-2016. Piscataway, NJ: IEEE-SA, 2016.

\section*{See Also}

\section*{Blocks}

Lead-Lag (Discrete or Continuous) | PMSM Current Controller with Pre-Control | PMSM Current Reference Generator

Introduced in R2017b

\section*{SM Current Controller}

Synchronous machine current controller

\section*{Library: \\ Simscape / Power Systems / Simscape Components /} Control / SM Control

\section*{Description}

The SM Current Controller block implements a discrete time PI-based SM current controller in the rotor \(\mathrm{d}-\mathrm{q}\) reference frame.

\section*{Defining Equations}

The block is discretized using the backward Euler method due to its first-order simplicity and its stability.

Three PI current controllers implemented in the rotor reference frame produce the reference voltage vector:
\[
\begin{aligned}
& v_{d}^{r e f}=\left(K_{p_{-} i d}+K_{i_{-} i d} \frac{T_{s} z}{z-1}\right)\left(i_{d}^{r e f}-i_{d}\right)+v_{d_{-} F F}, \\
& v_{q}^{r e f}=\left(K_{p_{-} i q}+K_{i_{-} i q} \frac{T_{s} z}{z-1}\right)\left(i_{q}^{r e f}-i_{q}\right)+v_{q_{-} F F},
\end{aligned}
\]
and
\[
v_{f}^{r e f}=\left(K_{p_{-} i f}+K_{i_{-} i f} \frac{T_{s} z}{z-1}\right)\left(i_{f}^{r e f}-i_{f}\right),
\]
where:
\(v_{d}^{r e f}, v_{q}^{r e f}\), and \(v_{f}^{r e f}\) are the \(d\)-axis, \(q\)-axis, and field reference voltages, respectively.
\(i_{d}^{\text {- }}{ }^{\text {ref }}, v_{q}^{\text {ref }}\), and \(i_{f}^{i_{f}^{r e f}}\) are the \(d\)-axis, \(q\)-axis, and field reference currents, respectively.
- \(i_{d}, i_{q}\), and \({ }^{i_{f}}\) are the \(d\)-axis, \(q\)-axis, and field currents, respectively.
- \(K_{p \text { id }}, K_{p i q}\), and \(K_{p \text { if }}\) are the proportional gains for the \(d\)-axis, \(q\)-axis and field controllers, respectively.
- \(K_{i _i d}, K_{i-i q}\), and \(K_{i_{-i} f}\) are the integral gains for the \(d\)-axis, \(q\)-axis and field controllers, respectively.
- \(\quad v_{d_{-F F}}\), and \(v_{q_{-} F F}\) are the feedforward voltages for the \(d\)-axis and \(q\)-axis, respectively, obtained from the machine mathematical equations and provided as inputs.
- \(T_{s}\), is the sample time of the discrete controller.

Using PI control results in a zero in the closed-loop transfer function which can be canceled by introducing a zero-cancelation block in the feedforward path. The zero cancellation transfer functions in discrete time are:
\[
\begin{aligned}
G_{Z C_{-} i d}(z) & =\frac{\frac{T_{s} K_{i_{-} i d}}{K_{p_{-} i d}}}{z+\left(\frac{T_{s}-\frac{K_{p_{-} i d}}{K_{i_{-} i d}}}{\frac{K_{p_{-} i d}}{K_{i_{-} i d}}}\right)}, \\
G_{Z C_{-} i q}(z) & =\frac{\frac{T_{s} K_{i_{-} i q}}{K_{p_{-} i q}}}{z+\left(\frac{T_{s}-\frac{K_{p_{-} i q}}{K_{i_{-} i q}}}{\frac{K_{p_{-} i q}}{K_{i_{-} i q}}}\right)},
\end{aligned}
\]
and
\[
G_{Z C_{-} i f}(z)=\frac{\frac{T_{s} K_{i_{-} i f}}{K_{p_{-} i f}}}{z+\left(\frac{T_{s}-\frac{K_{p_{-} i f}}{K_{i_{-} i f}}}{\frac{K_{p_{-} i f}}{K_{i_{-} i f}}}\right)} .
\]

Saturation must be imposed when the stator voltage vector exceeds the voltage phase limit \(V_{\text {ph_max }}\) :
\[
\sqrt{v_{d}^{2}+v_{q}^{2}} \leq V_{p h_{-} \max },
\]
where \(v_{d}\), and \(v_{q}\) are the \(d\)-axis and \(q\)-axis voltages, respectively.
In the case of axis prioritization, the voltages \(v_{1}\) and \(v_{2}\) are introduced, where:
- \(v_{1}=v_{d}\) and \(v_{2}=v_{q}\) for \(d\)-axis prioritization.
- \(v_{1}=v_{q}\) and \(v_{2}=v_{d}\) for \(q\)-axis prioritization.

The constrained (saturated) voltages \(\nu_{1}^{\text {sat }}\) and \(v_{2}^{\text {sat }}\) are obtained as follows:
\[
v_{1}^{\text {sat }}=\min \left(\max \left(v_{1}^{u n s a t},-V_{p h_{-} \max }\right), V_{p h_{-} \max }\right),
\]
and
\[
v_{2}^{\text {sat }}=\min \left(\max \left(v_{2}^{\text {unsat }},-V_{2 _\max }\right), V_{2 _\max }\right),
\]
where:
- \(v_{1}^{\text {unsat }}\) and \(v_{2}^{\text {unsat }}\) are the unconstrained (unsaturated) voltages.
- \(v_{2 _ \text {max }}\) is the maximum value of \(v_{2}\) that does not exceed the voltage phase limit, given
\[
\text { by } v_{2_{-} \max }=\sqrt{\left(V_{p_{-} \max }\right)^{2}-\left(v_{1}^{s a t}\right)^{2}} \text {. }
\]

In the case that the direct and quadrature axes have the same priority (d-q equivalence) the constrained voltages are obtained as follows:
\[
v_{d}^{\text {sat }}=\min \left(\max \left(v_{d}^{\text {unsat }},-V_{d_{-} \max }\right), V_{d_{-} \max }\right),
\]
and
\[
v_{q}^{s a t}=\min \left(\max \left(v_{q}^{\text {unsat }},-V_{q_{-} \max }\right), V_{q_{-} \max }\right),
\]
where
\[
V_{d_{-} \max }=\frac{V_{\text {ph_max }}\left|v_{d}^{\text {unsat }}\right|}{\sqrt{\left(v_{d}^{\text {unsat }}\right)^{2}+\left(v_{q}^{\text {unsat }}\right)^{2}}},
\]
and
\[
V_{q_{-} \max }=\frac{V_{p h_{-} \max }\left|v_{q}^{\text {unsat }}\right|}{\sqrt{\left(v_{d}^{\text {unsat }}\right)^{2}+\left(v_{q}^{\text {unsat }}\right)^{2}}} .
\]

The constrained (saturated) field voltage \(v_{f}^{s a t}\) is limited according to the maximum admissible value:
\[
v_{f}^{\text {sat }}=\min \left(\max \left(v_{f}^{\text {unsat }},-V_{f_{-} \max }\right), V_{f_{-} \max }\right),
\]
where:
\(v_{f}^{\text {unsat }}\) is the unconstrained (unsaturated) field voltage.
- \(V_{f_{-} \max }\) is the maximum allowable field voltage.

An anti-windup mechanism is employed to avoid saturation of integrator output. In such a situation, the integrator gains become:
\[
\begin{aligned}
& K_{i_{-} i d}+K_{a w_{-} i d}\left(v_{d}^{\text {sat }}-v_{d}^{\text {unsat }}\right), \\
& K_{i_{-} i q}+K_{a w_{-} i q}\left(v_{q}^{s a t}-v_{q}^{u n s a t}\right),
\end{aligned}
\]
and
\[
K_{i_{-} i f}+K_{a w_{-} i f}\left(v_{f}^{s a t}-v_{f}^{u n s a t}\right),
\]
where \(K_{a w i d}, K_{a w i q}\), and \(K_{a w ~ i f}\) are the anti-windup gains for the \(d\)-axis, \(q\)-axis and field controllers, respectively.

\section*{Assumptions}
- The plant model for direct and quadrature axis can be approximated with a first order system.
- This control solution is used only for synchronous motors with sinusoidal flux distribution and field windings.

\section*{Ports}

\section*{Input}

\section*{idqfRef - Reference currents, A vector}

Reference d-q and field currents for control of synchronous motor.
Data Types: single \| double

\section*{idqf - Measured currents, A}
vector
Actual d-q and field axis currents of controlled synchronous motor.
Data Types: single| double

\section*{vdqFF - Purpose, V \\ vector}

Feedforward pre-control voltages.
Data Types: single | double
VphMax - Maximum phase voltage, V
scalar
Maximum allowable voltage in each phase.
Data Types: single | double

\section*{VfMax - Maximum field voltage, V \\ scalar}

Maximum allowable field voltage.
Data Types: single | double

\section*{Reset - External reset scalar}

External reset signal (rising edge) for integrators.
Data Types: single | double

\section*{Output}
```

vdqfRef - Reference voltages, V
vector

```

Reference d-q and field voltages for control of synchronous motor.
Data Types: single | double

\section*{Parameters}

\section*{General}

\author{
Sample time (-1 for inherited) - Block sample time -1 (default)|-1 or positive number
}

Sample time for the block (-1 for inherited). If this block is used inside a triggered subsystem, the sample time should be -1. If this block is used in a continuous variablestep model, then the sample time can be explicitly specified.

\section*{Discretization sample time - Block discretization sample time 0.001 (default) |-1 or positive number}

Specify the discretization sample time when zero-cancellation is active and sample time is set to -1 (e.g., when the block is used inside a triggered subsystem).

Axis prioritization - Axis prioritization for voltage limiter q-axis (default)|d-axis|d-q equivalence

Prioritize or maintain ratio between \(d\) and \(q\) axes when block limits voltage.

\section*{Enable zero cancellation - Feedforward zero-cancellation off (default) | on}

Enable or disable zero-cancellation on the feedforward path.

\section*{Enable pre-control voltage - Pre-control voltage on (default) | off}

Enable or disable pre-control voltage.

\section*{d-q control}

D-axis current proportional gain - D-axis proportional gain 1 (default) | positive number

Proportional gain of PI controller used for direct-axis current control.

\section*{D-axis current integral gain - \(\mathbf{D}\)-axis integral gain} 100 (default) | positive number

Integrator gain of PI controller used for direct-axis current control.
D-axis current anti-windup gain - D-axis anti-windup gain 1 (default) | positive number

Anti-windup gain of PI controller used for direct-axis current control.
\(\mathbf{Q}\)-axis current proportional gain - \(\mathbf{Q}\)-axis proportional gain 1 (default) | positive number

Proportional gain of PI controller used for quadrature-axis current control.
Q-axis current integral gain - Q-axis integral gain 100 (default) | positive number

Integrator gain of PI controller used for quadrature-axis current control.
Q-axis current anti-windup gain - \(\mathbf{Q}\)-axis anti-windup gain 1 (default) | positive number

Anti-windup gain of PI controller used for quadrature-axis current control.

\section*{Field control}

\section*{Field current proportional gain - Field current proportional gain} 9 (default) | positive number

Proportional gain of PI controller used for field current control.

\section*{Field current integral gain - Field current integral gain} 350 (default) | positive number

Integrator gain of PI controller used for field current control.

\section*{Field current anti-windup gain - Field current anti-windup gain 1 (default) | positive number}

Anti-windup gain of PI controller used for field current control.

\section*{References}
[1] Märgner, M., and W. Hackmann. "Control challenges of an externally excited synchronous machine in an automotive traction drive application." EmobilityElectrical Power Train, 2006, pp. 1-6.

\section*{See Also}

\section*{Blocks}

SM AC1C | SM Current Reference Generator

\section*{Introduced in R2017b}

\section*{SM Current Reference Generator}

\section*{Synchronous machine current reference generator \\ Library: \\ Simscape / Power Systems / Simscape Components / Control / SM Control}

\section*{Description}

The SM Current Reference Generator block implements a current reference generator for SM current control in the rotor d-q reference frame.

\section*{Defining Equations}

The SM Current Reference Generator block can obtain the current reference using one of these methods:
- Zero d-axis control (ZDAC).
- Lookup tables.

For the ZDAC method, the block sets:
The \(d\)-axis current reference \({ }^{i_{d}^{r e f}}\) to zero:
\[
i_{d}^{r e f}=0,
\]

The field current reference \(i_{f}^{i_{f}^{r e f}}\) using the torque reference:
\[
i_{f}^{r e f}=\frac{\left|T_{r e f} i_{f, \max }\right|}{T_{\max }},
\]
where \(i_{f, \max }\) is the maximum field current and \(T_{\max }\) is the maximum torque.

The \(q\)-axis current reference \({ }_{q}^{i_{q}^{r e f}}\) using the torque equation:
\[
i_{q}^{r e f}=\frac{T_{r e f}}{K_{t} l_{f}^{r e f}},
\]
where \(T_{\text {ref }}\) is the reference torque input and \(K_{t}\) is the torque constant of the synchronous machine expressed by the simplified torque equation \(T=K_{t} i_{f} i_{q}\).

For operation below the base speed of the synchronous machine, ZDAC is a suitable method. Above base speed, a field weakening controller is required to adjust the \(d\)-axis reference.

To pregenerate the current references for several operating points, define three lookup tables using the lookup tables approach:
\[
\begin{aligned}
& i_{d}^{r e f}=\mathrm{f}\left(n_{m}, T_{r e f}, v_{d c}\right), \\
& i_{q}^{r e f}=\mathrm{g}\left(n_{m}, T_{r e f}, v_{d c}\right),
\end{aligned}
\]
and
\[
i_{f}^{r e f}=\mathrm{h}\left(n_{m}, T_{r e f}, v_{d c}\right) .
\]

\section*{Ports}

\section*{Input}

TqRef - Reference torque, \(\mathbf{N}^{*}\) m
scalar
Desired mechanical torque produced by the synchronous machine.
Data Types: single | double

\section*{wMechanical - Rotor mechanical speed, rad/s \\ scalar}

Mechanical angular velocity of the synchronous machine rotor, obtained via direct measurement from the synchronous machine.

\section*{Data Types: single | double}

\section*{Vdc - DC-link voltage, V \\ scalar}

DC-link voltage of the converter. For the ZDAC method, this value is used to limit the output reference torque and torque limit. For the lookup table method, this value is used as an input to the lookup tables.
Data Types: single | double

\section*{Output}

\section*{idqfRef - Reference currents, A \\ vector}

Reference d-q and field currents to be given as inputs to a current controller.
Data Types: single | double

\section*{TqRefSat - Reference torque, \(\mathbf{N}^{*}\) m scalar}

Reference torque saturated by the calculated torque limit TqLim.
Data Types: single | double

\section*{TqLim - Torque limit, N*m scalar}

Torque limit imposed by both the electrical and mechanical constraints of the system.
Data Types: single | double

\section*{Parameters}

\section*{General Parameters}

Nominal dc-link voltage (V) - Rated DC voltage
300V (default) | positive number
Nominal DC-link voltage of the electrical source.
Maximum power (W) - Maximum power
30000W (default) | positive number
Maximum synchronous machine power.
Maximum torque (\(\mathrm{N} * \mathrm{~m}\)) - Maximum torque
250N*m (default) | positive number
Maximum synchronous machine torque.
Maximum field current (A) - Maximum field current 25A (default) | positive number

Maximum field current of the synchronous machine.

\section*{Sample time (-1 for inherited) - Block sample time - 1 (default)|-1 or positive number}

Sample time for the block (-1 for inherited). If this block is used inside a triggered subsystem, the sample time should be -1. If this block is used in a continuous variablestep model, then the sample time can be explicitly specified.

\section*{Reference Generation Strategy}

Current references - Current reference strategy
Zero d-axis control (default)| Lookup-table based
Select the strategy for determining current references.
Torque constant (\(N\) *m/A) - Torque constant
0.0375 (default) | positive number

Torque constant of the synchronous machine.

\section*{Mechanical speed vector, wMechanical (rpm) - Rotor speed lookup vector [0, 3000] (default) | positive monotonically increasing vector}

Speed vector used in the lookup-tables for determining current references.
Torque reference vector, TqRef (\(\mathrm{N} * \mathrm{~m}\)) - Torque reference lookup vector [-100, 0, 100] (default) | positive monotonically increasing vector

Torque vector used in the lookup-tables for determining current references.
DC-link voltage vector, Vdc (V) - DC-link voltage lookup vector [300, 350] (default) | positive monotonically increasing vector

DC-link voltage vector used in the lookup-tables for determining current references.
D-axis current reference matrix, id(wMechanical,TqRef,Vdc), (A) Reference d-axis current values
zeros (2,3,2) (default) | real matrix
Direct-axis current reference lookup data.
Q-axis current reference matrix, iq(wMechanical,TqRef,Vdc), (A) Reference \(\mathbf{q}\)-axis current values
zeros (2,3,2) (default) | real matrix
Quadrature-axis current reference lookup data.
Field current reference matrix, iq(wMechanical,TqRef,Vdc), (A) Reference field current values
zeros (2,3,2) (default) | real matrix
Field current reference lookup data.

\section*{References}
[1] Girardin, A., and G. Friedrich. "Optimal control for a wound rotor synchronous starter generator." Industry Applications Conference, 2006, pp. 14-19.
[2] Carpiuc, S., C. Lazar, and D. I. Patrascu. "Optimal Torque Control of the Externally Excited Synchronous Machine." Control Engineering and Applied Informatics, 14(2), 2012, pp. 80-88.

\section*{See Also}

\author{
Blocks \\ SM AC1C | SM Current Controller \\ Introduced in R2017b
}

\section*{SM Field-Oriented Control}

Synchronous machine field-oriented control
Library: Simscape / Power Systems / Simscape Components / Control / SM Control

\section*{Description}

The SM Field-Oriented Control block implements a synchronous machine (SM) fieldoriented control structure. Field Oriented Control (FOC) is a performant AC motor control strategy that decouples torque and flux by transforming the stationary phase currents to a rotating frame. Use FOC when rotor speed and position are known and your application requires:
- High torque and low current at startup
- High efficiency

\section*{Equations}

The SM FOC is made up of several control blocks from the Control library. To see and modify these blocks and the FOC's internal structure, right-click the block in Simulink and select Mask > Look Under Mask. The overall control structure is made up of several parts:
- The outer loop controller converts the reference signal you supply to the reference \(d\) axis, \(q\)-axis, and field currents.

You can choose the type of reference signal you provide using the Control mode parameter:
- Velocity control - Control or regulate the rotation speed of the synchronous machine. An internal Velocity Controller block generates a reference torque from the rotor speed error.
- Torque control - Control or regulate the mechanical torque of the SM.

An internal SM Current Reference Generator block generates the reference currents using a proportional-integral (PI) controller, minimizing the torque error.
- The inner loop controller converts the current references into voltage references. An internal SM Current Controller generates the voltage references using a PI controller minimizing the current error, and the feedforward terms:
\[
\begin{aligned}
& v_{d_{-} F F}=-\omega_{e} L_{q i q} \\
& v_{q_{-} F F}=\omega_{e}\left(L_{d} i_{d}+L_{m f} i_{f}\right) \\
& v_{f_{-} F F}=0
\end{aligned}
\]
where:
- \(\omega_{e}\) is the rotor electrical angular velocity.
- \(L_{d}\) and \(L_{q}\) are the \(d\) - and \(q\)-axis stator inductances.
- \(L_{m f}\) is the mutual field armature inductance.
- \(i_{d}, i_{q}\), and \(i_{f}\), are the stator \(d-q\) and field excitation currents, respectively.
- The PWM Generator converts the reference stator voltages into gate pulses to be passed to a Power Converter that is powering the stator windings of the synchronous machine.
- The Excitation PWM Generator converts the reference field voltage into gate pulses to be passed to a DC-DC Chopper powering the SM field winding.

This diagram shows the overall architecture of the block.

In the diagram:
- \(\omega\) and \(\omega_{\text {ref }}\) are the measured and reference angular velocities, respectively.
- \(T_{r e f}\) is the reference electromagnetic torque. If you configure the block for speed control, a Velocity Controller generates this reference torque.
- \(\quad i\) and \(v\) are stator currents and voltages. Subscripts \(d, q\), and \(f\), represent the \(d\)-axis, \(q\) axis, and field winding. Subscripts \(a, b\), and \(c\), represent the three stator windings.
- \(\theta_{e}\) is the rotor electrical angle.
- \(G\) is a gate pulse, subscripts \(H\) and \(L\) represent high and low, and subscripts \(a, b\), and \(c\), represent the three stator windings. Subscript ex represents the field excitation pulses.

You can choose to implement either velocity or torque control with the Control mode parameter. The block implements velocity control exactly as shown in the diagram. The block implements torque control by removing the Velocity Controller block and accepting the reference torque directly.

\section*{Assumptions}

The machine parameters are known.

\section*{Limitations}

The control structure is implemented with a single sample rate.

\section*{Ports}

\section*{Input}

\section*{Reference - System reference}
scalar
System reference specified as torque reference in \(\mathrm{N}^{*} \mathrm{~m}\) or velocity reference in rad/s, depending on the control mode selected.

\section*{Data Types: single | double}

\section*{iabcSens - Measured phase currents}
vector
Measured stator phase currents, in A.
Data Types: single | double

\section*{ifSens - Measured field current}
scalar
Measured rotor field current, in A.
Data Types: single | double
wSens - Rotor speed
scalar
Measured mechanical angular velocity of rotor, in rad/s.
Data Types: single | double

\section*{thSens - Rotor angle \\ scalar}

Measured mechanical angle of rotor, in rad.
Data Types: single | double
vdcSens - DC-link voltage
scalar
Measured DC-link voltage, in V.
Data Types: single | double

\section*{Output}

\section*{G - Stator converter gate pulses}
vector
Six pulse waveforms that determine switching behavior in the attached power converter.

\section*{Data Types: single | double}

\section*{Gr - Excitation chopper gate pulses}

\section*{vector}

Waveforms that determine switching behavior in the attached excitation chopper. The size of the waveform depends on the selected chopper type. To specify the chopper type, use the Chopper type parameter:
- First and fourth quadrant chopper - The output waveform has two pulses.
- Four-quadrant chopper - The output waveform has four pulses.

Data Types: single | double

\section*{Visualization - Visualization signals bus}

Bus containing signals for visualization, including:
- Reference
- wElectrical
- iabc
- theta
- Vdc
- PwmEnable
- TqRef
- TqLim
- idqRef
- idqf
- vdqRef
- modWave
- DCexcit

Data Types: single | double

\section*{Parameters}

\section*{General}

\section*{Control mode - Control mode strategy}

Velocity control (default)|Torque control
Specify either a torque control or velocity control strategy.
Nominal dc-link voltage (V) - Rated DC voltage 300 V (default) | positive number

Nominal DC-link voltage of the electrical source.
Maximum power (W) - Maximum power
60000 W (default) | positive number
Maximum machine power.
Maximum torque (\(\mathrm{N} * \mathrm{~m}\)) - Maximum torque
250 N*m (default) | positive number
Maximum machine torque.

\section*{Maximum field current (A) - Maximum field current}

\section*{25 A (default) | positive number}

Maximum current in the field winding.

\section*{Inverter dc-link voltage threshold (V) - DC-link voltage threshold 100 V (default) | positive number}

Voltage threshold to activate the power inverter.

\section*{Number of rotor pole pairs - Pole pairs}

4 (default) | positive integer
Number of pole pairs on the rotor.

\section*{Fundamental sample time (s) - Block sample time \\ 5e-6 (default) | positive number}

Fundamental sample time for the block.

\section*{Outer Loop}

\section*{Control Type - Control type strategy}

PI control (default) | P control| \(\mathrm{P}-\mathrm{PI}\) control
Specify the type of the control strategy.

\section*{Controller proportional gain - Proportional gain of PI controller \\ 1 (default) | positive number}

Proportional gain of the PI controller.

\section*{Controller integral gain - Integral gain of PI controller}

\section*{1 (default) | positive number}

Integral gain of the PI controller.

\section*{P controller proportional gain - Proportional gain of P controller 1 (default) | positive number}

Proportional gain of P controller.

\section*{Integral anti-windup gain - Anti-windup gain}

1 (default) | positive number
Anti-windup gain of the PI controller.

\section*{Current references - Current reference strategy \\ Zero d-axis control (default)| Lookup-table based}

Select the current reference strategy.
Mechanical speed vector, wMechanical (rpm) - Rotor speed lookup vector [0, 3000] rpm (default) | positive monotonically increasing vector

Speed vector used in the lookup tables for determining current references.
Torque reference vector, TqRef (\(N * m\)) - Torque reference lookup vector [-100, 0, 100] \(\mathrm{N} * \mathrm{~m}\) (default) | positive monotonically increasing vector

Torque vector used in the lookup tables for determining current references.
DC-link voltage vector, Vdc (V) - DC-link voltage lookup vector [300, 350] V (default) | positive monotonically increasing vector

DC-link voltage vector used in the lookup tables for determining current references.
D-axis current reference matrix, id(wMechanical,TqRef,Vdc) (A) Reference d-axis current values
zeros (2,3,2) A (default) | real matrix
Direct-axis current reference lookup data.
Q-axis current reference matrix, iq(wMechanical,TqRef,Vdc) (A) Reference q-axis current values
zeros (2,3,2) A (default) | real matrix
Quadrature-axis current reference lookup data.
Field current reference matrix, if(wMechanical,TqRef,Vdc), (A) Reference field current values
zeros (2,3,2) A (default) | real matrix
Field current reference lookup data.

\section*{Torque constant - Motor torque constant \\ \(0.04 \mathrm{~N} * \mathrm{~m} / \mathrm{A}\) (default) | positive scalar}

Synchronous machine torque constant. This value is numerically equivalent to the back EMF constant expressed in V/(rad/s).

\section*{Inner Loop}

D-axis current proportional gain - D-axis proportional gain 1 (default) | positive number

Proportional gain of the PI controller used for direct-axis current control.

\section*{D-axis current integral gain - D-axis integral gain} 100 (default) | positive number

Integrator gain of the PI controller used for direct-axis current control.
D-axis current anti-windup gain - D-axis anti-windup gain 1 (default) | positive number

Anti-windup gain of the PI controller used for direct-axis current control.
Q-axis current proportional gain - \(\mathbf{Q}\)-axis proportional gain 1 (default) | positive number

Proportional gain of the PI controller used for quadrature-axis current control.
Q-axis current integral gain - Q-axis integral gain 100 (default) | positive number

Integrator gain of the PI controller used for quadrature-axis current control.
Q-axis current anti-windup gain - \(\mathbf{Q}\)-axis anti-windup gain 1 (default) | positive number

Anti-windup gain of the PI controller used for quadrature-axis current control.

\section*{Field current proportional gain - Field winding proportional gain 10 (default) | positive number}

Proportional gain of the PI controller used for field current control.

\section*{Field current integral gain - Field winding integral gain 1000 (default) | positive number}

Integral gain of the PI controller used for field current control.

\section*{Field current anti-windup gain - Field winding anti-windup gain 1 (default) | positive number}

Anti-windup gain of the PI controller used for field current control.
Axis prioritization - Axis prioritization for voltage limiter q-axis (default)|d-axis|d-q equivalence

Prioritize or maintain ratio between \(d\) - and \(q\)-axis when the block limits voltage.

\section*{Enable zero cancellation - Feedforward zero cancellation} off (default) | on

Enable or disable zero cancellation on the feedforward path.
Enable pre-control voltage - pre-control voltage on (default) | off

Enable or disable pre-control voltage.

\section*{Machine parameters - Machine parameterization}

Constant parameters (default)| Lookup table based parameters
Specify how to parameterize the machine.
- Constant parameters - Specify machine parameters that are constant throughout the simulation.
- Lookup table based parameters - Specify machine parameters as lookup tables that depend on current.

\section*{Dependencies}

Enabled when the Enable pre-control voltage parameter is selected.
D-axis inductance (H) - Feedforward d-axis inductance
0.00024 (default) | positive scalar

Direct-axis inductance for feedforward pre-control.

\section*{Dependencies}

Enabled when the Machine parameters parameter is set to Constant parameters.

\section*{Q-axis inductance (H) - Feedforward q-axis inductance 0.00029 (default) | positive scalar}

Quadrature-axis inductance for feedforward pre-control.

\section*{Dependencies}

Enabled when the Machine parameters parameter is set to Constant parameters.

\section*{Mutual field armature inductance (H) - Mutual inductance between field and armature}

\subsection*{0.007 (default)}

Mutual inductance between the field and armature windings.

\section*{Dependencies}

Enabled when the Machine parameters parameter is set to Constant parameters.
D-axis current vector, id (A) - D-axis current breakpoint vector [-200, 0, 200] A (default) | monotonically increasing vector

Direct-axis current vector used in the lookup tables for parameters determination.

\section*{Dependencies}

Enabled when the Machine parameters parameter is set to Lookup table based parameters.

Q-axis current vector, iq (A) - Q-axis current breakpoint vector [-200, 0, 200] A (default) | monotonically increasing vector

Quadrature-axis current vector used in the lookup tables for parameters determination.

\section*{Dependencies}

Enabled when the Machine parameters parameter is set to Lookup table based parameters.

Field current vector, if (\(A\)) - Field winding current vector [0,20] A (default) | monotonically increasing vector

Field current vector used in the lookup tables for parameters determination.

\section*{Dependencies}

Enabled when the Machine parameters parameter is set to Lookup table based parameters.

Ld matrix, Ld(id,iq) (H) - D-axis inductance lookup data 0.0002 * ones (3, 3) H (default) | positive matrix
\(L_{d}\) matrix used as lookup table data.

\section*{Dependencies}

Enabled when the Machine parameters parameter is set to Lookup table based parameters.

Lq matrix, Lq(id,iq) (H) - Q-axis inductance lookup data 0.0002 * ones (3, 3) H (default) | positive matrix
\(L_{q}\) matrix used as lookup table data.

\section*{Dependencies}

Enabled when the Machine parameters parameter is set to Lookup table based parameters.

Lmf matrix, Lmf(id,iq,if), (H) - Field-armature mutual inductance lookup 0.007 * ones \((2,2,2)\) H (default) | positive matrix
\(L_{m f}\) matrix used as lookup table data.
Dependencies
Enabled when the Machine parameters parameter is set to Lookup table based parameters.

\section*{PWM}

\section*{PWM method - Pulse width modulation method}

SVM: space vector modulation (default)|SPWM: sinusoidal PWM
Specify the waveform technique.

\section*{Sampling mode - Wave-sampling method}

Natural (default)|Asymmetric|Symmetric
Specify whether the block samples the modulation waveform when the waves intersect or when the carrier wave is at one or both of its boundary conditions.

\section*{Switching frequency (Hz) - Switching rate 1000 Hz (default) | positive integer}

Specify the rate at which you want the switches in the power converter to switch.

\section*{Chopper type - DC-DC chopper type}

First and fourth quadrant chopper (default)|Four-quadrant chopper
Specify DC-DC chopper type.

\section*{Switching frequency excitation (Hz) - Excitation system switching frequency \\ 1000 Hz (default) | positive integer}

Specify PWM switching frequency for excitation system.

\section*{References}
[1] Märgner, M., and W. Hackmann. "Control challenges of an externally excited synchronous machine in an automotive traction drive application." In EmobilityElectrical Power Train. (2010): 1-6.
[2] Carpiuc, S., C. Lazar, and D. Patrascu. "Optimal Torque Control of the Externally Excited Synchronous Machine." Journal of Control Engineering and Applied Informatics. 14, no 2 (2012): 80-88.

\section*{See Also}

SM Current Controller | SM Current Reference Generator

\section*{Introduced in R2018a}

\section*{SM Governor with Droop}

Synchronous machine governor with droop
Library: Simscape / Power Systems / Simscape Components / Control / SM Control

\section*{Description}

The SM Governor with Droop block implements a synchronous machine (SM) governor with a droop characteristic. Use this block to regulate or control the throttle input to a prime mover driving a synchronous generator.

The block uses the error between the measured and desired generator speeds to set the prime mover throttle position. For example, when the prime mover is rotating too slowly, the throttle is opened to increase the energy input to the generator and increase its speed.

\section*{Operation}

When multiple governor-driven generators are connected in parallel, droop characteristics ensure overall stability of the grid. Droop is defined as percent change in speed from no load to full load of the generator. This figure shows the speed-load relationship for a governor with 5\% droop.

Here,
- \(\omega_{\text {ref }}\) is the reference speed of the governor. Set this value as a per-unit quantity using the speed_ref port.
- \(P_{\text {ref }}\) is the reference load of the governor. Set this value as a per-unit quantity using the P_ref port.
- droop is the droop percentage of the governor. Set this value as a percentage using the Percentage droop, (\%) parameter.

The block calculates the reference throttle position, expressed as a per-unit quantity, as:
\[
u_{\text {throtle }, \text { ef }}=P_{\text {ref }}-\frac{100}{\text { droop }}\left(\omega-\omega_{\text {ref }}\right)
\]
where \(\omega\) is the actual, per-unit generator speed.
The inertia of the valve introduces a delay between this reference throttle position and the actual throttle position, which is modeled as a first-order lag:
\[
u_{\text {throotle }}=\left(\frac{1}{T_{s} s+1}\right) u_{\text {throtrle, ref }}
\]

Here, \(T_{s}\) is the time constant. Set this value using the Time constant of governor, (s) parameter.

\section*{Ports}

\section*{Input}

\section*{P_ref - Desired per-unit generator load \\ scalar}

Reference generator load expressed as a per-unit quantity. The steady-state output of the governor running at its reference speed is equivalent to this value.

\section*{Data Types: single|double}

\section*{speed_ref - Desired per-unit generator speed scalar}

Reference generator speed expressed as a per-unit quantity.
Data Types: single | double

\section*{speed - Actual per-unit generator speed scalar}

Measured generator speed expressed as a per-unit quantity.
Data Types: single | double

\section*{Output}

\section*{throttle - Throttle position \\ scalar}

Throttle position of the governor, expressed as a per-unit quantity.
Data Types: single | double

\section*{Parameters}

\section*{Percentage droop, (\%) - Droop \\ 5 \% (default)}

Percent change in governor speed from \(0 \%\) to \(100 \%\) load. If multiple governor-driven generators are connected in parallel, those with lower droop percentages are more sensitive to load changes.

\section*{Time constant of governor, (s) - First-order lag time constant 0.2 (default)}

Time constant of the governor first-order lag representing the throttle inertia dynamics.

\section*{Initial throttle position, (pu) - Initial throttle output 0.5 (default)}

Initial state of the throttle.

\section*{See Also}

Synchronous Machine Round Rotor (fundamental)
Introduced in R2018a

\section*{Smith Predictor Controller}

Discrete-time Smith dead-time compensator
Library: \(\quad \begin{array}{ll}\text { Simscape / Power Systems / Simscape Components / } \\ & \text { Control / General Control }\end{array}\)

\section*{Description}

The Smith Predictor Controller block compensates for dead time by implementing a Smith dead-time PI control structure in discrete time. This diagram shows the equivalent circuit for the block.

\section*{Equations}

The transfer function for a system with dead-time is
\[
G_{f}(s)=G_{p}(s) e^{-\tau s}
\]
where:
- \(\tau\) is the system dead time.
- \(G_{p}(s)\) is the process model.
- \(G_{f}(s)\) is prediction error filter.

\section*{Ports}

\section*{Input}
r-Plant reference
scalar
Plant system reference signal.
Data Types: single | double

\section*{Reset - Integrator reset \\ scalar}

External reset signal (rising edge) for the integrator.
Data Types: Boolean
y - Plant output
scalar
Plant system output signal.
Data Types: single | double

\section*{Output}

\section*{u - Controller output}
scalar
Control system output signal.
Data Types: single|double

\section*{Parameters}
```

Proportional gain - K
1 (default)| positive scalar

```

Proportional gain, \(K_{p}\), of the PI controller.

\section*{Integral gain - \(\boldsymbol{K}_{\boldsymbol{i}}\)}

1 (default) | positive scalar
Integral gain, \(K_{i}\), of the PI controller.

\section*{Integrator initial condition - Initial integrator value 0 (default) | scalar}

Value of the integrator at simulation start time.

\section*{Control action upper limit \(-u_{\text {max }}\)}

5 (default) | scalar greater than the value of the Control action lower limit parameter
Upper limit for the control output signal.
Control action lower limit - \(u_{\text {min }}\)
0 (default) | scalar
Lower limit for the control output signal.

\section*{Model discrete transfer function numerator - Transfer function numerator 1 (default) | scalar or vector}

Numerator of the system discretized transfer function. To determine the discrete transfer function, if you have a license for Control System Toolbox, use the c2d function.

\section*{Model discrete transfer function denominator - Transfer function denominator}
[1 0.5] (default)|vector
Denominator of the system discretized transfer function. To determine the discrete transfer function, if you have a license for Control System Toolbox, use the c2d function.

\author{
System dead time (samples) - Number of dead-time samples \\ 2 (default) | 0 or a positive integer
}

Number of samples of the dead time.

\section*{Sample time (-1 for inherited) - Sampling interval}

\section*{- 1 (default) | default value or a positive number}

Time interval between samples. If the block is inside a triggered subsystem, inherit the sample time by setting this parameter to -1. If this block is in a continuous variable-step model, specify the sample time explicitly. For more information, see "What Is Sample Time?" (Simulink) and "Specify Sample Time" (Simulink).

\section*{References}

\title{
[1] Velagic. J. "Design of Smith-like Predictive Controller with Communication with Communication Delay Adaptation."International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering. Vol 2, Number 11, 2008, pp. 2447-2481.
}

\section*{See Also}

\section*{Blocks}

RST Controller | State-Feedback Controller
Introduced in R2017b

\section*{SRM Commutation Logic}

Commutation logic for switched reluctance machines
Library: Simscape / Power Systems / Simscape Components / Control / SRM Control

\section*{Description}

The commutation logic provides a logic signal for the Switched Reluctance Machine (SRM) block. The signal indicates when to switch the supply for each phase on and off.

The commutation signal for each phase is:
- 1 if \(\theta_{o n} \leq \theta_{p h} \leq \theta_{\text {off }}\).
- 0 if \(\theta_{p h}<\theta_{o n}\).
- 0 if \(\theta_{p h}>\theta_{\text {off }}\).
where:
- \(\theta_{p h}\) is the phase angle in the interval \([0, \beta]\).
- \(\beta\) is the torque capability angle.
- \(\theta_{o n}\) is the switch-on angle.
- \(\theta_{\text {off }}\) is the switch-off angle.

\section*{Ports}

\section*{Input}

\author{
theta - Phase angle
}
scalar

Phase angle, \(\theta_{p h}\), in the interval \([0, \beta]\).
Data Types: single | double

\section*{thetaON - Switch-on angle} scalar

Lower threshold for turning on the switch.
Data Types: single | double

\section*{theta0FF - Switch-off angle}
scalar
Upper threshold for turning off the switch.
Data Types: single | double

\section*{Output}

\section*{abcOnOff - Commutation signal}
vector
Commutation signal for each phase: 1 for the switch-on condition and 0 for switch-off condition

Data Types: single | double

\section*{Parameters}

\section*{Torque capability angle (rad) - Torque angle}
pi/2 (default)
The torque production capability of one rotor pole, in radians.

\section*{Sample time (-1 for inherited) - Block sample time}
-1 (default) | positive scalar
Time, in s, between consecutive block executions. During execution, the block produces outputs and, if appropriate, updates its internal state. For more information, see "What Is Sample Time?" (Simulink) and "Specify Sample Time" (Simulink).

If this block is inside a triggered subsystem, inherit the sample time by setting this parameter to -1. If this block is in a continuous variable-step model, specify the sample time explicitly using a positive scalar.

\section*{See Also}

SRM Current Controller | SRM Current Controller with PWM Generation | SRM Hysteresis Current Controller | Switched Reluctance Machine

\section*{Introduced in R2018a}

\section*{SRM Current Controller}

Current control for switched reluctance machines
Library: Simscape / Power Systems / Simscape Components / Control / SRM Control

\section*{Description}

The SRM Current Controller block performs discrete-time proportional-integral (PI) current control for the Switched Reluctance Machine (SRM) block.

\section*{Equations}

To determine the duty cycle, the block implements discrete-time proportional-integral (PI) current control in accordance with this equation.
\[
D=\left(K_{p}+K_{i} \frac{T_{s} z}{z-1}\right)\left(I_{s_{-} r e f}-I_{s}\right)
\]

Where:
- \(D\) is the duty cycle.
- \(K_{p}\) is the proportional gain.
- \(K_{i}\) is the integral gain.
- \(T_{s}\) is the sample time.
- \(I_{s_{-} r e f}\) is the reference current.
- \(I_{s}\) is the measured current.

To obtain control signals for the three-phases, the block then multiplies the duty cycle with the commutation signals. The resulting three control signals are normalized over the interval [0, 1].

\section*{Ports}

\section*{Input}

\section*{IsRef - Reference current \\ scalar}

Reference current for control.

\section*{Data Types: single | double}

\section*{Is - Measured current}

\section*{scalar}

Measured current.
Data Types: single | double

\section*{Reset - Integrator reset}
scalar
External reset signal (rising edge) for the integrator.
Data Types: Boolean

\section*{theta - Theta-rotor angle}
scalar
Rotor angle in the interval \([0, \beta]\).
Data Types: single| double

\section*{thetaON - Switch-on angle}
scalar
Angle for switching on the phase supply.
Data Types: single| double

\section*{theta0FF - Switch-off angle \\ scalar}

Angle for switching on the phase supply.
Data Types: single | double

\section*{Output}

\section*{abcRef - Reference voltage}
vector
Control signal normalized in the interval [0, 1].
Data Types: single | double

\section*{abcOnOff - Switch signal}
vector
Switch signal for the \(a-b\)-, and \(c\)-phases. 1 for the switch-on condition and 0 for switchoff condition

Data Types: single | double

\section*{Parameters}

\section*{Proportional gain - Controller proportional gain, \(\boldsymbol{K}_{\boldsymbol{p}}\) 1 (default) | positive scalar}

Proportional gain, \(K_{p}\), of the controller.
Integral gain - Integral gain, \(\boldsymbol{K}_{\boldsymbol{i}}\)
5 (default) | positive scalar
Integral gain, \(K_{i}\), of the controller.

\section*{Anti-windup gain - Anti-windup gain, \(\boldsymbol{K}_{\text {aw }}\)}

1 (default) | positive scalar
Anti-windup gain, \(K_{a w}\), of the controller.

\section*{Sample time (-1 for inherited) - Block sample time} -1 (default) | positive scalar

Time, in s, between consecutive block executions. During execution, the block produces outputs and, if appropriate, updates its internal state. For more information, see "What Is Sample Time?" (Simulink) and "Specify Sample Time" (Simulink).

If this block is inside a triggered subsystem, inherit the sample time by setting this parameter to -1. If this block is in a continuous variable-step model, specify the sample time explicitly using a positive scalar.

\section*{References}
[1] Saha, N. and S. Panda. "Speed control with torque ripple reduction of switched reluctance motor by Hybrid Many Optimizing Liaison Gravitational Search technique." Engineering Science and Technology. Vol 20 (2017): 909-921.

\section*{See Also}

SRM Commutation Logic | SRM Current Controller with PWM Generation | SRM Hysteresis Current Controller | Switched Reluctance Machine

\section*{Introduced in R2018a}

\section*{SRM Current Controller with PWM Generation}

Current controller with internal pulse width modulation for switched reluctance machines Library: Simscape / Power Systems / Simscape Components / Control / SRM Control

\section*{Description}

The SRM Current Controller block performs discrete-time proportional-integral (PI) current control for the Switched Reluctance Machine (SRM) block. The block includes pulse width modulation (PWM).

\section*{PWM Generation Model}

The figure shows the converter structure for an SRM.

As the figure shows, the PWM generation signal is for high side switching devices.

When the control signal is greater than the carrier counter value, the PWM generator outputs 1. Otherwise, it outputs 0 .

\section*{Equations}

To determine the duty cycle, the block implements PI current control in the rotor reference frame in accordance with this equation.
\[
D=\left(K_{p}+K_{i} \frac{T_{s} z}{z-1}\right)\left(I_{s_{-} r e f}-I_{s}\right)
\]

Where:
- \(D\) is the duty cycle.
- \(K_{p}\) is the proportional gain.
- \(K_{i}\) is the integral gain.
- \(T_{s}\) is the sample time.
- \(I_{s_{-} r e f}\) is the reference current.
- \(I_{s}\) is the measured current.

To obtain control signals for the three-phases, the block then multiplies the duty cycle with the commutation signals. The resulting three control signals are normalized over the interval \([0,1]\).

\section*{Ports}

\section*{Input}

\section*{IsRef - Reference current \\ scalar}

Reference current for control.
Data Types: single | double

\section*{Is - Measured current}
scalar

Actual current.
Data Types: single | double

\section*{Reset - Integrator reset}
scalar
External reset signal (rising edge) for the integrator.
Data Types: Boolean

\section*{theta - Theta-rotor angle}
scalar
Rotor angle in the interval \([0, \beta]\).
Data Types: single | double
thetaON - Switch-on angle
scalar
Angle for switching on the phase supply.
Data Types: single | double
theta0FF - Switch-off angle
scalar
Angle for switching on the phase supply.
Data Types: single | double

\section*{Output}

\section*{G - Gate control}
vector
Pulse waveforms that determine switching behavior.
Data Types: single | double

\section*{Parameters}

\section*{Control Parameters}

\section*{Proportional gain - Controller proportional gain, \(\boldsymbol{K}_{\boldsymbol{p}}\) 1 (default) | positive scalar}

Proportional gain, \(K_{p}\), of the controller.

\section*{Integral gain - Integral gain, \(\boldsymbol{K}_{\boldsymbol{i}}\)}

5 (default) | positive scalar
Integral gain, \(K_{i}\), of the controller.

\section*{Anti-windup gain - Anti-windup gain, \(\boldsymbol{K}_{\text {aw }}\)}

\section*{1 (default) | positive scalar}

Anti-windup gain, \(K_{a w}\), of the controller.

\section*{Sample time (-1 for inherited) - Block sample time - 1 (default) | positive scalar}

Time, in s, between consecutive block executions. During execution, the block produces outputs and, if appropriate, updates its internal state. For more information, see "What Is Sample Time?" (Simulink) and "Specify Sample Time" (Simulink).

If this block is inside a triggered subsystem, inherit the sample time by setting this parameter to -1. If this block is in a continuous variable-step model, specify the sample time explicitly using a positive scalar.

\section*{PWM Generator}

\section*{Carrier counter - Carrier counter model Up (default) | Down | Up-Down}

Use the carrier counter strategy to change the initial behavior of the PWM output:
- Up counter - PWM output begins at the start of the on state.
- Down counter - PWM output begins at the start of the off state.
- Up-down counter - PWM output begins in the middle of the on state.

\section*{Timer period (s) - PWM timer period \\ 0.001 (default) | positive scalar}

Pulse width modulation timer period, \(T_{p e r}\), in seconds.

\section*{Fundamental sample time (s) - Sample time for PWM generation} 0.0001 (default) | positive scalar

Time, in s, between consecutive PWM generator executions. During execution, the block produces PWM output and, if appropriate, updates its internal state. For more information, see "What Is Sample Time?" (Simulink) and "Specify Sample Time" (Simulink).

To ensure adequate resolution in the generated PWM signal, set the fundamental sample time so that \(0<T_{s_{-} p w m} \leq 10 T_{p e r}\), where:
- \(T_{s_{-} p w m}\) is the Fundamental sample time (s).
- \(T_{p e r}\) is the Timer period (s).

\section*{References}
[1] Saha, N. and S. Panda. "Speed control with torque ripple reduction of switched reluctance motor by Hybrid Many Optimizing Liaison Gravitational Search technique." Engineering Science and Technology. Vol 20 (2017): 909-921.

\section*{See Also}

SRM Commutation Logic | SRM Current Controller | SRM Hysteresis Current Controller | Switched Reluctance Machine

\section*{Introduced in R2018a}

\section*{SRM Hysteresis Current Controller}

Hysteresis current control for switched reluctance machines
Library: Simscape / Power Systems / Simscape Components / Control / SRM Control

\section*{Description}

The SRM Hysteresis Current Controller block implements hysteresis current control for for the Switched Reluctance Machine (SRM) block.

\section*{Ports}

\section*{Input}

\section*{IsRef - Reference current}
scalar

Reference current for control.

\section*{Data Types: single | double}

\section*{iabc - Measured current vector}

Measured three-phase current.
Data Types: single | double

\section*{Reset - Integrator reset}
scalar
External reset signal (rising edge) for the integrator.
Data Types: Boolean

\section*{theta - Theta-rotor angle \\ scalar}

Rotor angle in the interval \([0, \beta]\).
Data Types: single | double

\section*{thetaON - Switch-on angle \\ scalar}

Angle for switching on the phase supply.
Data Types: single | double

\section*{theta0FF - Switch-off angle}
scalar
Angle for switching on the phase supply.
Data Types: single | double

\section*{Output}

\section*{Sabc - Voltage switch signal}
vector|0 or 1
Signal for switching on and off the three-phase voltage.

\section*{Data Types: single | double}

\section*{Parameters}

\section*{Torque capability angle (rad) - Torque capability angle}
pi/2 (default)|[0, 2*pi/number of rotor poles]
The torque production capability of one rotor pole, in radians.

\section*{Hysteresis band - Hysteresis bandwidth}

5 (default)
Hysteresis band, \(h\), for the current controller. The switch-on point is \(h / 2\) and the switch-off point is \(-h / 2\).

\section*{Sample time (-1 for inherited) - Block sample time}
- 1 (default) | positive scalar

Time, in s, between consecutive block executions. During execution, the block produces outputs and, if appropriate, updates its internal state. For more information, see "What Is Sample Time?" (Simulink) and "Specify Sample Time" (Simulink).

If this block is inside a triggered subsystem, inherit the sample time by setting this parameter to -1. If this block is in a continuous variable-step model, specify the sample time explicitly using a positive scalar.

\section*{See Also}

SRM Commutation Logic | SRM Current Controller | SRM Current Controller with PWM Generation | Switched Reluctance Machine

\section*{Introduced in R2018a}

\section*{State-Feedback Controller}

Discrete-time state-feedback controller with integral action
Library: Simscape / Power Systems / Simscape Components / Control / General Control

\section*{Description}

The State-Feedback Controller block implements a discrete-time state-feedback controller with integral action. Use this block to control linear systems with single or multiple inputs and single or multiple outputs. The integral action serves to eliminate steady-state error in the controlled outputs. You can define the controller using a precomputed optimal gain or use the state-space model of your system to generate this gain using pole placement.

\section*{Equations}

The integral of the tracking error, \(x_{i}\), is an additional state that ensures zero steady-state error for the closed-loop system. The extended state vector is
\[
x_{e}=\left[\begin{array}{c}
x \\
x_{i}
\end{array}\right],
\]

Where:
- \(x\) is the state vector.
- \(x_{i}\) is the integral of the tracking error.
- \(x_{e}\) is the extended state vector.

Therefore, the control action is
\[
u=K x_{e},
\]

Where:
- \(K\) is the feedback matrix, that is, the pole placement.
- \(u\) is the controller output.

\section*{Assumptions}

System state measurement and estimation occur outside the controller.

\section*{Ports}

\section*{Input}

\section*{r - Plant reference}
scalar
Plant system reference signal.
Data Types: single | double

\section*{x - State vector}
vector
Measured or estimated system state vector.

\section*{Data Types: single | double}

\section*{Reset - Integrator reset}
scalar
External reset signal (rising edge) for the integrator.
Data Types: Boolean
y - Plant output
scalar
Plant system output signal.
Data Types: single | double

\section*{Output}

\section*{u - Controller output}
scalar
Control system output signal.
Data Types: single | double

\section*{Parameters}

\section*{State-feedback design - Controller generation}

State-feedback gain (default)|Desired eigenvalues
Select the strategy for parameterizing controller gain:
- State-feedback gain - Specify the controller gain directly
- Desired eigenvalues - Specify the plant model and desired eigenvalues from which to generate the controller gain

\section*{State-feedback parameterization - State-feedback parameterization Discrete-time (default)| Continuous-time}

Select the strategy for parameterizing the state-space matrices and desired poles for the controller. The block implementation is discrete regardless of this parameterization.

\section*{Dependencies}

To enable this parameter, set State-feedback design to Desired eigenvalues.

\section*{Controller matrix - Controller matrix}

\section*{[1 1] (default) | matrix}

Controller feedback matrix. To determine the controller matrix, if you have a license for Control System Toolbox, use the lqr or lqi function.

\section*{Dependencies}

To enable this parameter, set State-feedback design to State-feedback gain.

\section*{Discrete-time A matrix - A matrix in discrete time 1 (default) | real scalar or matrix}

State matrix of the discrete-time state-space model. The A matrix must be square, with the number of rows and columns equal to the order of the system.

\section*{Dependencies}

To enable this parameter, set State-feedback parameterization to Discrete-time.

\section*{Discrete-time B matrix - B matrix in discrete time 1 (default) | real scalar or matrix}

Input matrix of the discrete-time state-space model. The B matrix must have the number of rows equal to the order of the system, and the number of columns equal to the number of system inputs.

\section*{Dependencies}

To enable this parameter, set State-feedback parameterization to Discrete-time.

\section*{Discrete-time C matrix - C matrix in discrete time \\ 1 (default) | real scalar or matrix}

Output matrix of the discrete-time state-space model. The C matrix must have the number of rows equal the number of outputs of the system, and the number of columns equal to the order of the system.

\section*{Dependencies}

To enable this parameter, set State-feedback parameterization to Discrete-time.

\section*{Discrete-time \(D\) matrix - \(D\) matrix in discrete time 1 (default) | real scalar or matrix}

Feedthrough matrix of the discrete-time state-space model. The D matrix must have the number of rows equal to the number of system outputs, and the number of columns equal to the number of system inputs.

\section*{Dependencies}

To enable this parameter, set State-feedback parameterization to Discrete-time.

\section*{Continuous-time A matrix - A matrix in continuous time \\ 1 (default) | real scalar or matrix}

State matrix of the continuous-time state-space model. The A matrix must be square, with the number of rows and columns equal to the order of the system.

\section*{Dependencies}

To enable this parameter, set State-feedback parameterization to Continuous-time.

\section*{Continuous-time B matrix - B matrix in continuous time}

\section*{1 (default) | real scalar or matrix}

Input matrix of the continuous-time state-space model. The B matrix must have the number of rows equal to the order of the system, and the number of columns equal to the number of system inputs.

\section*{Dependencies}

To enable this parameter, set State-feedback parameterization to Continuous-time.

\section*{Continuous-time C matrix - C matrix in continuous time 1 (default) | real scalar or matrix}

Output matrix of the continuous-time state-space model. The C matrix must have the number of rows equal the number of outputs of the system, and the number of columns equal to the order of the system.

\section*{Dependencies}

To enable this parameter, set State-feedback parameterization to Continuous-time.

\section*{Continuous-time D matrix - D matrix in continuous time}

1 (default) | real scalar or matrix

Feedthrough matrix of the continuous-time state-space model. The D matrix must have the number of rows equal to the number of system outputs, and the number of columns equal to the number of system inputs.

\section*{Dependencies}

To enable this parameter, set State-feedback parameterization to Continuous-time.

\section*{Discretization sample time - Discretization sample time}

\section*{0.1 (default) | positive real number}

Value used to discretize the state space matrices and also approximate the discrete-time eigenvalues.

\section*{Dependencies}

To enable this parameter, set State-feedback parameterization to Continuous -time and Sample time (\(\mathbf{- 1}\) for inherited) to -1 .
```

Desired eigenvalues (discrete) - Observer eigenvalues
0 (default) | real vector

```

Specify the location of the eigenvalues to lie within the unit circle. The controller gain is then calculated based on these eigenvalues. The size of the vector must be equal to the system order plus the number of outputs.

\section*{Control action upper limit \(-u_{\text {max }}\)}

5 (default) | scalar greater than the value of the Control action lower limit parameter
Upper limit for the control output signal.

\section*{Control action lower limit - \(u_{\text {min }}\)}

0 (default) | scalar
Lower limit for the control output signal.

\section*{Sample time (-1 for inherited) - Sampling interval}
-1 (default) | default value or a positive number
Time interval between samples. If the block is inside a triggered subsystem, inherit the sample time by setting this parameter to -1. If this block is in a continuous variable-step model, specify the sample time explicitly. For more information, see "What Is Sample Time?" (Simulink) and "Specify Sample Time" (Simulink).

\author{
See Also \\ \section*{Blocks} \\ RST Controller | Smith Predictor Controller \\ Introduced in R2017b
}

\title{
Stepper Motor Driver
}

\author{
Stepper motor driver \\ Library: Simscape / Power Systems / Simscape Components / \\ Machines / Stepper Motor and Driver
}

\section*{Description}

The Stepper Motor Driver block represents a driver for a stepper motor. It creates the pulse trains, A and B, required to control the motor. This block initiates a step each time the voltage at the ENA port rises above the Enable threshold voltage parameter value.

If the voltage at the REV port is less than or equal to the Reverse threshold voltage parameter value, pulse A leads pulse B by 90 degrees. If the voltage at the REV port is greater than the Reverse threshold voltage value, pulse B leads pulse A by 90 degrees and the motor direction is reversed.

At time zero, pulse \(A\) is positive and pulse \(B\) is negative.
If you set the Stepping mode parameter to Half stepping, the Stepper Motor Driver block can produce the output waveforms required for half stepping. In this mode, there is an intermediate state between the full steps, in which just one of the A or the B halfwindings is powered. As a result, the step size is half of the stepper motor's full step size. At half steps, windings that are not powered are short-circuited. This approximates the effect of a freewheeling diode connected across the windings.

\section*{Averaged Mode}

If you set the Simulation mode parameter to Averaged, both for a Stepper Motor Driver block and for the Stepper Motor block connected to it, then the individual steps are not simulated. This can be a good way to speed up simulation. The Averaged mode assumes that the external controller provides a step rate demand. This step rate demand is determined from the voltage applied between the ENA and REF ports on the Stepper Motor Driver block, by multiplying this voltage by the value of the Step rate sensitivity
parameter. The rotation direction is set by the REF port in the same way as for the Stepping mode.

Averaged mode needs to communicate the step rate demand and also output voltage amplitude information to the Stepper Motor block. To do this, the step rate demand is applied as an equivalent voltage across the A+ and A- ports. Similarly the output voltage amplitude information is conveyed by applying a steady-state voltage across the B+ and B- ports with value equal to the Output voltage amplitude parameter.

\section*{Assumptions and Limitations}

The model is based on these assumptions:
- To use Averaged mode, the Stepper Motor Driver block must be directly connected to a Stepper Motor block also running in Averaged mode.
- When changing from Stepping to Averaged mode and back, you will need to modify your upstream blocks that provide the input voltages to the Stepper Motor Driver. One way to achieve this easily is to use Simulink variant subsystems.

\section*{Ports}

\section*{Conserving}

\section*{A+ - A-phase positive terminal}
electrical
Electrical conserving port associated with the A-phase positive terminal.

\section*{A- - A-phase negative terminal}
electrical
Electrical conserving port associated with the A-phase negative terminal.

\section*{B+ - B-phase positive terminal \\ electrical}

Electrical conserving port associated with the B-phase positive terminal.

\section*{B- - B-phase negative terminal}

\section*{electrical}

Electrical conserving port associated with the B-phase negative terminal.

\section*{ENA - Triggering input step voltage}
electrical
Electrical conserving port associated with the step trigger input.

\section*{REF - Input floating reference voltage}

\section*{electrical}

Electrical conserving port associated with the floating reference voltage.

\section*{REV - Input voltage that controls motor direction}
electrical
Electrical conserving port associated with the motor direction input.

\section*{Parameters}

\section*{Simulation mode - Simulation mode \\ Stepping (default)|Averaged}

Use Averaged only if the block is connected directly to a Stepper Motor block also running in Averaged mode.

\section*{Step rate sensitivity - Step rate demand sensitivity \(10 \mathrm{~Hz} / \mathrm{V}\) (default) | positive number}

This parameter converts the voltage presented across the ENA and REF ports into a step rate demand.

\section*{Dependencies}

To enable this parameter, set Simulation mode to Averaged.

\section*{Enable threshold voltage - Step voltage threshold}
2.5 V (default) | positive number

When the voltage at the ENA port rises above this threshold, the Stepper Motor Driver block initiates a step.

\section*{Dependencies}

To enable this parameter, set Simulation mode to Stepping.

\section*{Reverse threshold voltage - Reversal voltage threshold 2.5 V (default) | positive number}

When the voltage at the REV port rises above this threshold, pulse B leads pulse A by 90 degrees, and the motor direction is reversed.

\section*{Output voltage amplitude - Pulse output amplitude 10 V (default) | positive number}

Amplitude of the output pulse trains.

\section*{Stepping mode - Step size}

Full stepping (default)|Half stepping
Select Full stepping or Half stepping.

\section*{See Also}

Stepper Motor
Introduced in R2018a

\section*{Stepper Motor}

Stepper Motor

\section*{Library:}
Simscape / Power Systems / Simscape Components / Machines / Stepper Motor and Driver

\section*{Description}

The Stepper Motor block represents a stepper motor. It uses the input pulse trains, A and \(B\), to control the mechanical output according to the following equations:
\[
\begin{aligned}
& e_{A}=-K_{m} \omega \sin \left(N_{r} \theta\right) \\
& e_{B}=K_{m} \omega \cos \left(N_{r} \theta\right) \\
& \frac{d i_{A}}{d t}=\left(v_{A}-R i_{A}-e_{A}\right) / L \\
& \frac{d i_{B}}{d t}=\left(v_{B}-R i_{B}-e_{B}\right) / L \\
& J \frac{d \omega}{d t}+B \omega=T_{e} \\
& T_{e}=-K_{m}\left(i_{A}-\frac{e_{A}}{R_{m}}\right) \sin \left(N_{r} \theta\right)+K_{m}\left(i_{B}-\frac{e_{B}}{R_{m}}\right) \cos \left(N_{r} \theta\right)-T_{d} \sin \left(4 N_{r} \theta\right) \\
& \frac{d \theta}{d t}=\omega
\end{aligned}
\]
where:
- \(e_{\mathrm{A}}\) and \(e_{\mathrm{B}}\) are the back electromotive forces (emfs) induced in the A and B phase windings, respectively.
- \(i_{\mathrm{A}}\) and \(i_{\mathrm{B}}\) are the A and B phase winding currents.
- \(v_{\mathrm{A}}\) and \(v_{\mathrm{B}}\) are the A and B phase winding voltages.
- \(K_{\mathrm{m}}\) is the motor torque constant.
- \(N_{\mathrm{r}}\) is the number of teeth on each of the two rotor poles. The Full step size parameter is \((\Pi / 2) / N_{r}\).
- \(R\) is the winding resistance.
- \(L\) is the winding inductance.
- \(R_{\mathrm{m}}\) is the magnetizing resistance.
- \(B\) is the rotational damping.
- \(J\) is the inertia.
- \(\omega\) is the rotor speed.
- \(\Theta\) is the rotor angle.
- \(T_{\mathrm{d}}\) is the detent torque amplitude.

If the initial rotor is zero or some multiple of \((\pi / 2) / N_{r}\), the rotor is aligned with the phase winding of pulse A. This happens when there is a positive current flowing from the A+ to the \(\mathbf{A}\) - ports and there is no current flowing from the \(\mathbf{B}+\) to the \(\mathbf{B}\) - ports.

Use the Stepper Motor Driver block to create the pulse trains for the Stepper Motor block.

The Stepper Motor block produces a positive torque acting from the mechanical \(\mathbf{C}\) to \(\mathbf{R}\) ports when the phase of pulse \(A\) leads the phase of pulse \(B\).

\section*{Averaged Mode}

If you set the Simulation mode parameter to Averaged, both for a Stepper Motor block and for the Stepper Motor Driver block that controls it, then the individual steps are not simulated. This can be a good way to speed up simulation. In Averaged mode, under nonslipping conditions, the motor and driver are represented by a second-order linear system that tracks the specified step rate. The demanded step rate is determined directly from voltage across \(\mathbf{A}+\) and \(\mathbf{A}\)-. So, for example, a voltage of +10 V across the \(\mathbf{A +}\) and \(\mathbf{A}\) terminals is interpreted as a step rate demand of 10 steps per second. See the Stepper

Motor Driver reference page for more information on how to connect the Stepper Motor Driver to your step angle controller.

Averaged mode includes a slip estimator to predict whether the stepper motor would have slipped if running in Stepping simulation mode. Slip is predicted if the motor torque exceeds the Vector of maximum torque values parameter value for longer than one step period, the step period being determined from the current step rate demand. Upon detecting slip, the simulation will proceed or stop with an error, according to the Action on slipping parameter value. If you choose the action that lets the simulation continue, note that simulation results may be incorrect. When slipping occurs, the torque generated by the motor is not generally the maximum available torque; the maximum torque is only achieved if the stepper controller detects slip and adjusts the step rate command accordingly.

The dynamics of the equivalent second-order system are determined from the values that you specify for the Approximate total load inertia and Maximum step rate command parameters. It is important that you set as accurate values as possible for these parameters, so that the step rate command is tracked, and the block does not generate false slipping warnings or errors.

If you run the motor in Averaged mode with the optional thermal ports exposed (see "Thermal Ports and Effects" on page 1-797), then heat is added to the thermal ports, assuming that the windings are always powered even when the step rate command is zero. The block makes adjustments for half stepping and for reduced torque (and winding currents) at higher speeds. For these adjustments to be correct, the Vector of maximum torque parameter values must be correct. For half stepping, at zero speed the heat generated by the block is the average of that generated when stopped at a half step and at a full step.

To validate Averaged mode model configurations where you predict slip to occur, compare results with the same simulation performed in stepping mode.

\section*{Thermal Ports and Effects}

The block has three optional thermal ports, one for each of the two windings and one for the rotor. These ports are hidden by default. To expose the thermal ports, right-click the block in your model, and then from the context menu select Simscape > Block choices > Show thermal port. This action displays the thermal ports on the block icon, and adds the Temperature Dependence and Thermal Port tabs to the block dialog box. These tabs are described further on this reference page.

Use the thermal ports to simulate the effects of copper resistance and iron losses that convert electrical power to heat. If you expose these ports, winding resistance is assumed linearly dependent on temperature, and is given by:
\(R=R_{0}\left(1+\alpha\left(T-T_{0}\right)\right)\)
where:
- \(R\) is the resistance at temperature \(T\).
- \(R_{0}\) is the resistance at the measurement (or reference) temperature \(T_{0}\). Specify the reference temperature using the Measurement temperature parameter.
- \(\alpha\) is the resistance temperature coefficient, which you specify with the Resistance temperature coefficients, [alpha_A alpha_B] parameter. A typical value for copper is \(0.00393 / \mathrm{K}\).

The block calculates temperature of each of the windings and the rotor by
\[
M \frac{d T}{d t}=Q
\]
where
- \(M\) is the thermal mass. Specify this value for the windings using the Winding thermal masses, [M_A M_B] parameter, and for the rotor using the Rotor thermal mass parameter.
- \(T\) is the temperature. Specify the initial values for the windings using the Winding initial temperatures, [T_A T_B] parameter, and for the rotor using the Rotor initial temperature parameter.
- \(Q\) is the heat flow, which is calculated from the iron losses of the windings:
\[
\begin{aligned}
& Q_{A}=i_{a}{ }^{2} R_{A}\left(1-\rho_{m} / 100\right) \\
& Q_{B}=i_{B}^{2} R_{B}\left(1-\rho_{m} / 100\right) \\
& Q_{R}=Q_{A}\left(\rho_{m} / 100\right)+Q_{B}\left(\rho_{m} / 100\right)
\end{aligned}
\]
where \(\rho_{m}\) is the percentage of magnetizing resistance associated with the rotor. Specify this percentage using the Percentage of magnetizing resistance associated with the rotor parameter.

\section*{Assumptions and Limitations}

The model is based on the following assumptions:
- This model neglects magnetic saturation effects and any magnetic coupling between phases.
- When you select the Start simulation from steady state check box in the SimscapeSolver Configuration block, this block will not initialize an Initial rotor angle value between -п and \(п\).
- To use Averaged mode, the Stepper Motor block must be directly connected to a Stepper Motor Driver block also running in Averaged mode.
- The Averaged mode is an approximation, and exact step tracking compared to the Stepping mode should not be expected.
- Slip detection in Averaged mode is approximate, and depends on a good estimate for load inertia and maximum step rate. Incorrect values may result in false slip detection.
- When simulating slip in Averaged mode, it is assumed that the stepper motor controller adjusts the step rate command so as to achieve maximum possible torque.

\section*{Ports}

\section*{Conserving}

A+ - A-phase positive terminal
electrical
Electrical conserving port associated with the A-phase positive terminal.

\section*{A- - A-phase negative terminal}
electrical
Electrical conserving port associated with the A-phase negative terminal.

\section*{B+ - B-phase positive terminal \\ electrical}

Electrical conserving port associated with the B-phase positive terminal.

\section*{B- - B-phase negative terminal}

\section*{electrical}

Electrical conserving port associated with the B-phase negative terminal.

\section*{C - Machine case}
mechanical rotational
Mechanical rotational conserving port connected to the motor case.

\section*{R - Machine rotor}
mechanical rotational
Mechanical rotational conserving port connected to the rotor.

\section*{HA - Winding A thermal mass}

\section*{thermal}

Thermal conserving port associated with the thermal mass of winding A. For more information, see "Thermal Ports and Effects" on page 1-797.

\section*{HB - Winding B thermal mass}
thermal
Thermal conserving port associated with the thermal mass of winding B. For more information, see "Thermal Ports and Effects" on page 1-797.

\section*{HR - Rotor thermal mass}

\section*{thermal}

Thermal conserving port associated with the thermal mass of the rotor. For more information, see "Thermal Ports and Effects" on page 1-797.

\section*{Parameters}

\section*{Electrical Torque}

\author{
Simulation mode - Simulation mode \\ Stepping (default)|Averaged
}

Use Averaged only if the block is connected directly to a Stepper Motor Driver block also running in Averaged mode.

\section*{Vector of rotational speeds - Rotor speeds [0, 1000, 3000] rpm (default) | positive vector}

Vector of rotational speeds at which to define maximum torque values, for slip prediction.

\section*{Dependencies}

To enable this parameter, set Simulation mode to Averaged.

\section*{Vector of maximum torque values - Maximum torques} [2, 2, 1] \(N * m\) (default) | positive vector

Vector of maximum torque values, to be used for slip prediction with the Vector of rotational speeds parameter. These values are often given on a datasheet, and correspond to the supply voltage and stepping type (half step or full step) specified in the driver.

\section*{Dependencies}

To enable this parameter, set Simulation mode to Averaged.

\section*{Action on slipping - Slip response none (default) | warn | error}

Select the action for the block to perform during simulation upon detecting slip:
- none - Continue simulation, limiting the load torque according to the Vector of maximum torque values.
- warn - Continue simulation, limiting the load torque according to the Vector of maximum torque values, and generate a warning that the rotor is slipping.
- error - Stop the simulation and generate an error message that the rotor is slipping.

If you choose an action that lets the simulation continue, simulation results might be incorrect. When slipping occurs, the motor does not always generate maximum torque. The maximum torque is only achieved if the stepper controller detects slip and adjusts the step rate command accordingly.

\section*{Dependencies}

To enable this parameter, set Simulation mode to Averaged.

\section*{Approximate total load inertia - Total load inertia \(1 \mathrm{e}-4 \mathrm{~kg} * \mathrm{~m}^{\wedge} 2\) (default) | positive number}

Approximate total load inertia, including the rotor inertia. This value is used to help predict slip due to rapid acceleration demands.

\section*{Dependencies}

To enable this parameter, set Simulation mode to Averaged.

\section*{Maximum step rate command - Maximum command frequency 10 Hz (default) | positive number}

Maximum commanded step rate of the system. It is used to determine a suitable bandwidth for the second order system approximation to the stepper motor and driver.

\section*{Dependencies}

To enable this parameter, set Simulation mode to Averaged.

\section*{Phase winding resistance - Phase resistance}
0.55 Ohm (default) | positive number

Resistance of the A and B phase windings.

\section*{Dependencies}

To enable this parameter, set Simulation mode to Stepping.

\section*{Phase winding inductance - Phase inductance}
1.5e-3 0hm (default) | positive number

Inductance of the A and B phase windings.

\section*{Dependencies}

To enable this parameter, set Simulation mode to Stepping.

\section*{Motor torque constant - Torque constant}
\(0.19 \mathrm{~N} * \mathrm{~m} / \mathrm{A}\) (default) | positive number
Motor torque constant, \(K_{m}\).

\section*{Dependencies}

To enable this parameter, set Simulation mode to Stepping.

\section*{Detent torque - Torque variation amplitude}

\section*{\(0 \mathrm{~N} * \mathrm{~m}\) (default) | positive number}

Amplitude of the sinusoidal torque variation observed when rotating the shaft of the unpowered motor.

\section*{Dependencies}

To enable this parameter, set Simulation mode to Stepping.

\section*{Magnetizing resistance - Phase magnetizing resistance inf (default) | strictly positive number}

Total magnetizing resistance seen from each of the phase windings. The value must be greater than zero. The default value is Inf, which implies that there are no iron losses.

\section*{Dependencies}

To enable this parameter, set Simulation mode to Stepping.

\section*{Full step size - Step size}
1.8 deg (default) | positive number

Step size when changing the polarity of either the A or B phase current.

\section*{Mechanical}

\section*{Rotor inertia - Rotational inertia}
\(4.5 \mathrm{e}-5 \mathrm{~kg}{ }^{*} \mathrm{~m}^{\wedge} 2\) (default) | zero or positive number
Conservative force resisting rotor acceleration.

\section*{Rotor damping - Rotational damping}
\(8.0 \mathrm{e}-4 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})\) (default) | zero or positive number
Dissipative force resisting rotor speed.

\section*{Initial rotor speed - Initial speed \\ 0 rpm (default) | real number}

Speed of the rotor at the start of the simulation.

\section*{Initial rotor angle - Initial angle}

0 rad (default) | real number
Angle of the rotor at the start of the simulation.

\section*{Temperature Dependence}

This set of parameters appears only for blocks with exposed thermal ports. For more information, see "Thermal Ports and Effects" on page 1-797.

\section*{Resistance temperature coefficients, [alpha_A alpha_B] - Temperature coefficients \\ [.00393, . 00393] 1/K (default) | positive vector}

Two-element row vector defining the coefficient \(\alpha\) in the equation relating resistance to temperature, as described in "Thermal Ports and Effects" on page 1-797. The first element corresponds to winding A , and the second to winding B . The default value is for copper.

\section*{Measurement temperature - Reference temperature}

25 degC (default) | real number
Temperature for which motor parameters are defined.

\section*{Thermal Port}

This set of parameters appears only for blocks with exposed thermal ports. For more information, see "Thermal Ports and Effects" on page 1-797.

\section*{Winding thermal masses, [M_A M_B] - Winding thermal masses [100, 100] J/K (default) | positive vector}

Two-element row vector defining the thermal mass for the A and B windings. The thermal mass is the energy required to raise the temperature by one degree.

\section*{Winding initial temperatures, [T_A T_B] - Initial winding temperatures [25, 25] degC (default) | real number}

Two-element row vector defining the temperature of the A and B thermal ports at the start of simulation.

\section*{Rotor thermal mass - Rotor thermal mass}
\(50 \mathrm{~J} / \mathrm{K}\) (default) | positive number
Thermal mass of the rotor, that is, the energy required to raise the temperature of the rotor by one degree.

\section*{Rotor initial temperature - Initial rotor temperature}

25 degC (default) | real number
Temperature of the rotor at the start of simulation.

\section*{Percentage of magnetizing resistance associated with the rotor Magnetizing resistance rotor percentage}

90 (default) | positive number between 0 and 100
Percentage of the magnetizing resistance associated with the magnetic path through the rotor. It determines how much of the iron loss heating is attributed to the rotor thermal port, HR, and winding thermal ports, HA and HB.

\section*{References}
[1] M. Bodson, J. N. Chiasson, R. T. Novotnak and R. B. Rekowski. "High-Performance Nonlinear Feedback Control of a Permanent Magnet Stepper Motor." IEEE Transactions on Control Systems Technology, Vol. 1, No. 1, March 1993.
[2] P. P. Acarnley. Stepping Motors: A Guide to Modern Theory and Practice. New York: Peregrinus, 1982.
[3] S.E. Lyshevski. Electromechanical Systems, Electric Machines, and Applied Mechatronics. CRC, 1999.

\section*{See Also}

Stepper Motor Driver

Introduced in R2018a

\section*{Supercapacitor}

Represent an electrochemical double-layer capacitor Library: Sources

\section*{Description}

The Supercapacitor block represents an electrochemical double-layer capacitor (ELDC), which is commonly referred to as a supercapacitor or an ultracapacitor. The capacitance values for supercapacitors are orders of magnitude larger than the values for regular capacitors. Supercapacitors can provide bursts of energy because they can charge and discharge rapidly.

You can model any number of supercapacitor cells connected in series or in parallel using a single Supercapacitor block. To do so, set the relevant parameter, that is Number of series cells or Number of parallel cells, to a value larger than 1. Internally, the block simulates only the equations for a single supercapacitor cell, but it calculates:
- The output voltage according to the number of series-connected cells
- The current according to the number of parallel-connected cells

Calculating the output of a multiple-cell supercapacitor based on the output for a single cell is more efficient than simulating the equations for each cell individually.

The figure shows the equivalent circuit for a single cell in the Supercapacitor block. The circuit is a network of resistors and capacitors that is commonly used to model supercapacitor behavior.

Capacitors \(C_{1}, C_{2}\), and \(C_{3}\) have fixed capacitances. The capacitance of capacitor \(C_{v}\) depends on the voltage across it. Resistors \(R_{1}, R_{2}\), and \(R_{3}\) have fixed resistances. The voltage across each individual fixed capacitor in the Supercapacitor block is calculated as
\[
V_{c n}=\frac{v}{N_{\text {series }}}-i_{n} R_{n},
\]
where:
- \(v\) is the voltage across the block.
- \(N_{\text {series }}\) is the number of cells in series.
- \(n\) is the branch number. \(n=[1,2,3]\).
- \(i_{n}\) is the current through the \(n\)th branch.
- \(R_{n}\) is the resistance in the \(n\)th branch.
- \(V_{c n}\) is voltage across the capacitor in the \(n\)th branch.

The equation for the current through the first branch of the supercapacitor depends on the voltage across the capacitors in the branch. If the capacitors experience a positive voltage, that is
\[
V_{c 1}>0,
\]
then
\[
i_{1}=\left(C_{1}+K_{v} V_{c 1}\right) \frac{d V_{c 1}}{d t},
\]
else
\[
i_{1}=C_{1} \frac{d V_{c 1}}{d t},
\]
where:
- \(V_{c 1}\) is voltage across the capacitors in the first branch.
- \(C_{1}\) is the capacitance of the fixed capacitor in the first branch.
- \(K_{v}\) is the voltage-dependent capacitance gain.
- \(i_{1}\) is the current through the first branch.

For the remaining branches, the current is defined as
\[
i_{n}=C_{n} \frac{d V_{c n}}{d t},
\]
where:
- \(n\) is the branch number. \(n=[2,3]\).
- \(C_{n}\) is the capacitance of the \(n\)th branch.

The total current through the Supercapacitor block is
\[
i=N_{\text {parallel }}\left(i_{1}+i_{2}+i_{3}+\frac{v}{R_{\text {discharge }}}\right),
\]
where:
- \(N_{\text {parallel }}\) is the number of cells in parallel.
- \(R_{\text {discharge }}\) is the self-discharge resistance of the supercapacitor.
- \(i\) is the current through the supercapacitor.

\section*{Ports}

\section*{Conserving}

\section*{+ - Positive electrical terminal \\ electrical}

Electrical conserving port associated with the positive terminal.

\section*{- - Negative electrical terminal}
electrical
Electrical conserving port associated with the negative terminal.

\section*{Parameters}

\section*{Cell Characteristics}

\section*{Fixed resistances, [R1 R2 R3] - Fixed resistance values for each branch [0.2, 90.0, 1000.0] Ohm (default)}

Specify the resistances for the fixed resistors in the individual branches of the supercapacitor as an array.

\section*{Fixed capacitances, [C1 C2 C3] - Fixed capacitance values for each branch [2.5, 1.5, 4.0] F (default)}

Specify the individual capacitances for the fixed capacitors in the supercapacitor as an array.

Voltage-dependent capacitor gain - Variable capacitance coefficient for the first branch
0.95 F/V (default)

Specify the variable capacitance coefficient, \(K_{v}\), for the voltage-dependent capacitor in the first branch of the supercapacitor. For information on determining the variable capacitance coefficient, see [1] on page 1-810.

Self-discharge resistance - Resistance to self-discharge inf (default)

Specify the self-discharge resistance of the supercapacitor that is connected between the two terminals.

\section*{Configuration}

\section*{Number of series cells - Number of supercapacitor cells in series} 1 (default)

Specify the number of cells in the supercapacitor that are in a series configuration.

\section*{Number of parallel cells - Number of supercapacitor cells in parallel 1 (default)}

Specify the number of cells in the supercapacitor that are in a parallel configuration.

\section*{Variables}

\section*{Beginning Value - Initial target value} 0 (default)

Use the Variables tab to set the priority and initial target values for the block variables before simulation. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape).

\section*{References}
[1] Zubieta, L. and R. Bonert. "Characterization of Double-Layer Capacitors for Power Electronics Applications." IEEE Transactions on Industry Applications, Vol. 36, No. 1, 2000, pp. 199-205.
[2] Weddell, A. S., G. V. Merrett, T. J. Kazmierski, and B. M. Al-Hashimi. "Accurate Supercapacitor Modeling for Energy-Harvesting Wireless Sensor Nodes." IEEE Transactions on Circuits And Systems-II: Express Briefs, Vol. 58, No. 12, 2011, pp. 911-915.

\author{
See Also
}

\section*{Simscape Blocks}

Battery | Current Source | Voltage Source

\section*{Introduced in R2016b}

\section*{Switch}

Three-phase single-throw switch

\section*{Library}

Switches \& Breakers

\section*{Description}

The Switch block models a three-phase single-throw switch that uses an external signal to connect each phase of port \(\sim 1\) with the corresponding phase of port \(\sim 2\) via internal resistance.

The table shows how the external signal vT controls the block behavior.
\begin{tabular}{|l|l|l|}
\hline Condition & Block Behavior & \begin{tabular}{l}
Resistance \\
Parameter Used
\end{tabular} \\
\hline vT \(\leq\) Threshold & \begin{tabular}{l}
The switch is open. Each phase in the \\
composite three-phase port \(\sim 1\) connects to the \\
corresponding phase in the port \(\sim 2\) via large \\
internal resistance.
\end{tabular} & Open conductance \\
\hline vT > Threshold & \begin{tabular}{l}
The switch is closed. Each phase in the \\
composite three-phase port \(\sim 1\) connects to the \\
corresponding phase in the port \(\sim 2\) via small \\
internal resistance.
\end{tabular} & Closed resistance \\
\hline
\end{tabular}

\section*{Parameters}

\section*{Closed resistance}

Resistance between ports \(\sim 1\) and \(\sim 2\) when the switch is closed. The default value is 0.001 Ohm.

\section*{Open conductance}

Conductance between ports \(\sim 1\) and \(\sim 2\) when the switch is open. The default value is 1e-6 1/0hm.

\section*{Threshold}

Threshold voltage for the control port vT. When the voltage is above the threshold, the switch is closed. The default value is 0 V .

\section*{Ports}

The block has the following ports:
\[
\sim 1
\]

Expandable three-phase port
\(\sim 2\)
Expandable three-phase port
vT
Scalar control port, which is either a physical signal or an electrical port.

\section*{See Also}

Single-Phase Switch | Single-Phase Two-Way Switch | Two-Way Switch

\section*{Topics}
"Expand and Collapse Three-Phase Ports on a Block"
"Switch Between Physical Signal and Electrical Ports"

\section*{Introduced in R2013b}

\section*{Switched Reluctance Machine}

\section*{Switched reluctance machine (SRM)}

\section*{Library: \\ Simscape / Power Systems / Simscape Components / Machines / Reluctance}

\section*{Description}

The Switched Reluctance Machine block represents a three-phase switched reluctance machine (SRM). The diagram shows the motor construction.

\section*{Equations}

The rotor stroke angle for a three-phase machine is
\[
\theta_{s t}=\frac{2 \pi}{3 N_{r}},
\]
where:
- \(\theta_{s t}\) is the stoke angle.
- \(N_{r}\) is the number of rotor poles.

The torque production capability, \(\beta\), of one rotor pole is
\[
\beta=\frac{2 \pi}{N_{r}} .
\]

The mathematical model for a switched reluctance machine (SRM) is highly nonlinear due to influence of the magnetic saturation on the flux linkage-to-angle, \(\lambda\left(\theta_{p h}\right)\) curve. The phase voltage equation for an SRM is
\[
v_{p h}=R_{s} i_{p h}+\frac{d \lambda_{p h}\left(i_{p h}, \theta_{p h}\right)}{d t}
\]
where:
- \(v_{p h}\) is the voltage per phase.
- \(R_{s}\) is the stator resistance per phase.
- \(i_{p h}\) is the current per phase.
- \(\lambda_{p h}\) is the flux linkage per phase.
- \(\theta_{p h}\) is the angle per phase.

Rewriting the phase voltage equation in terms of partial derivatives yields this equation:
\[
v_{p h}=R_{s} i_{p h}+\frac{\partial \lambda_{p h}}{\partial i_{p h}} \frac{d i_{p h}}{d t}+\frac{\partial \lambda_{p h}}{\partial \theta_{p h}} \frac{d \theta_{p h}}{d t} .
\]

Transient inductance is defined as
\[
L_{t}\left(i_{p h}, \theta_{p h}\right)=\frac{\partial \lambda_{p h}\left(i_{p h}, \theta_{p h}\right)}{\partial i_{p h}}
\]
or more simply as
\[
\frac{\partial \lambda_{p h}}{\partial i_{p h}} .
\]

Back electromotive force is defined as
\[
E_{p h}=\frac{\partial \lambda_{p h}}{\partial \theta_{p h}} \omega_{r} .
\]

Substituting these terms into the rewritten voltage equation yields this voltage equation:
\[
v_{p h}=R_{s} i_{p h}+L_{t}\left(i_{p h}, \theta_{p h}\right) \frac{d i_{p h}}{d t}+E_{p h}
\]

Applying the co-energy formula to equations for torque,
\[
T_{p h}=\frac{\partial W\left(\theta_{p h}\right)}{\partial \theta_{r}}
\]
and energy,
\[
W\left(i_{p h}, \theta_{p h}\right)=\int_{0}^{i_{p h}} \lambda_{p h}\left(i_{p h}, \theta_{p h}\right) d i_{p h} .
\]
yields an integral equation that defines the instantaneous torque per phase, that is,
\[
T_{p h}\left(i_{p h}, \theta_{p h}\right)=\int_{0}^{i_{p h}} \frac{\partial \lambda_{p h}\left(i_{p h}, \theta_{p h}\right)}{\partial \theta_{p h}} d i_{p h} .
\]

Integrating over the phases give this equation, which defines the total instantaneous torque for a three-phase SRM:
\[
T=\sum_{j=1}^{3} T_{p h}(j)
\]

The equation for motion is
\[
J \frac{d \omega}{d t}=T-T_{L}-B_{m} \omega
\]
where:
- \(J\) is the rotor inertia.
- \(\omega\) is the mechanical rotational speed.
- \(T\) is the rotor torque. For the Switched Reluctance Machine block, torque flows from the machine case (block conserving port \(\mathbf{C}\)) to the machine rotor (block conserving port \(\mathbf{R}\)).
- \(T_{L}\) is the load torque.
- \(J\) is the rotor inertia.
- \(B_{m}\) is the rotor damping.

For high-fidelity modeling and control development, use empirical data and finite element calculation to determine the flux linkage curve in terms of current and angle, that is,
\[
\lambda_{p h}\left(i_{p h}, \theta_{p h}\right)
\]

For low-fidelity modeling, you can also approximate the curve using analytical techniques. One such technique [2] uses this exponential function:
\[
\lambda_{p h}\left(i_{p h}, \theta_{p h}\right)=\lambda_{s a t}\left(1-e^{-i_{p h} f\left(\theta_{p h}\right)}\right)
\]
where:
- \(\lambda_{\text {sat }}\) is the saturated flux linkage.
- \(f\left(\theta_{r}\right)\) is obtained by Fourier expansion.

For the Fourier expansion, use the first two even terms of this equation:
\[
f\left(\theta_{p h}\right)=a+b \cos \left(N_{r} \theta_{p h}\right)
\]
where \(a>b\),
\[
a=\frac{L_{\min }+L_{\max }}{2 \lambda_{\text {sat }}},
\]
and
\[
b=\frac{L_{\max }-L_{\min }}{2 \lambda_{\text {sat }}} .
\]

\section*{Assumptions}

The block assumes that a zero rotor angle corresponds to a rotor pole that is aligned perfectly with the \(a\)-phase.

\section*{Variables}

Use the Variables settings to specify the priority and initial target values for the block variables before simulation. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape) .

Unlike block parameters, variables do not have conditional visibility. The Variables settings include all the existing block variables. If a variable is not used in the set of equations corresponding to the selected block configuration, the values specified for this variable are ignored.

\section*{Ports}

\section*{Conserving}

\section*{R - Machine rotor}
mechanical rotational
Mechanical rotational conserving port associated with the machine rotor.
Data Types: double

\section*{C - Machine case}
mechanical rotational

\section*{Mechanical rotational conserving port associated with the machine case. \\ Data Types: double}

\section*{~1 - Three-phase composite electrical}

Expandable three-phase port.

\section*{Data Types: double}

\section*{~2 - Three-phase composite \\ electrical}

Expandable three-phase port.
Data Types: double

\section*{Parameters}

\section*{Main}

\section*{Number of rotor poles - Rotor pole 4 (default) | integer}

Number of pole pairs on the rotor.

\section*{Stator resistance per phase - Resistance \\ 3 Ohm (default)}

Per-phase resistance of each of the stator windings.

\section*{Stator parameterization - Parameterization method \\ Specify saturated flux linkage (default)|Specify flux characteristic}

Method for parameterizing the stator.
Dependencies
Selecting Specify saturated flux linkage enables these parameters:
- Saturated flux linkage

\section*{- Aligned inductance}
- Unaligned inductance

Selecting Specify flux characteristic enables these parameters:
- Current vector, \(\mathbf{i}\)
- Angle vector, theta
- Flux linkage matrix, Phi(i,theta)

\section*{Saturated flux linkage - Flux linkage}
0.43 Wb (default)

Saturated flux linkage per phase.

\section*{Dependencies}

To enable this parameter, set Stator parameterization to Specify saturated flux linkage.

\section*{Aligned inductance - Inductance}
0.0046 H (default)

The value of this parameter must be greater than the value of the Unaligned inductance parameter.

\section*{Dependencies}

To enable this parameter, set Stator parameterization to Specify saturated flux linkage.

\section*{Unaligned inductance - Inductance}
6.7e-4 H (default)

The value of this parameter must be less than the value of the Aligned inductance parameter.

\section*{Dependencies}

To enable this parameter, set Stator parameterization to Specify saturated flux linkage.

Current vector, i-Current
[0, 50, 100] A (default)

Current vector used to identify the flux linkage curve family.

\section*{Dependencies}

To enable this parameter, set Stator parameterization to Specify flux characteristic.

\section*{Angle vector, theta - Angle} [0, 45, 90] deg (default)

Angle vector used to identify the flux linkage curve family.

\section*{Dependencies}

To enable this parameter, set Stator parameterization to Specify flux characteristic.

\section*{Flux linkage matrix, Phi(i,theta) - Flux}
[0, 0, 0; .37, .06, .37; .43, .1, .43] Wb (default)

Flux linkage matrix that defines the flux linkage curve family.

\section*{Dependencies}

To enable this parameter, set Stator parameterization to Specify flux characteristic.

\section*{Mechanical}

\section*{Rotor inertia - Inertia}
0.01 kg*m^2 (default)

Inertia of the rotor attached to mechanical translational port \(\mathbf{R}\).

\section*{Rotor Damping - Damping}
\(0 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})\) (default)
Rotary damping.

\section*{References}
[1] Boldea, I. and S. A. Nasar. Electric Drives, Second Edition. CRC Press, New York, 2005.
[2] Ilic'-Spong, M., R. Marino, S. Peresada, and D. Taylor. "Feedback linearizing control of switched reluctance motors." IEEE Transactions on Automatic Control. Vol. 32, No. 5, 1987, pp. 371-379.

\section*{See Also}

Brushless DC Motor | Permanent Magnet Synchronous Motor | Synchronous Machine Field Circuit (SI) | Synchronous Machine Field Circuit (pu) | Synchronous Machine Measurement | Synchronous Reluctance Machine

Introduced in R2017b

\title{
Symmetrical-Components Transform
}

Implement \(a b c\) to +-0 transform
Library: Simscape / Power Systems / Simscape Components / Control / Mathematical Transforms

\section*{Description}

The Symmetrical-Components Transform block implements a symmetrical transform of a set of phasors. The transform splits an unbalanced set of three phasors into three balanced sets of phasors.

In an unbalanced system with balanced impedances, use this block to decouple the system into three independent networks. In a balanced system, use this block to simplify the set of three-phasors to an equivalent one-line network. In this case, the positive set represents the one-line network.

Use the Power invariant property to choose between the Fortescue transform, and the alternative, power-invariant version.

\section*{Equations}

The symmetrical-components transform separates an unbalanced three-phase signal given in phasor quantities into three balanced sets of phasors:
\[
\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right]=\left[\begin{array}{l}
v_{a+} \\
v_{b+} \\
v_{c+}
\end{array}\right]+\left[\begin{array}{l}
v_{a-} \\
v_{b-} \\
v_{c-}
\end{array}\right]+\left[\begin{array}{l}
v_{a 0} \\
v_{b 0} \\
v_{c 0}
\end{array}\right],
\]
where:
- \(v_{a}, v_{b}\), and \(v_{c}\) make up the original, unbalanced set of phasors.
- \(v_{a+}, v_{b+}\), and \(v_{c+}\) make up the balanced, positive set of phasors.
- \(v_{a-}, v_{b-}\), and \(v_{c-}\) make up the balanced, negative set of phasors.
- \(v_{a 0}, v_{b 0}\), and \(v_{c 0}\) make up the balanced, zero set of phasors.

The block calculates the symmetric \(a\)-phase using the transformation:
\[
\left[\begin{array}{l}
V_{a+} \\
V_{a-} \\
V_{a 0}
\end{array}\right]=\frac{K}{3}\left[\begin{array}{ccc}
1 & a & a^{2} \\
1 & a^{2} & a \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
V_{a} \\
V_{b} \\
V_{c}
\end{array}\right] .
\]
where \(a\) is the complex rotation operator
\[
a=e^{2 \pi i / 3}
\]
and \(K\) is the constant that determines the type of transform:
\[
\left\{\begin{array}{cc}
K=1 & \text { Fortescue transform } \\
K=\sqrt{3} & \text { Power-invariant transform }
\end{array}\right.
\]

To select the power-invariant transform and simplify the power calculation in the +-0 domain, enable the Power invariant property.

Because the remaining two sets of symmetrical phasors are not often used in calculation, the block does not calculate them. However, they are given in terms of simple rotations of the first set:
\[
\left[\begin{array}{l}
V_{b+} \\
V_{b-} \\
V_{b 0}
\end{array}\right]=\left[\begin{array}{ccc}
a^{2} & 0 & 0 \\
0 & a & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
V_{a+} \\
V_{a-} \\
V_{a 0}
\end{array}\right],
\]
and
\[
\left[\begin{array}{l}
V_{c+} \\
V_{c-} \\
V_{c 0}
\end{array}\right]=\left[\begin{array}{ccc}
a & 0 & 0 \\
0 & a^{2} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
V_{a+} \\
V_{a-} \\
V_{a 0}
\end{array}\right] .
\]

\section*{Operating Principle}

The three sets of balanced phasors generated by the transform have the following properties:
- The positive set has the same order as the unbalanced set of phasors \(a-b-c\).
- The negative set has the opposite order as the unbalanced set of phasors \(a-c-b\).
- The zero set has no order because all three phasor angles are equal.

This diagram visualizes the separation performed by the transform.

In the diagram, the top axis shows an unbalanced three-phase signal with components \(a\), \(b\), and \(c\). The bottom set of axes separates the three-phase signal into symmetrical positive, negative, and zero phasors.

Observe that in each case, the \(a, b\), and \(c\) components are symmetrical and are separated by:
- +120 degrees for the positive set.
- -120 degrees for the negative set.
- 0 degrees for the zero set.

\section*{Inverse Transform}

The symmetrical-components transform is unique and invertible:
\[
\left[\begin{array}{l}
V_{a} \\
V_{b} \\
V_{c}
\end{array}\right]=\frac{1}{K}\left[\begin{array}{ccc}
1 & 1 & 1 \\
a^{2} & a & 1 \\
a & a^{2} & 1
\end{array}\right]\left[\begin{array}{l}
V_{a+} \\
V_{a-} \\
V_{a 0}
\end{array}\right] .
\]

Use the Inverse Symmetrical-Components Transform block to perform this inverse transform.

\section*{Ports}

\section*{Input}

\section*{\(a b c-a, b\), and \(c\) phasors}
vector
Three-phase set of unbalanced phasors to be separated, given as a complex signal.
Data Types: single|double

\section*{Output}

\section*{+-0 - Balanced a phasor components}
vector
Positive, negative and zero \(a\) phasors, output as a complex signal. Use the rotations given in the equations section to compute the \(b\) and \(c\) phasor sets.

\section*{Data Types: single | double}

\section*{Parameters}

\section*{Power invariant - Transform type}
off (default) | on
Power invariant toggle. Select this parameter to use the power-invariant alternative of the original Fortescue transform.

\section*{References}
[1] Anderson, P. M. Analysis of Faulted Power Systems. Hoboken, NJ: Wiley-IEEE Press, 1995.

\section*{See Also}

\section*{Blocks}

Clarke Transform | Clarke to Park Angle Transform | Inverse Symmetrical-Components Transform | Inverse Clarke Transform | Inverse Park Transform | Park to Clarke Angle Transform

\section*{Introduced in R2017b}

\section*{Synchronous Machine Field Circuit (pu)}

Synchronous machine field circuit per-unit voltage supply and current measurement

\section*{Library}

Machines

\section*{Description}

The Synchronous Machine Field Circuit (pu) block applies specified voltage to, and measures current through, the field circuit of the synchronous machine that it is connected to. It includes an electrical reference. The physical signal input Efd pu defines the voltage and the physical signal output Ifd_pu provides the current, both in per-unit.

The per-unit bases are the nonreciprocal per-unit system, Efd and Ifd, rather than the reciprocal per-unit system, efd and ifd.

The figure shows the schematic for the Synchronous Machine Field Circuit (pu) block.

\section*{Parameters}
- "Main Tab" on page 1-829
- "Machine Parameters Tab" on page 1-830

\section*{Main Tab}

\section*{Rated apparent power}

Rated apparent power of the connected machine. The default value is \(555 \mathrm{e} 6 \mathrm{~V} * \mathrm{~A}\).

\section*{Rated electrical frequency}

Nominal electrical frequency at which rated apparent power of the connected machine is quoted. The default value is 60 Hz .

\section*{Specify field circuit input required to produce rated terminal voltage at no load by}

Choose between Field circuit voltage and Field circuit current. The default value is Field circuit current.

\section*{Field circuit current}

This value is used to calculate the per-unit bases for the field circuit (nonreciprocal per-unit system). This parameter is visible only when Specify field circuit input required to produce rated terminal voltage at no load by is set to Field circuit current. The default value is 1300 A .

\section*{Field circuit voltage}

This value is used to calculate the per-unit bases for the field circuit (nonreciprocal per-unit system). This parameter is visible only when Specify field circuit input required to produce rated terminal voltage at no load by is set to Field circuit voltage. The default value is 92.95 V .

\section*{Machine Parameters Tab}

\section*{Specify parameterization by}

Choose between Fundamental Parameters and Standard Parameters. The default value is Fundamental Parameters.

\section*{Stator d-axis mutual inductance (unsaturated), Ladu}

Unsaturated stator d-axis mutual inductance. This parameter is visible only when Specify parameterization by is set to Fundamental Parameters. The default value is 1.66 pu .

\section*{Rotor field circuit resistance, Rfd}

Rotor field-circuit resistance. This parameter is visible only when Specify parameterization by is set to Fundamental Parameters. The default value is 0.0006 pu.

\section*{Stator leakage reactance, \(\mathbf{X l}\)}

Stator leakage reactance. This parameter is visible only when Specify parameterization by is set to Standard Parameters. The default value is 0.15 pu.
d-axis synchronous reactance, Xd
The d-axis synchronous reactance. This parameter is visible only when Specify parameterization by is set to Standard Parameters. The default value is 1.81 pu.
d-axis transient reactance, \(\mathrm{Xd}^{\prime}\)
The d-axis transient reactance. This parameter is visible only when Specify parameterization by is set to Standard Parameters. The default value is 0.3 pu .

\section*{Specify d-axis transient time constant by}

This parameter is visible only when Specify parameterization by is set to Standard Parameters. Choose between Open-circuit value and Short-circuit value. The default value is Open-circuit value.

\section*{d-axis transient open-circuit, Td0'}

The d-axis transient open-circuit time constant. This parameter is visible only when Specify d-axis transient time constant by is set to Open-circuit value. The default value is 8 s .

\section*{d-axis transient short-circuit, Td'}

The d-axis transient short-circuit time constant. This parameter is visible only when Specify d-axis transient time constant by is set to Short-circuit value. The default value is 1.326 s .

\section*{Ports}

The block has the following ports:

\section*{Efd_pu}

Field voltage input, per-unit

\section*{Ifd_pu}

Field current output, per-unit
fd +
Electrical conserving port corresponding to the field winding positive terminal fd-

Electrical conserving port corresponding to the field winding negative terminal

\section*{See Also}

Synchronous Machine Salient Pole (standard) | Synchronous Machine Salient Pole (fundamental) | Synchronous Machine Field Circuit (SI) | Synchronous Machine Round Rotor (standard) | Synchronous Machine Round Rotor (fundamental)

\section*{Topics}

Three-Phase Synchronous Machine Control

\section*{Introduced in R2014b}

\section*{Synchronous Machine Field Circuit (SI)}

Synchronous machine field circuit voltage supply and current measurement in SI units

\section*{Library}

Machines

\section*{Description}

The Synchronous Machine Field Circuit (SI) block applies specified voltage to, and measures current through, the field circuit of the synchronous machine that it is connected to. It includes an electrical reference. The physical signal input Efd defines the voltage, in Volts, and the physical signal output Ifd provides the current, in Amperes.

The figure shows the schematic for the Synchronous Machine Field Circuit (SI) block.

\section*{Ports}

The block has the following ports:

\section*{Efd}

Field voltage input, V
Ifd
Field current output, A
fd+
Electrical conserving port corresponding to the field winding positive terminal fd-

Electrical conserving port corresponding to the field winding negative terminal

\section*{See Also}

Synchronous Machine Salient Pole (standard) | Synchronous Machine Salient Pole (fundamental) | Synchronous Machine Field Circuit (pu) | Synchronous Machine Round Rotor (standard) | Synchronous Machine Round Rotor (fundamental)

\section*{Introduced in R2014b}

\section*{Synchronous Machine Measurement}

Per-unit measurement from synchronous machine

\section*{Library}

Machines

\section*{Description}

The Synchronous Machine Measurement block outputs a per-unit measurement associated with a connected Synchronous Machine Round Rotor or Synchronous Machine Salient Pole block. The input of the Synchronous Machine Measurement block connects to the pu output port of the synchronous machine block.

You set the Output parameter to a per-unit measurement associated with the synchronous machine. Based on the value you select, the Synchronous Machine Measurement block:
- Directly outputs the value of an element in the input signal vector
- Calculates the per-unit measurement by using values of elements in the input signal vector in mathematical expressions

The Synchronous Machine Measurement block outputs a per-unit measurement from the synchronous machine according to the output value expressions in the table. For example, when you set Output to Stator d-axis voltage, the block directly outputs the value of the pu_ed element in the input signal vector. However, when you set Output to Reactive power, the block calculates the value from the pu_ed, pu_eq, pu_id, and pu_iq elements.
\begin{tabular}{|c|c|}
\hline Output Parameter Setting & Output Value Expression \\
\hline Field voltage (field circuit base, Efd) & pu_fd_Efd \\
\hline Field current (field circuit base, Ifd) & pu_fd_Ifd \\
\hline Electrical torque & pu_torque \\
\hline Rotor velocity & pu_velocity \\
\hline Stator d-axis voltage & pu_ed \\
\hline Stator q-axis voltage & pu_eq \\
\hline Stator zero-sequence voltage & pu_e0 \\
\hline Stator d-axis current & pu_id \\
\hline Stator q-axis current & pu_iq \\
\hline Stator zero-sequence current & pu_i0 \\
\hline Apparent power & \(\sqrt{p u_{-} P t^{2}+p u_{-} Q t^{2}}\) \\
\hline Real power & \[
\begin{aligned}
& \text { pu_Pt }=(\text { pu_ed*pu_id) + } \\
& \left(\text { pu_eq*pu_iq) }+2\left(\text { pu_e }{ }^{*}\right. \text { pu_i0) }\right.
\end{aligned}
\] \\
\hline Reactive power & ```
pu_Qt = (pu_eq*pu_id) -
(pu_ed*pu_iq)
``` \\
\hline Terminal voltage & \(\sqrt{\left(p u_{-} e d^{2}+p u_{-} e q^{2}\right)}\) \\
\hline Terminal current & \(\sqrt{\left(p u_{-} i d^{2}+p u_{\_} i q^{2}\right)}\) \\
\hline Power factor angle (rad) & ```
power_factor_angle = atan2(pu_Qt,
pu_Pt)
``` \\
\hline Power factor & cos(power_factor_angle) \\
\hline Load angle (rad) & ```
load_angle(rad) = atan2(pu_ed,
pu_eq)
``` \\
\hline
\end{tabular}

\section*{Parameters}

\section*{Output}

Per-unit measurement from synchronous machine. The default value is Field voltage (field circuit base, Efd).

\section*{Ports}

The block has the following ports:
pu
Physical signal vector port associated with per-unit measurements from a connected synchronous machine. The vector elements are:
- pu_fd_Efd
- pu_fd_Ifd
- pu_torque
- pu_velocity
- pu_ed
- pu_eq
- pu_e0
- pu_id
- pu_iq
- pu_i0

0
Per-unit measurement output port.

\section*{See Also}

Synchronous Machine Round Rotor (fundamental) | Synchronous Machine Round Rotor (standard) | Synchronous Machine Salient Pole (fundamental) | Synchronous Machine Salient Pole (standard)

\section*{Introduced in R2013b}

\title{
Synchronous Machine Model 1.0 (SI parameters)
}

\author{
Synchronous machine with field circuit and no damper \\ Library: \\ Simscape / Power Systems / Simscape Components / Machines / Synchronous Machines (Simplified)
}


\section*{Description}

The Synchronous Machine Model 1.0 (SI parameters) block uses a simplified parameterization model for synchronous machines. Use the block to model synchronous machines with a field winding and no dampers.

The figure shows the equivalent electrical circuit for the stator and rotor windings.


\section*{Motor Construction}

The diagram shows the motor construction with a single pole pair on the rotor. For the axes convention, when rotor mechanical angle \(\theta_{r}\) is zero, the \(a\)-phase and permanent magnet fluxes are aligned. The block supports a second rotor axis definition for which rotor mechanical angle is defined as the angle between the \(a\)-phase magnetic axis and the rotor \(q\)-axis.


\section*{Equations}

Voltages across the stator windings are defined by
\[
\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right]=\left[\begin{array}{ccc}
R_{s} & 0 & 0 \\
0 & R_{s} & 0 \\
0 & 0 & R_{s}
\end{array}\right]\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right]+\left[\begin{array}{l}
\frac{d \psi_{a}}{d t} \\
\frac{d \psi_{b}}{d t} \\
\frac{d \psi_{c}}{d t}
\end{array}\right],
\]
where:
- \(v_{a}, v_{b}\), and \(v_{c}\) are the individual phase voltages across the stator windings.
- \(R_{s}\) is the equivalent resistance of each stator winding.
- \(i_{a}, i_{b}\), and \(i_{c}\) are the currents flowing in the stator windings.
-
\(\frac{d \psi_{a}}{d t}, \frac{d \psi_{b}}{d t}\), and \(\frac{d \psi_{c}}{d t}\) are the rates of change of magnetic flux in each stator winding. The voltage across the field winding is expressed as
\[
v_{f}=R_{f} i_{f}+\frac{d \psi_{f}}{d t}
\]
where:
- \(v_{f}\) is the individual phase voltage across the field winding.
- \(R_{f}\) is the equivalent resistance of the field winding.
- \(i_{f}\) is the current flowing in the field winding.
- \(\frac{d \psi_{f}}{d t}\) is the rate of change of magnetic flux in the field winding.

The permanent magnet, excitation winding, and the three star-wound stator windings contribute to the flux linking each winding. The total flux is defined by
\[
\left[\begin{array}{l}
\psi_{a} \\
\psi_{b} \\
\psi_{c}
\end{array}\right]=\left[\begin{array}{lll}
L_{a a} & L_{a b} & L_{a c} \\
L_{b a} & L_{b b} & L_{b c} \\
L_{c a} & L_{c b} & L_{c c}
\end{array}\right]\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right]+\left[\begin{array}{l}
\psi_{a m} \\
\psi_{b m} \\
\psi_{c m}
\end{array}\right]+\left[\begin{array}{c}
L_{a m f} \\
L_{b m f} \\
L_{c m f}
\end{array}\right] i_{f}
\]
where:
- \(\psi_{a}, \psi_{b}\), and \(\psi_{c}\) are the total fluxes linking each stator winding.
- \(L_{a a}, L_{b b}\), and \(L_{c c}\) are the self-inductances of the stator windings.
- \(L_{a b}, L_{a c}, L_{b a}, L_{b c}, L_{c a}\), and \(L_{c b}\) are the mutual inductances of the stator windings.
- \(\psi_{a m}, \psi_{b m}\), and \(\psi_{c m}\) are the magnetization fluxes linking the stator windings.
- \(L_{a m f} L_{b m f}\), and \(L_{c m f}\) are the mutual inductances of the field winding.

The inductances in the stator windings are functions of rotor electrical angle and are defined by
\[
\begin{aligned}
& \theta_{e}=N \theta_{r}, \\
& L_{a a}=L_{s}+L_{m} \cos \left(2 \theta_{e}\right), \\
& L_{b b}=L_{s}+L_{m} \cos \left(2\left(\theta_{e}-2 \pi / 3\right)\right),
\end{aligned}
\]
\[
\begin{aligned}
& L_{c c}=L_{s}+L_{m} \cos \left(2\left(\theta_{e}+2 \pi / 3\right)\right), \\
& L_{a b}=L_{b a}=-M_{s}-L_{m} \cos \left(2\left(\theta_{e}+\pi / 6\right)\right), \\
& L_{b c}=L_{c b}=-M_{s}-L_{m} \cos \left(2\left(\theta_{e}+\pi / 6-2 \pi / 3\right)\right), \\
& L_{c a}=L_{a c}=-M_{s}-L_{m} \cos \left(2\left(\theta_{r}+\pi / 6+2 \pi / 3\right)\right),
\end{aligned}
\]
where:
- \(N\) is the number of rotor pole pairs.
- \(\theta_{r}\) is the rotor mechanical angle.
- \(\theta_{e}\) is the rotor electrical angle.
- \(L_{s}\) is the stator self-inductance per phase. This value is the average self-inductance of each of the stator windings.
- \(L_{m}\) is the stator inductance fluctuation. This value is the amplitude of the fluctuation in self-inductance and mutual inductance with changing rotor angle.
- \(M_{s}\) is the stator mutual inductance. This value is the average mutual inductance between the stator windings.

The magnetization flux linking winding, \(a-a^{\prime}\) is a maximum when \(\theta_{r}=0^{\circ}\) and zero when \(\theta_{r}\) \(=90^{\circ}\). Therefore:
\[
L_{m f}=\left[\begin{array}{c}
L_{a m f} \\
L_{b m f} \\
L_{c m f}
\end{array}\right]=\left[\begin{array}{c}
L_{m f} \cos \theta_{r} \\
L_{m f} \cos \left(\theta_{r}-2 \pi / 3\right) \\
L_{m f} \cos \left(\theta_{r}+2 \pi / 3\right)
\end{array}\right]
\]
and
\[
\Psi_{f}=L_{f} i_{f}+L_{m f}^{T}\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right],
\]
where:
- \(L_{m f}\) is the mutual field armature inductance.
- \(\psi_{f}\) is the flux linking the field winding.
- \(L_{f}\) is the field winding inductance.
- \(\left[L_{m f}\right]^{T}\) is the transform of the \(L_{m f}\) vector, that is,
\[
\left[L_{m f}\right]^{T}=\left[\begin{array}{l}
L_{a m f} \\
L_{b m f} \\
L_{c m f}
\end{array}\right]^{T}=\left[\begin{array}{lll}
L_{a m f} & L_{b m f} & L_{c m f}
\end{array}\right]
\]

\section*{Simplified Equations}

Applying the Park transformation to the block electrical defining equations produces an expression for torque that is independent of rotor angle.

The Park transformation is defined by
\[
P=2 / 3\left[\begin{array}{ccc}
\cos \theta_{e} & \cos \left(\theta_{e}-2 \pi / 3\right) & \cos \left(\theta_{e}+2 \pi / 3\right) \\
-\sin \theta_{e} & -\sin \left(\theta_{e}-2 \pi / 3\right) & -\sin \left(\theta_{e}+2 \pi / 3\right) \\
0.5 & 0.5 & 0.5
\end{array}\right]
\]

Applying the Park transformation to the first two electrical defining equations produces equations that define the block behavior:
\[
\begin{aligned}
& v_{d}=R_{s} i_{d}+L_{d} \frac{d i_{d}}{d t}+L_{m f} \frac{d i_{f}}{d t}-N \omega i_{q} L_{q}, \\
& v_{q}=R_{s} i_{q}+L_{q} \frac{d i_{q}}{d t}+N \omega\left(i_{d} L_{d}+i_{f} L_{m f}\right), \\
& v_{0}=R_{s} i_{0}+L_{0} \frac{d i_{0}}{d t},
\end{aligned}
\]
\[
\begin{aligned}
& v_{f}=R_{f} i_{f}+L_{f} \frac{d i_{f}}{d t}+\frac{3}{2} L_{m f} \frac{d i_{d}}{d t}, \\
& T=\frac{3}{2} N\left(i_{q}\left(i_{d} L_{d}+i_{f} L_{m f}\right)-i_{d} i_{q} L_{q}\right),
\end{aligned}
\]
and
\[
J \frac{d \omega}{d t}=T=T_{L}-B_{m} \omega .
\]
where:
- \(v_{d}, v_{q}\), and \(v_{0}\) are the \(d\)-axis, \(q\)-axis, and zero-sequence voltages. These voltages are defined by
\[
\left[\begin{array}{l}
v_{d} \\
v_{q} \\
v_{0}
\end{array}\right]=P\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right] .
\]
- \(i_{d}, i_{q}\), and \(i_{0}\) are the \(d\)-axis, \(q\)-axis, and zero-sequence currents, defined by
\[
\left[\begin{array}{l}
i_{d} \\
i_{q} \\
i_{0}
\end{array}\right]=P\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right] .
\]
- \(L_{d}\) is the stator \(d\)-axis inductance. \(L_{d}=L_{s}+M_{s}+3 / 2 L_{m}\).
- \(\omega\) is the mechanical rotational speed.
- \(L_{q}\) is the stator \(q\)-axis inductance. \(L_{q}=L_{s}+M_{s}-3 / 2 L_{m}\).
- \(L_{0}\) is the stator zero-sequence inductance. \(L_{0}=L_{s}-2 M_{s}\).
- \(\quad T\) is the rotor torque. For the Synchronous Machine Model 1.0 (SI parameters) block, torque flows from the machine case (block conserving port \(\mathbf{C}\) ) to the machine rotor (block conserving port \(\mathbf{R}\) ).
- \(J\) is the rotor inertia.
- \(T_{L}\) is the load torque.
- \(B_{m}\) is the rotor damping.

\section*{Assumptions}

The block assumes that the flux distribution is sinusoidal.

\section*{Ports}

\section*{Conserving}

\section*{R - Machine rotor}
mechanical rotational
Mechanical rotational conserving port associated with the machine rotor.

\section*{C - Machine case}
mechanical rotational
Mechanical rotational conserving port associated with the machine case.

\section*{~ - Three-phase composite \\ electrical}

Expandable three-phase port associated with the stator windings.

\section*{n - Neutral phase}
electrical
Electrical conserving port associated with the neutral phase.

\section*{fd+ - Field winding positive terminal electrical}

Electrical conserving port associated with the field winding positive terminal.
fd- - Field winding negative terminal
electrical
Electrical conserving port associated with the field winding negative terminal.

\section*{Parameters}

\section*{Main}

Number of pole pairs - Rotor pole pairs 4 (default) | integer

Number of permanent magnet pole pairs on the rotor.

\section*{Stator parameterization - Parameterization method Specify Ld, Lq and L0 (default)|Specify Ls, Lm, and Ms}

Method for parameterizing the stator.

\section*{Dependencies}

Selecting Specify Ld, Lq and L0 enables these parameters:
- Stator d-axis inductance, Ld
- Stator q-axis inductance, Lq
- Stator zero-sequence inductance, L0

Selecting Specify Ls, Lm, and Ms enables these parameters:
- Stator self-inductance per phase, Ls
- Stator inductance fluctuation, Lm
- Stator mutual inductance, Ms

Stator d-axis inductance, Ld - Inductance 0.00015 H (default)

Direct-axis inductance of the machine stator.

\section*{Dependencies}

To enable this parameter, set Stator parameterization to Specify Ld, Lq and L0.
Stator q-axis inductance, Lq - Inductance 0.00021 H (default)

Quadrature-axis inductance of the machine stator.

\section*{Dependencies}

To enable this parameter, set Stator parameterization to Specify Ld, Lq and L0.

\section*{Stator zero-sequence inductance, L0 - Inductance 0.000012 H (default)}

Zero-axis inductance for the machine stator.

\section*{Dependencies}

To enable this parameter, set Stator parameterization to Specify Ld, Lq and L0.
Stator self-inductance per phase, Ls - Inductance
0.00016 H (default)

Average self-inductance of the three stator windings.

\section*{Dependencies}

To enable this parameter, set Stator parameterization to Specify Ls, Lm, and Ms.

\section*{Stator inductance fluctuation, Lm - Inductance - 0.00002 H (default)}

Amplitude of the fluctuation in self-inductance and mutual inductance with the rotor angle.

\section*{Dependencies}

To enable this parameter, set Stator parameterization to Specify Ls, Lm, and Ms.

\section*{Stator mutual inductance, Ms - Inductance}
0.00002 H (default)

Average mutual inductance between the stator windings.

\section*{Dependencies}

To enable this parameter, set Stator parameterization to Specify Ls, Lm, and Ms.
Field winding inductance, Lf - Inductance 0.05 H (default)

Inductance of the field winding.

\section*{Mutual field armature inductance, Lmf - Inductance 0.007 H (default)}

Armature-field mutual inductance.

\section*{Stator resistance per phase, Rs - Resistance 0.08 Ohm (default)}

Resistance of each of the stator windings.

\section*{Field winding resistance, Rf - Resistance} 3 Ohm (default)

Resistance of the field winding.

\section*{Zero sequence - Option to neglect zero-sequence terms Include (default)|Exclude}

Option to neglect zero-sequence terms. Choices are:
- Include - Include zero-sequence terms. To prioritize model fidelity, use this default setting. Using this option results in an error for simulations that use the Partitioning solver. For more information, see "Increase Simulation Speed Using the Partitioning Solver" (Simscape).
- Exclude - Exclude zero-sequence terms. To prioritize simulation speed for desktop simulation or real-time deployment, select this option.

\section*{Mechanical}

\section*{Rotor inertia - Inertia}
0.01 kg*m^2 (default)

Inertia of the rotor.

\section*{Rotor Damping - Damping}
\(0 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})\) (default)
Damping of the rotor.

\section*{Initial Conditions}

\section*{Initial currents, [i_d i_q i_0 i_f] - Currents}
\(1[0,0,0,0]\) A (default) \(\mid\) vector
Initial \(d\)-, \(q-, 0\)-sequence and field winding currents.
```

Rotor angle definition - Angle
Angle between the a-phase magnetic axis and the d-axis (default)|Angle
between the a-phase magnetic axis and the q-axis

```

Reference point for the rotor angle measurement. If you select the default value, the rotor and \(a\)-phase fluxes are aligned for a zero-rotor angle. Otherwise, an \(a\)-phase current generates the maximum torque value for a zero-rotor angle.

\section*{Initial rotor angle - Angle 0 deg (default) | 0-360 deg}

Rotor angle at simulation start time.

\section*{Initial rotor speed - Angular speed 0 rpm (default)}

Rotor speed at simulation start time. If the rotor inertia, \(J\), is zero, the initial speed of the rotor is zero rpm and the initial rotor speed is ignored.

\section*{References}
[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.
[2] Anderson, P. M. Analysis of Faulted Power Systems. IEEE Press, Power Systems Engineering, 1995.
[3] Retif, J. M., X. Lin-Shi, A. M. Llor, and F. Morand "New hybrid direct-torque control for a winding rotor synchronous machine." 2004 IEEE 35th Annual Power Electronics Specialists Conference. Vol. 2 (2004): 1438-1442.
[4] IEEE Power Engineering Society. IEEE Std 1110-2002. IEEE Guide for Synchronous Generator Modeling Practices and Applications in Power System Stability Analyses. Piscataway, NJ: IEEE, 2002.

\section*{See Also}

Brushless DC Motor | Permanent Magnet Synchronous Motor | Switched Reluctance Machine | Synchronous Machine Field Circuit (SI) | Synchronous Machine Field Circuit (pu) | Synchronous Machine Measurement | Synchronous Reluctance Machine

\section*{Introduced in R2018a}

\section*{Synchronous Machine Model 2.1 (fundamental)}

Synchronous machine with simplified transformation, simplified representation, and fundamental parameterization


\section*{Library}

Machines / Synchronous Machine (Simplified)

\section*{Description}

The Synchronous Machine Model 2.1 (fundamental) block models a synchronous machine with one field winding and one damper on the \(d\)-axis and one damper on the \(q\)-axis. You use fundamental parameters to define the characteristics of the machine. This block contains a \(d q\) Park transformation, so use it only for balanced operation.

\section*{Electrical Defining Equations}

The synchronous machine equations are expressed with respect to a rotating reference frame defined by the equation
\[
\theta_{e}(t)=N \theta_{r}(t),
\]
where:
- \(\theta_{e}\) is the electrical angle.
- \(N\) is the number of pole pairs.
- \(\theta_{r}\) is the rotor angle.

The Park transformation maps the synchronous machine equations to the rotating reference frame with respect to the electrical angle. The Park transformation is defined by
\[
P_{s}=\frac{2}{3}\left[\begin{array}{ccc}
\cos \theta_{e} & \cos \left(\theta_{e}-\frac{2 \pi}{3}\right) & \cos \left(\theta_{e}+\frac{2 \pi}{3}\right) \\
-\sin \theta_{e} & -\sin \left(\theta_{e}-\frac{2 \pi}{3}\right) & -\sin \left(\theta_{e}+\frac{2 \pi}{3}\right)
\end{array}\right]
\]

The Park transformation is used to define the per-unit synchronous machine equations. The stator voltage equations are defined by
\[
e_{d}=e_{d}^{\prime \prime}-R_{a} i_{d}+x_{q}^{"} i_{q}
\]
and
\[
e_{q}=e_{q}^{\prime \prime}-x_{d}^{\prime \prime} i_{d}-R_{a} i_{q},
\]
where:
- \(e^{\prime \prime}{ }_{d}\) and \(e^{\prime \prime}{ }_{q}\) are the \(d\)-axis and \(q\)-axis voltages behind subtransient reactances.
- \(R_{a}\) is the stator resistance.
- \(i_{d}\) and \(i_{q}\) are the \(d\)-axis and \(q\)-axis stator currents, defined by
\[
\left[\begin{array}{l}
i_{d} \\
i_{q}
\end{array}\right]=P_{s}\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right] .
\]
\(i_{a}, i_{b}\), and \(i_{c}\) are the stator currents flowing from port \(\sim\) to port n .
- \(\quad x^{\prime \prime}{ }_{d}\) and \(x^{\prime \prime}{ }_{q}\) are the \(d\)-axis and \(q\)-axis subtransient reactances.
- \(\quad e_{d}\) and \(e_{q}\) are the \(d\)-axis and \(q\)-axis stator voltages, defined by
\[
\left[\begin{array}{l}
e_{d} \\
e_{q}
\end{array}\right]=P_{s}\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right]
\]
\(v_{a}, v_{b}\), and \(v_{c}\) are the stator voltages measured from port \(\sim\) to neutral port n.
The rotor voltage equation is defined by
\[
e_{f d}=R_{f d} \cdot i_{f d}
\]
where:
- \(R_{f d}\) is the resistance of rotor field circuit.
- \(i_{f d}\) is the per-unit field current using the synchronous machine model reciprocal perunit system.
- \(e_{f d}\) is the per-unit field voltage using the synchronous machine model reciprocal perunit system.

The voltage-behind-transient-reactance equations are defined by
\[
\begin{aligned}
& \frac{d e_{d}^{\prime \prime}}{d t}=\frac{\left(x_{q}-x_{q}^{\prime \prime}\right) i_{q}-e_{d}^{\prime \prime}}{T_{q 0}^{\prime \prime}}, \\
& \frac{d e_{q}^{\prime}}{d t}=\frac{E_{f d}-\left(x_{d}-x_{d}^{\prime}\right) i_{d}-e_{q}^{\prime}}{T_{d 0}^{\prime}},
\end{aligned}
\]
and
\[
\frac{d e_{q}^{\prime \prime}}{d t}=\frac{e_{q}^{\prime}-\left(x_{d}^{\prime}-x_{d}^{\prime \prime}\right) i_{d}-e_{q}^{\prime \prime}}{T_{d 0}^{\prime \prime}}
\]
where:
- \(x_{d}\) and \(x_{q}\) are the \(d\)-axis and \(q\)-axis synchronous reactances.
- \(T^{\prime \prime}{ }_{d 0}\) and \(T^{\prime \prime}{ }_{q 0}\) are the \(d\)-axis and \(q\)-axis subtransient open-circuit time constants.
- \(E_{f d}\) is the per-unit field voltage using the exciter model nonreciprocal per-unit system.
- \(\quad \chi_{d}{ }_{d}\) is the \(d\)-axis transient reactance.
- \(e^{\prime}{ }_{q}\) is the \(q\)-axis voltage behind transient reactance.
- \(T^{\prime}{ }_{d 0}\) is the \(d\)-axis transient open-circuit time constant.

The rotor torque is defined by
\[
T_{e}=e_{d}^{\prime \prime} i_{d}+e_{q}^{" i_{q}}-\left(x_{d}^{\prime \prime}-x_{q}^{"}\right) i_{d} i_{q} .
\]

These defining equations do not describe the parameters you can set in the dialog box. To see their relationship with the equation coefficients, see [1].

\section*{Display Options}

You can perform display actions using the Power Systems menu on the block context menu.

Right-click the block and, from the Power Systems menu, select an option:
- Display Base Values displays the machine per-unit base values in the MATLAB Command Window.
- Display Associated Base Values displays associated per-unit base values in the MATLAB Command Window.
- Display Associated Initial Conditions displays associated initial conditions in the MATLAB Command Window.

\section*{Ports}

The block has the following ports:
fd+
Electrical conserving port corresponding to the field winding positive terminal. fd-

Electrical conserving port corresponding to the field winding negative terminal.

\section*{R}

Mechanical rotational conserving port associated with the machine rotor.
C
Mechanical rotational conserving port associated with the machine case.
pu
Physical signal vector port associated with the machine per-unit measurements. The vector elements are:
- pu_fd_Efd
- pu_fd_Ifd
- pu_torque
- pu_velocity
- pu_ed
- pu_eq
- pu_e0 - This port is provided to maintain a compatible interface for existing machine models. Its value is always zero.
- pu_id
- pu_iq
- pu_i0 - This port is provided to maintain a compatible interface for existing machine models. Its value is always zero.

Expandable three-phase port associated with the stator windings.
n
Electrical conserving port associated with the neutral point of the wye winding configuration. This port is provided to maintain a compatible interface for existing machine models. The voltage and current on this port are ignored.

\section*{Parameters}
- "Main" on page 1-856
- "Impedances" on page 1-856
- "Initial Conditions" on page 1-857

\section*{Main}

\section*{Rated apparent power}

Rated apparent power. The default value is \(555 \mathrm{e} 6 \mathrm{~V} * \mathrm{~A}\).

\section*{Rated voltage}

RMS rated line-line voltage. The default value is 24 e 3 V .

\section*{Rated electrical frequency}

Nominal electrical frequency at which rated apparent power is quoted. The default value is 60 Hz .

\section*{Number of pole pairs}

Number of machine pole pairs. The default value is 1.

\section*{Specify field circuit input required to produce rated terminal voltage at no load} by

Select between Field circuit voltage and Field circuit current. The default value is Field circuit current.

\section*{Field circuit current}

This parameter is visible only when Specify field circuit input required to produce rated terminal voltage at no load by is set to Field circuit current. The default value is 1300 A .

\section*{Field circuit voltage}

This parameter is visible only when Specify field circuit input required to produce rated terminal voltage at no load by is set to Field circuit voltage. The default value is 92.95 V .

\section*{Impedances}

\section*{Stator d-axis mutual inductance (unsaturated), Ladu}

Unsaturated stator \(d\)-axis mutual inductance. The default value is 1.66 pu .

\section*{Stator q-axis mutual inductance (unsaturated), Laqu}

Unsaturated stator \(q\)-axis mutual inductance. The default value is 1.61 pu .

\section*{Stator leakage inductance, Ll}

Stator leakage inductance. The default value is 0.15 pu .

\section*{Stator resistance, Ra}

Stator resistance. The default value is 0.003 pu .

\section*{Rotor field circuit inductance, Lfd}

Rotor field circuit inductance. The default value is 0.165 pu .

\section*{Rotor field circuit resistance, Rfd}

Rotor field circuit resistance. The default value is 0.0006 pu .

\section*{Rotor d-axis damper winding 1 inductance, L1d}

Rotor \(d\)-axis damper winding 1 inductance. The default value is 0.1713 pu.

\section*{Rotor d-axis damper winding 1 resistance, R1d}

Rotor \(d\)-axis damper winding 1 resistance. The default value is 0.0284 pu .

\section*{Rotor \(q\)-axis damper winding 1 inductance, L1q}

Rotor \(q\)-axis damper winding 1 inductance. The default value is 0.1066 pu.

\section*{Rotor \(q\)-axis damper winding 1 resistance, R1q}

Rotor \(q\)-axis damper winding 1 resistance. The default value is 0.0650 pu .

\section*{Initial Conditions}

\section*{Specify initialization by}

Select between Electrical power and voltage output and Mechanical and voltage states. The default value is Electrical power and voltage output.

\section*{Terminal voltage magnitude}

Initial RMS line-line voltage. This parameter is visible only when you set Specify initialization by to Electrical power and voltage output. The default value is 24 e 3 V .

\section*{Terminal voltage angle}

Initial voltage angle. This parameter is visible only when you set Specify initialization by to Electrical power and voltage output. The default value is 0 deg .

\section*{Terminal active power}

Initial active power. This parameter is visible only when you set Specify
initialization by to Electrical power and voltage output. The default value is 500 e 6 V *A.

\section*{Terminal reactive power}

Initial reactive power. This parameter is visible only when you set Specify initialization by to Electrical power and voltage output. The default value is \(0 \mathrm{~V} * \mathrm{~A}\).

\section*{Initial rotor angle}

Initial rotor angle. During steady-state operation, set this parameter to the sum of the load angle and required terminal voltage offset. This parameter is visible only when you set Specify initialization by to Mechanical and voltage states. The default value is 0 deg.

\section*{Initial voltage behind d-axis subtransient reactance}

Initial voltage behind \(d\)-axis subtransient reactance. This parameter is visible only when you set Specify initialization by to Mechanical and voltage states. The default value is 0 pu .

\section*{Initial voltage behind \(q\)-axis transient reactance}

Initial voltage behind \(q\)-axis transient reactance. This parameter is visible only when you set Specify initialization by to Mechanical and voltage states. The default value is 0 pu .

\section*{Initial voltage behind \(\mathbf{q}\)-axis subtransient reactance}

Initial voltage behind \(q\)-axis subtransient reactance. This parameter is visible only when you set Specify initialization by to Mechanical and voltage states. The default value is 0 pu .

\section*{References}
[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.
[2] Lyshevski, S. E. Electromechanical Systems, Electric Machines and Applied Mechatronics. Boca Raton, FL: CRC Press, 1999.
[3] Pal, M. K. Lecture Notes on Power System Stability. http://www.mkpalconsulting.com/ files/stabilitybook.pdf, 2007.

\section*{See Also}

Synchronous Machine Measurement | Synchronous Machine Model 2.1 (standard) | Synchronous Machine Round Rotor (fundamental) | Synchronous Machine Round Rotor
(standard) | Synchronous Machine Salient Pole (fundamental) | Synchronous Machine Salient Pole (standard)

\section*{Topics}
"Expand and Collapse Three-Phase Ports on a Block"
Three-Phase Synchronous Machine Control

\section*{Introduced in R2015a}

\section*{Synchronous Machine Model 2.1 (standard)}

Synchronous machine with simplified transformation, simplified representation, and standard parameterization


\section*{Library}

Machines / Synchronous Machine (Simplified)

\section*{Description}

The Synchronous Machine Model 2.1 (standard) block models a synchronous machine with one field winding and one damper on the \(d\)-axis and one damper on the \(q\)-axis. You use standard parameters to define the characteristics of the machine. The block converts the standard parameters to fundamental parameters. This block contains a \(d q\) Park transformation, so use it only for balanced operation.

\section*{Electrical Defining Equations}

The synchronous machine equations are expressed with respect to a rotating reference frame defined by the equation
\[
\theta_{e}(t)=N \theta_{r}(t)
\]
where:
- \(\theta_{e}\) is the electrical angle.
- \(N\) is the number of pole pairs.
- \(\theta_{r}\) is the rotor angle.

The Park transformation maps the synchronous machine equations to the rotating reference frame with respect to the electrical angle. The Park transformation is defined by
\[
P_{s}=\frac{2}{3}\left[\begin{array}{ccc}
\cos \theta_{e} & \cos \left(\theta_{e}-\frac{2 \pi}{3}\right) & \cos \left(\theta_{e}+\frac{2 \pi}{3}\right) \\
-\sin \theta_{e} & -\sin \left(\theta_{e}-\frac{2 \pi}{3}\right) & -\sin \left(\theta_{e}+\frac{2 \pi}{3}\right)
\end{array}\right]
\]

The Park transformation is used to define the per-unit synchronous machine equations. The stator voltage equations are defined by
\[
e_{d}=e_{d}^{\prime \prime}-R_{a} i_{d}+x_{q}^{" i_{q}}
\]
and
\[
e_{q}=e_{q}^{\prime \prime}-x_{d}^{\prime \prime} i_{d}-R_{a} i_{q},
\]
where:
- \(e^{\prime \prime}{ }_{d}\) and \(e^{\prime \prime}{ }_{q}\) are the \(d\)-axis and \(q\)-axis voltages behind subtransient reactances.
- \(R_{a}\) is the stator resistance.
- \(i_{d}\) and \(i_{q}\) are the \(d\)-axis and \(q\)-axis stator currents, defined by
\[
\left[\begin{array}{l}
i_{d} \\
i_{q}
\end{array}\right]=P_{s}\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right] .
\]
\(i_{a}, i_{b}\), and \(i_{c}\) are the stator currents flowing from port \(\sim\) to port n .
- \(x^{\prime \prime}{ }_{d}\) and \(x^{\prime \prime}{ }_{q}\) are the \(d\)-axis and \(q\)-axis subtransient reactances.
- \(e_{d}\) and \(e_{q}\) are the \(d\)-axis and \(q\)-axis stator voltages, defined by
\[
\left[\begin{array}{l}
e_{d} \\
e_{q}
\end{array}\right]=P_{s}\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right]
\]
\(v_{a}, v_{b}\), and \(v_{c}\) are the stator voltages measured from port \(\sim\) to neutral port n.
The rotor voltage equation is defined by
\[
e_{f d}=R_{f d} \cdot i_{f d}
\]
where:
- \(R_{f d}\) is the resistance of rotor field circuit.
- \(i_{f d}\) is the per-unit field current using the synchronous machine model reciprocal perunit system.
- \(e_{f d}\) is the per-unit field voltage using the synchronous machine model reciprocal perunit system.

The voltage-behind-transient-reactance equations are defined by
\[
\begin{aligned}
& \frac{d e_{d}^{\prime \prime}}{d t}=\frac{\left(x_{q}-x_{q}^{\prime \prime}\right) i_{q}-e_{d}^{\prime \prime}}{T_{q 0}^{\prime \prime}}, \\
& \frac{d e_{q}^{\prime}}{d t}=\frac{E_{f d}-\left(x_{d}-x_{d}^{\prime}\right) i_{d}-e_{q}^{\prime}}{T_{d 0}^{\prime}},
\end{aligned}
\]
and
\[
\frac{d e_{q}^{\prime \prime}}{d t}=\frac{e_{q}^{\prime}-\left(x_{d}^{\prime}-x_{d}^{\prime \prime}\right) i_{d}-e_{q}^{\prime \prime}}{T_{d 0}^{\prime \prime}}
\]
where:
- \(x_{d}\) and \(x_{q}\) are the \(d\)-axis and \(q\)-axis synchronous reactances.
- \(T^{\prime \prime}{ }_{d 0}\) and \(T^{\prime \prime}{ }_{q 0}\) are the \(d\)-axis and \(q\)-axis subtransient open-circuit time constants.
- \(E_{f d}\) is the per-unit field voltage using the exciter model nonreciprocal per-unit system.
- \(\quad \chi_{d}{ }_{d}\) is the \(d\)-axis transient reactance.
- \(e_{q}^{\prime}\) is the \(q\)-axis voltage behind transient reactance.
- \(T^{\prime}{ }_{d 0}\) is the \(d\)-axis transient open-circuit time constant.

The rotor torque is defined by
\[
T_{e}=e_{d}^{"} i_{d}+e_{q}^{"} i_{q}-\left(x_{d}^{\prime \prime}-x_{q}^{"}\right) i_{d} i_{q} .
\]

These defining equations do not describe the short-circuit time constants you can set in the dialog box. To see their relationship with the equation coefficients, see [1].

\section*{Display Options}

You can perform display actions using the Power Systems menu on the block context menu.

Right-click the block and, from the Power Systems menu, select an option:
- Display Base Values displays the machine per-unit base values in the MATLAB Command Window.
- Display Associated Base Values displays associated per-unit base values in the MATLAB Command Window.
- Display Associated Initial Conditions displays associated initial conditions in the MATLAB Command Window.

\section*{Ports}

The block has the following ports:
fd+
Electrical conserving port corresponding to the field winding positive terminal. fd-

Electrical conserving port corresponding to the field winding negative terminal.

\section*{R}

Mechanical rotational conserving port associated with the machine rotor.
C
Mechanical rotational conserving port associated with the machine case.
pu
Physical signal vector port associated with the machine per-unit measurements. The vector elements are:
- pu_fd_Efd
- pu_fd_Ifd
- pu_torque
- pu_velocity
- pu_ed
- pu_eq
- pu_e0 - This port is provided to maintain a compatible interface for existing machine models. Its value is always zero.
- pu_id
- pu_iq
- pu_i0 - This port is provided to maintain a compatible interface for existing machine models. Its value is always zero.

Expandable three-phase port associated with the stator windings.
n
Electrical conserving port associated with the neutral point of the wye winding configuration. This port is provided to maintain a compatible interface for existing machine models. The voltage and current on this port are ignored.

\section*{Parameters}
- "Main" on page 1-865
- "Impedances" on page 1-865
- "Time Constants" on page 1-866
- "Initial Conditions" on page 1-867

\section*{Main}

\section*{Rated apparent power}

Rated apparent power. The default value is 555 e 6 VA .

\section*{Rated voltage}

RMS rated line-line voltage. The default value is 24 e 3 V .

\section*{Rated electrical frequency}

Nominal electrical frequency at which rated apparent power is quoted. The default value is 60 Hz .

\section*{Number of pole pairs}

Number of machine pole pairs. The default value is 1.

\section*{Specify field circuit input required to produce rated terminal voltage at no load} by

Select between Field circuit voltage and Field circuit current. The default value is Field circuit current.

\section*{Field circuit current}

This parameter is visible only when Specify field circuit input required to produce rated terminal voltage at no load by is set to Field circuit current. The default value is 1300 A.

\section*{Field circuit voltage}

This parameter is visible only when Specify field circuit input required to produce rated terminal voltage at no load by is set to Field circuit voltage. The default value is 92.95 V .

\section*{Impedances}

\section*{Stator resistance, Ra}

Stator resistance. The default value is 0.003 pu .

\section*{Stator leakage reactance, Xl}

Stator leakage reactance. The default value is 0.15 pu.
d-axis synchronous reactance, Xd
The \(d\)-axis synchronous reactance. The default value is 1.81 pu .

\section*{\(\mathbf{q}\)-axis synchronous reactance, \(\mathbf{X q}\)}

The \(q\)-axis synchronous reactance. The default value is 1.76 pu .

\section*{d-axis transient reactance, \(\mathrm{Xd}^{\prime}\)}

The \(d\)-axis transient reactance. The default value is 0.3 pu .

\section*{d-axis subtransient reactance, Xd"}

The \(d\)-axis subtransient reactance. The default value is 0.23 pu .
\(\mathbf{q}\)-axis subtransient reactance, \(\mathbf{X q}{ }^{\prime \prime}\)
The \(q\)-axis subtransient reactance. The default value is 0.25 pu .

\section*{Time Constants}

\section*{Specify d-axis transient time constant}

Select between Open-circuit value and Short-circuit value. The default value is Open-circuit value.

\section*{d-axis transient open-circuit, Td0}

The \(d\)-axis transient open-circuit time constant. This parameter is visible only when Specify d-axis transient time constant is set to Open-circuit value. The default value is 8 s .

\section*{d-axis transient short-circuit, Td'}

The \(d\)-axis transient short-circuit time constant. This parameter is visible only when Specify d-axis transient time constant is set to Short-circuit value. The default value is 1.326 s .

\section*{Specify d-axis subtransient time constant}

Select between Open-circuit value and Short-circuit value. The default value is Open-circuit value.
d-axis subtransient open-circuit, Td0"
The \(d\)-axis subtransient open-circuit time constant. This parameter is visible only when Specify d-axis subtransient time constant is set to Open-circuit value. The default value is 0.03 s .
d-axis subtransient short-circuit, Td"
The \(d\)-axis subtransient short-circuit time constant. This parameter is visible only when Specify d-axis subtransient time constant is set to Short-circuit value. The default value is 0.023 s .

\section*{Specify \(q\)-axis subtransient time constant}

Select between Open-circuit value and Short-circuit value. The default value is Open-circuit value.

\section*{\(\mathbf{q}\)-axis subtransient open-circuit, Tq0' \({ }^{1}\)}

The \(q\)-axis subtransient open-circuit time constant. This parameter is visible only when Specify q-axis subtransient time constant is set to Open-circuit value. The default value is 0.07 s .

\section*{\(\mathbf{q}\)-axis subtransient short-circuit, Tq"}

The \(q\)-axis subtransient short-circuit time constant. This parameter is visible only when Specify \(\mathbf{q}\)-axis subtransient time constant is set to Short-circuit value. The default value is 0.0269 s .

\section*{Initial Conditions}

\section*{Specify initialization by}

Select between Electrical power and voltage output and Mechanical and voltage states. The default value is Electrical power and voltage output.

\section*{Terminal voltage magnitude}

Initial RMS line-line voltage. This parameter is visible only when you set Specify initialization by to Electrical power and voltage output. The default value is 24 e 3 V .

\section*{Terminal voltage angle}

Initial voltage angle. This parameter is visible only when you set Specify initialization by to Electrical power and voltage output. The default value is 0 deg.

\section*{Terminal active power}

Initial active power. This parameter is visible only when you set Specify initialization by to Electrical power and voltage output. The default value is 500 e 6 V *A.

\section*{Terminal reactive power}

Initial reactive power. This parameter is visible only when you set Specify initialization by to Electrical power and voltage output. The default value is \(0 \mathrm{~V}^{*} \mathrm{~A}\).

\section*{Initial rotor angle}

Initial rotor angle. During steady-state operation, set this parameter to the sum of the load angle and required terminal voltage offset. This parameter is visible only when you set Specify initialization by to Mechanical and voltage states. The default value is 0 deg.

\section*{Initial voltage behind d-axis subtransient reactance}

Initial voltage behind \(d\)-axis subtransient reactance. This parameter is visible only when you set Specify initialization by to Mechanical and voltage states. The default value is 0 pu .

\section*{Initial voltage behind \(\mathbf{q}\)-axis transient reactance}

Initial voltage behind \(q\)-axis transient reactance. This parameter is visible only when you set Specify initialization by to Mechanical and voltage states. The default value is 0 pu .

\section*{Initial voltage behind \(q\)-axis subtransient reactance}

Initial voltage behind \(q\)-axis subtransient reactance. This parameter is visible only when you set Specify initialization by to Mechanical and voltage states. The default value is 0 pu .

\section*{References}
[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.
[2] Lyshevski, S. E. Electromechanical Systems, Electric Machines and Applied Mechatronics. Boca Raton, FL: CRC Press, 1999.
[3] Pal, M. K. Lecture Notes on Power System Stability. http://www.mkpalconsulting.com/ files/stabilitybook.pdf, 2007.

\section*{See Also}

Synchronous Machine Measurement | Synchronous Machine Model 2.1 (fundamental) | Synchronous Machine Round Rotor (fundamental) | Synchronous Machine Round Rotor (standard) | Synchronous Machine Salient Pole (fundamental) | Synchronous Machine Salient Pole (standard)

\section*{Topics}
"Expand and Collapse Three-Phase Ports on a Block"

Three-Phase Synchronous Machine Control

\section*{Introduced in R2015a}

\section*{Synchronous Machine Round Rotor (fundamental)}

Round-rotor synchronous machine with fundamental parameterization


\section*{Library}

Simscape / Power Systems / Simscape Components / Machines / Synchronous Machine (Round Rotor)

\section*{Description}

The Synchronous Machine Round Rotor (fundamental) block models a round-rotor synchronous machine using fundamental parameters.

\section*{Electrical Defining Equations}

The synchronous machine equations are expressed with respect to a rotating reference frame defined by the equation
\[
\theta_{e}(t)=N \theta_{r}(t),
\]
where:
- \(\theta_{e}\) is the electrical angle.
- \(N\) is the number of pole pairs.
- \(\theta_{r}\) is the rotor angle.

Park's transformation maps the synchronous machine equations to the rotating reference frame with respect to the electrical angle. Park's transformation is defined by
\[
P_{s}=\frac{2}{3}\left[\begin{array}{ccc}
\cos \theta_{e} & \cos \left(\theta_{e}-\frac{2 \pi}{3}\right) & \cos \left(\theta_{e}+\frac{2 \pi}{3}\right) \\
-\sin \theta_{e} & -\sin \left(\theta_{e}-\frac{2 \pi}{3}\right) & -\sin \left(\theta_{e}+\frac{2 \pi}{3}\right) \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right]
\]

Park's transformation is used to define the per-unit synchronous machine equations. The stator voltage equations are defined by
\[
\begin{aligned}
& e_{d}=\frac{1}{\omega_{\text {base }}} \frac{\mathrm{d} \psi_{d}}{\mathrm{~d} t}-\Psi_{q} \omega_{r}-R_{a} i_{d}, \\
& e_{q}=\frac{1}{\omega_{\text {base }}} \frac{\mathrm{d} \psi_{q}}{\mathrm{~d} t}+\Psi_{d} \omega_{r}-R_{a} i_{q},
\end{aligned}
\]
and
\[
e_{0}=\frac{1}{\omega_{\text {base }}} \frac{d \Psi_{0}}{d t}-R_{a} i_{0}
\]
where:
- \(e_{d}, e_{q}\), and \(e_{0}\) are the \(d\)-axis, \(q\)-axis, and zero-sequence stator voltages, defined by
\[
\left[\begin{array}{l}
e_{d} \\
e_{q} \\
e_{0}
\end{array}\right]=P_{s}\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right] .
\]
\(v_{a}, v_{b}\), and \(v_{c}\) are the stator voltages measured from port \(\sim\) to neutral port n.
- \(\omega_{\text {base }}\) is the per-unit base electrical speed.
- \(\psi_{d}, \psi_{q}\), and \(\psi_{0}\) are the \(d\)-axis, \(q\)-axis, and zero-sequence stator flux linkages.
- \(\omega_{r}\) is the per-unit rotor rotational speed.
- \(R_{a}\) is the stator resistance.
- \(i_{d}, i_{q}\), and \(i_{0}\) are the \(d\)-axis, \(q\)-axis, and zero-sequence stator currents, defined by
\[
\left[\begin{array}{l}
i_{d} \\
i_{q} \\
i_{0}
\end{array}\right]=P_{s}\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right] .
\]
\(i_{a}, i_{b}\), and \(i_{c}\) are the stator currents flowing from port \(\sim\) to port n.
The rotor voltage equations are defined by
\[
\begin{aligned}
& e_{f d}=\frac{1}{\omega_{b a s e}} \frac{d \Psi_{f d}}{d t}+R_{f d} i_{f d}, \\
& e_{1 d}=\frac{1}{\omega_{b a s e}} \frac{d \Psi_{1 d}}{d t}+R_{1 d} i_{1 d}=0, \\
& e_{1 q}=\frac{1}{\omega_{b a s e}} \frac{d \Psi_{1 q}}{d t}+R_{1 q} i_{1 q}=0,
\end{aligned}
\]
and
\[
e_{2 q}=\frac{1}{\omega_{\text {base }}} \frac{d \Psi_{2 q}}{d t}+R_{2 q} i_{2 q}=0
\]
where:
- \(e_{f d}\) is the field voltage.
- \(e_{1 d}, e_{1 q}\), and \(e_{2 q}\) are the voltages across the \(d\)-axis damper winding \(1, q\)-axis damper winding 1 , and \(q\)-axis damper winding 2 . They are all equal to 0 .
- \(\psi_{f d}, \psi_{1 d}, \psi_{1 q}\), and \(\psi_{2 q}\) are the magnetic fluxes linking the field circuit, \(d\)-axis damper winding \(1, q\)-axis damper winding 1 , and \(q\)-axis damper winding 2 .
- \(R_{f d}, R_{1 d}, R_{1 q}\), and \(R_{2 q}\) are the resistances of rotor field circuit, \(d\)-axis damper winding 1 , \(q\)-axis damper winding 1 , and \(q\)-axis damper winding 2 .
- \(i_{f d}, i_{1 d}, i_{1 q}\), and \(i_{2 q}\) are the currents flowing in the field circuit, \(d\)-axis damper winding 1 , \(q\)-axis damper winding 1 , and \(q\)-axis damper winding 2 .

The saturation equations are defined by
\[
\begin{aligned}
& \psi_{a d}=\psi_{d}+L_{l} i_{d}, \\
& \psi_{a q}=\psi_{q}+L_{l} i_{q}, \\
& \psi_{a t}=\sqrt{\psi_{a d}^{2}+\psi_{a q}^{2}},
\end{aligned}
\]
\(K_{s}=1\) (If saturation is disabled),
\(K_{s}=f\left(\psi_{a t}\right)\) (If saturation is enabled),
\[
L_{a d}=K_{s} * L_{a d u},
\]
and
\[
L_{a q}=K_{s} * L_{a q u},
\]
where:
- \(\psi_{a d}\) is the \(d\)-axis air-gap or mutual flux linkage.
- \(\psi_{a q}\) is the \(q\)-axis air-gap or mutual flux linkage.
- \(\psi_{a t}\) is the air-gap flux linkage.
- \(K_{s}\) is the saturation factor.
- \(L_{\text {adu }}\) is the unsaturated mutual inductance of the stator \(d\)-axis.
- \(L_{a d}\) is the mutual inductance of the stator \(d\)-axis.
- \(L_{a q u}\) is the unsaturated mutual inductance of the stator \(q\)-axis.
- \(L_{a q}\) is the mutual inductance of the stator \(q\)-axis.

The saturation factor function, f , is calculated from the per-unit open-circuit lookup table as:
\[
\begin{aligned}
& L_{a d}=\frac{d \psi_{a t}}{d i_{f d}}, \\
& V_{a g}=g\left(i_{f d}\right),
\end{aligned}
\]
and
\[
L_{a d}=\frac{d g\left(i_{f d}\right)}{d i_{f d}}=\frac{d V_{a g}}{d i_{f d}},
\]
where \(V_{a g}\) is the per-unit air-gap voltage.
In per-unit,
\[
K_{s}=\frac{L_{a d}}{L_{a d u}}
\]
and
\[
\psi_{a t}=V_{a g}
\]
can be rearranged to
\[
K_{s}=f\left(\psi_{a t}\right) .
\]

The stator flux linkage equations are defined by
\[
\begin{aligned}
& \Psi_{d}=-\left(L_{a d}+L_{l}\right) i_{d}+L_{a d} i_{f d}+L_{a d} i_{1 d}, \\
& \Psi q=-\left(L_{a q}+L_{l}\right) i_{q}+L_{a q} i_{1 q}+L_{a q} i_{2 q},
\end{aligned}
\]
and
\[
\Psi_{0}=-L_{0} i_{0},
\]
where:
- \(L_{l}\) is the stator leakage inductance.
- \(L_{a d}\) and \(L_{a q}\) are the mutual inductances of the stator \(d\)-axis and \(q\)-axis.

The rotor flux linkage equations are defined by
\[
\begin{aligned}
& \psi_{f d}=L_{f f d} i_{f d}+L_{f 1 d} i_{1 d}-L_{a d} i_{d}, \\
& \psi_{1 d}=L_{f 1 d} i_{f d}+L_{11 d} i_{1 d}-L_{a d} i_{d}, \\
& \psi_{1 q}=L_{11 q} i_{1 q}+L_{a q} i_{2 q}-L_{a q} i_{q},
\end{aligned}
\]
and
\[
\psi_{2 q}=L_{a q} i_{1 q}+L_{22 q} i_{2 q}-L_{a q} i_{q},
\]
where:
- \(L_{f f d}, L_{11 d}, L_{11 q}\), and \(L_{22 q}\) are the self-inductances of the rotor field circuit, \(d\)-axis damper winding \(1, q\)-axis damper winding 1 and \(q\)-axis damper winding 2 . \(L_{f 1 d}\) is the rotor field circuit and \(d\)-axis damper winding 1 mutual inductance. They are defined by the following equations.
\[
\begin{aligned}
& L_{f f d}=L_{a d}+L_{f d} \\
& L_{f 1 d}=L_{f f d}-L_{f d} \\
& L_{11 d}=L_{f 1 d}+L_{1 d} \\
& L_{11 q}=L_{a q}+L_{1 q} \\
& L_{22 q}=L_{a q}+L_{2 q}
\end{aligned}
\]

These equations assume that per-unit mutual inductance \(L_{12 q}=L_{a q}\), that is, the stator and rotor currents in the \(q\)-axis all link a single mutual flux represented by \(L_{a q}\).

The rotor torque is defined by
\[
T_{e}=\Psi_{d} i_{q}-\Psi_{q} i_{d}
\]

\section*{Plotting and Display Options}

You can perform plotting and display actions using the Power Systems menu on the block context menu.

Right-click the block and, from the Power Systems menu, select an option:
- Display Base Values displays the machine per-unit base values in the MATLAB Command Window.
- Display Associated Base Values displays associated per-unit base values in the MATLAB Command Window.
- Display Associated Initial Conditions displays associated initial conditions in the MATLAB Command Window.
- Plot Open-Circuit Saturation (pu) plots air-gap voltage, \(V_{a g}\), versus field current, \(i_{f d}\), both measured in per-unit, in a MATLAB figure window. The plot contains three traces:
- Unsaturated: Stator d-axis mutual inductance (unsaturated), Ladu you specify
- Saturated: Per-unit open-circuit lookup table (Vag versus ifd) you specify
- Derived: Open-circuit lookup table (per-unit) derived from the Per-unit opencircuit lookup table (Vag versus ifd) you specify. This data is used to calculate the saturation factor, \(K_{s}\), versus magnetic flux linkage, \(\psi_{a t}\), characteristic.
- Plot Saturation Factor (pu) plots saturation factor, \(K_{s}\), versus magnetic flux linkage, \(\psi_{a t}\), both measured in per-unit, in a MATLAB figure window using the machine parameters. This parameter is derived from other parameters that you specify:
- Stator d-axis mutual inductance (unsaturated), Ladu
- Per-unit field current saturation data, ifd
- Per-unit air-gap voltage saturation data, Vag

\section*{Ports}

The block has the following ports:

\section*{fd+}

Electrical conserving port corresponding to the field winding positive terminal fd-

Electrical conserving port corresponding to the field winding negative terminal R

Mechanical rotational conserving port associated with the machine rotor C

Mechanical rotational conserving port associated with the machine case pu

Physical signal vector port associated with the machine per-unit measurements. The vector elements are:
- pu_fd_Efd
- pu_fd_Ifd
- pu_torque
- pu_velocity
- pu_ed
- pu_eq
- pu_e0
- pu_id
- pu_iq
- pu_i0

Expandable three-phase port associated with the stator windings
n
Electrical conserving port associated with the neutral point of the wye winding configuration

\section*{Parameters}
- "Main" on page 1-878
- "Impedances" on page 1-879
- "Saturation Tab" on page 1-880
- "Initial Conditions Tab" on page 1-881

\section*{Main}

\section*{Rated apparent power}

Rated apparent power. The default value is 555 e 6 V *A.

\section*{Rated voltage}

RMS rated line-line voltage. The default value is 24 e 3 V .

\section*{Rated electrical frequency}

Nominal electrical frequency at which rated apparent power is quoted. The default value is 60 Hz .

\section*{Number of pole pairs}

Number of machine pole pairs. The default value is 1.
Specify field circuit input required to produce rated terminal voltage at no load by

Select between
- Field circuit voltage
- Field circuit current

The default value is Field circuit current.

\section*{Field circuit current}

This parameter is visible only when Specify field circuit input required to produce rated terminal voltage at no load by is set to Field circuit current. The default value is 1300 A .

\section*{Field circuit voltage}

This parameter is visible only when Specify field circuit input required to produce rated terminal voltage at no load by is set to Field circuit voltage. The default value is 92.95 V .

\section*{Zero sequence}

Option to neglect zero-sequence terms. Choices are:
- Include - Include zero-sequence terms. To prioritize model fidelity, use this default setting. Using this option results in an error for simulations that use the Partitioning solver. For more information, see "Increase Simulation Speed Using the Partitioning Solver" (Simscape).
- Exclude - Exclude zero-sequence terms. To prioritize simulation speed for desktop simulation or real-time deployment, select this option.

\section*{Impedances}

\section*{Stator d-axis mutual inductance (unsaturated), Ladu}

Unsaturated stator \(d\)-axis mutual inductance. If Magnetic saturation representation is set to None, this is equivalent to the stator \(d\)-axis mutual inductance. The default value is 1.66 pu .

\section*{Stator q-axis mutual inductance (unsaturated), Laqu}

Unsaturated stator \(q\)-axis mutual inductance. If Magnetic saturation representation is set to None, this is equivalent to the stator \(q\)-axis mutual inductance. The default value is 1.61 pu.

\section*{Stator zero-sequence inductance, L0}

Stator zero-sequence inductance. The default value is 0.15 pu .

\section*{Stator leakage inductance, Ll}

Stator leakage inductance. The default value is 0.15 pu .

\section*{Stator resistance, Ra}

Stator resistance. The default value is 0.003 pu .

\section*{Rotor field circuit inductance, Lfd}

Rotor field circuit inductance. The default value is 0.165 pu .

\section*{Rotor field circuit resistance, Rfd}

Rotor field circuit resistance. The default value is 0.0006 pu .

\section*{Rotor d-axis damper winding 1 inductance, L1d}

Rotor \(d\)-axis damper winding 1 inductance. The default value is 0.1713 pu .

\section*{Rotor d-axis damper winding 1 resistance, R1d}

Rotor \(d\)-axis damper winding 1 resistance. The default value is 0.0284 pu .

\section*{Rotor \(q\)-axis damper winding 1 inductance, L1q}

Rotor \(q\)-axis damper winding 1 inductance. The default value is 0.7252 pu.

\section*{Rotor \(q\)-axis damper winding 1 resistance, R1q}

Rotor \(q\)-axis damper winding 1 resistance. The default value is 0.00619 pu .

\section*{Rotor \(\mathbf{q}\)-axis damper winding 2 inductance, L2q}

Rotor \(q\)-axis damper winding 2 inductance. The default value is 0.125 pu .

\section*{Rotor \(\mathbf{q}\)-axis damper winding 2 resistance, R2q}

Rotor \(q\)-axis damper winding 2 resistance. The default value is 0.02368 pu .

\section*{Saturation Tab}

\section*{Magnetic saturation representation}

Block magnetic saturation representation. Options are:
- None
- Per-unit open-circuit lookup table (Vag versus ifd)

The default value is None.

\section*{Per-unit field current saturation data, ifd}

The field current, \(i_{f d}\), data populates the air-gap voltage, \(V_{a g}\), versus field current, \(i_{f d}\), lookup table. This parameter is only visible when you set Magnetic saturation representation to Per-unit open-circuit lookup table (Vag versus ifd). This parameter must contain a vector with at least five elements. The default value is \([0.00,0.48,0.76,1.38,1.79] \mathrm{pu}\).

\section*{Per-unit air-gap voltage saturation data, Vag}

The air-gap voltage, \(V_{a g}\), data populates the air-gap voltage, \(V_{a g}\), versus field current, \(i_{f d}\), lookup table. This parameter is only visible when you set Magnetic saturation representation to Per-unit open-circuit lookup table (Vag versus ifd). This parameter must contain a vector with at least five elements. The default value is \([0.00,0.80,1.08,1.31,1.40] \mathrm{pu}\).

\section*{Initial Conditions Tab}

\section*{Specify initialization by}

Select between Electrical power and voltage output and Mechanical and magnetic states. The default value is Electrical power and voltage output.

\section*{Terminal voltage magnitude}

Initial RMS line-line voltage. This parameter is visible only when you set Specify initialization by to Electrical power and voltage output. The default value is 24 e 3 V .

\section*{Terminal voltage angle}

Initial voltage angle. This parameter is visible only when you set Specify initialization by to Electrical power and voltage output. The default value is 0 deg.

\section*{Terminal active power}

Initial active power. This parameter is visible only when you set Specify initialization by to Electrical power and voltage output. The default value is 500 e 6 V *A.

\section*{Terminal reactive power}

Initial reactive power. This parameter is visible only when you set Specify initialization by to Electrical power and voltage output. The default value is \(0 \mathrm{~V} * \mathrm{~A}\).

\section*{Initial rotor angle}

Initial rotor angle. During steady-state operation, set this parameter to the sum of the load angle and required terminal voltage offset. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 deg .

\section*{Initial stator d-axis magnetic flux linkage}

Stator \(d\)-axis initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu.

\section*{Initial stator \(\mathbf{q}\)-axis magnetic flux linkage}

Stator \(q\)-axis initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu.

\section*{Initial stator zero-sequence magnetic flux linkage}

Zero-sequence initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu.

\section*{Initial field circuit magnetic flux linkage}

Field circuit initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu.

\section*{Initial d-axis damper winding 1 magnetic flux linkage}

The \(d\)-axis damper winding 1 initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu .

\section*{Initial \(\mathbf{q}\)-axis damper winding 1 magnetic flux linkage}

The \(q\)-axis damper winding 1 initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu .

\section*{Initial \(\mathbf{q}\)-axis damper winding \(\mathbf{2}\) magnetic flux linkage}

The \(q\)-axis damper winding 2 initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu .

\section*{References}
[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.
[2] Lyshevski, S. E. Electromechanical Systems, Electric Machines and Applied Mechatronics. Boca Raton, FL: CRC Press, 1999.

\section*{See Also}

Synchronous Machine Measurement | Synchronous Machine Model 2.1 (fundamental) | Synchronous Machine Model 2.1 (standard) | Synchronous Machine Round Rotor (standard) | Synchronous Machine Salient Pole (fundamental) | Synchronous Machine Salient Pole (standard)

\section*{Topics}
"Expand and Collapse Three-Phase Ports on a Block"
Three-Phase Synchronous Machine Control

\section*{Introduced in R2013b}

\section*{Synchronous Machine Round Rotor (standard)}

Round-rotor synchronous machine with standard parameterization


\section*{Library}

Simscape / Power Systems / Simscape Components / Machines / Synchronous Machine (Round Rotor)

\section*{Description}

The Synchronous Machine Round Rotor (standard) block models a round-rotor synchronous machine using standard parameters.

\section*{Electrical Defining Equations}

The synchronous machine equations are expressed with respect to a rotating reference frame defined by the equation
\[
\theta_{e}(t)=N \theta_{r}(t),
\]
where:
- \(\theta_{e}\) is the electrical angle.
- \(N\) is the number of pole pairs.
- \(\theta_{r}\) is the rotor angle.

Park's transformation maps the synchronous machine equations to the rotating reference frame with respect to the electrical angle. Park's transformation is defined by
\[
P_{s}=\frac{2}{3}\left[\begin{array}{ccc}
\cos \theta_{e} & \cos \left(\theta_{e}-\frac{2 \pi}{3}\right) & \cos \left(\theta_{e}+\frac{2 \pi}{3}\right) \\
-\sin \theta_{e} & -\sin \left(\theta_{e}-\frac{2 \pi}{3}\right) & -\sin \left(\theta_{e}+\frac{2 \pi}{3}\right) \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right]
\]

Park's transformation is used to define the per-unit synchronous machine equations. The stator voltage equations are defined by
\[
\begin{aligned}
& e_{d}=\frac{1}{\omega_{\text {base }}} \frac{\mathrm{d} \psi_{d}}{\mathrm{~d} t}-\Psi_{q} \omega_{r}-R_{a} i_{d}, \\
& e_{q}=\frac{1}{\omega_{\text {base }}} \frac{\mathrm{d} \psi_{q}}{\mathrm{~d} t}+\Psi_{d} \omega_{r}-R_{a} i_{q},
\end{aligned}
\]
and
\[
e_{0}=\frac{1}{\omega_{\text {base }}} \frac{d \Psi_{0}}{d t}-R_{a} i_{0}
\]
where:
- \(e_{d}, e_{q}\), and \(e_{0}\) are the \(d\)-axis, \(q\)-axis, and zero-sequence stator voltages, defined by
\[
\left[\begin{array}{l}
e_{d} \\
e_{q} \\
e_{0}
\end{array}\right]=P_{s}\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right] .
\]
where \(v_{a}, v_{b}\), and \(v_{c}\) are the stator voltages measured from port \(\sim\) to neutral port n .
- \(\omega_{\text {base }}\) is the per-unit base electrical speed.
- \(\psi_{d}, \psi_{q}\), and \(\psi_{0}\) are the \(d\)-axis, \(q\)-axis, and zero-sequence stator flux linkages.
- \(\omega_{r}\) is the per-unit rotor rotational speed.
- \(R_{a}\) is the stator resistance.
- \(i_{d}, i_{q}\), and \(i_{0}\) are the \(d\)-axis, \(q\)-axis, and zero-sequence stator currents, defined by
\[
\left[\begin{array}{l}
i_{d} \\
i_{q} \\
i_{0}
\end{array}\right]=P_{s}\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right] .
\]
where \(i_{a}, i_{b}\), and \(i_{c}\) are the stator currents flowing from port \(\sim\) to port \(n\).
The rotor voltage equations are defined by
\[
\begin{aligned}
& e_{f d}=\frac{1}{\omega_{b a s e}} \frac{d \Psi_{f d}}{d t}+R_{f d} i_{f d}, \\
& e_{1 d}=\frac{1}{\omega_{b a s e}} \frac{d \Psi_{1 d}}{d t}+R_{1 d} i_{1 d}=0, \\
& e_{1 q}=\frac{1}{\omega_{b a s e}} \frac{d \Psi_{1 q}}{d t}+R_{1 q} i_{1 q}=0,
\end{aligned}
\]
and
\[
e_{2 q}=\frac{1}{\omega_{\text {base }}} \frac{d \Psi_{2 q}}{d t}+R_{2 q} i_{2 q}=0
\]
where:
- \(e_{f d}\) is the field voltage.
- \(e_{1 d}, e_{1 q}\), and \(e_{2 q}\) are the voltages across the \(d\)-axis damper winding \(1, q\)-axis damper winding 1 , and \(q\)-axis damper winding 2 . They are all equal to 0 .
- \(\psi_{f d}, \psi_{1 d}, \psi_{1 q}\), and \(\psi_{2 q}\) are the magnetic fluxes linking the field circuit, \(d\)-axis damper winding \(1, q\)-axis damper winding 1 , and \(q\)-axis damper winding 2 .
- \(R_{f d}, R_{1 d}, R_{1 q}\), and \(R_{2 q}\) are the resistances of rotor field circuit, \(d\)-axis damper winding 1, \(q\)-axis damper winding 1 , and \(q\)-axis damper winding 2 .
- \(i_{f d}, i_{1 d}, i_{1 q}\), and \(i_{2 q}\) are the currents flowing in the field circuit, \(d\)-axis damper winding 1 , \(q\)-axis damper winding 1 , and \(q\)-axis damper winding 2 .

The saturation equations are defined by
\[
\begin{aligned}
& \psi_{a d}=\psi_{d}+L_{l} i_{d}, \\
& \psi_{a q}=\psi_{q}+L_{l} i_{q}, \\
& \psi_{a t}=\sqrt{\psi_{a d}^{2}+\psi_{a q}^{2}},
\end{aligned}
\]
\(K_{s}=1\) (If saturation is disabled),
\(K_{s}=f\left(\psi_{a t}\right)\) (If saturation is enabled),
\[
L_{a d}=K_{s} * L_{a d u},
\]
and
\[
L_{a q}=K_{s} * L_{a q u},
\]
where:
- \(\psi_{a d}\) is the \(d\)-axis air-gap or mutual flux linkage.
- \(\psi_{a q}\) is the \(q\)-axis air-gap or mutual flux linkage.
- \(\psi_{a t}\) is the air-gap flux linkage.
- \(K_{s}\) is the saturation factor.
- \(L_{\text {adu }}\) is the unsaturated mutual inductance of the stator \(d\)-axis.
- \(L_{a d}\) is the mutual inductance of the stator \(d\)-axis.
- \(L_{a q u}\) is the unsaturated mutual inductance of the stator \(q\)-axis.
- \(L_{a q}\) is the mutual inductance of the stator \(q\)-axis.

The saturation factor function, f , is calculated from the per-unit open-circuit lookup table as:
\[
\begin{aligned}
& L_{a d}=\frac{d \psi_{a t}}{d i_{f d}}, \\
& V_{a g}=g\left(i_{f d}\right),
\end{aligned}
\]
and
\[
L_{a d}=\frac{d g\left(i_{f d}\right)}{d i_{f d}}=\frac{d V_{a g}}{d i_{f d}},
\]
where \(V_{a g}\) is the per-unit air-gap voltage.
In per-unit,
\[
K_{s}=\frac{L_{a d}}{L_{a d u}}
\]
and
\[
\psi_{a t}=V_{a g}
\]
can be rearranged to
\[
K_{s}=f\left(\psi_{a t}\right) .
\]

The stator flux linkage equations are defined by
\[
\begin{aligned}
& \Psi_{d}=-\left(L_{a d}+L_{l}\right) i_{d}+L_{a d} i_{f d}+L_{a d} i_{1 d}, \\
& \Psi q=-\left(L_{a q}+L_{l}\right) i_{q}+L_{a q} i_{1 q}+L_{a q} i_{2 q},
\end{aligned}
\]
and
\[
\Psi_{0}=-L_{0} i_{0},
\]
where:
- \(L_{l}\) is the stator leakage inductance.
- \(L_{a d}\) and \(L_{a q}\) are the mutual inductances of the stator \(d\)-axis and \(q\)-axis.

The rotor flux linkage equations are defined by
\[
\begin{aligned}
& \psi_{f d}=L_{f f d} i_{f d}+L_{f 1 d} i_{1 d}-L_{a d} i_{d}, \\
& \psi_{1 d}=L_{f 1 d} i_{f d}+L_{11 d} i_{1 d}-L_{a d} i_{d}, \\
& \psi_{1 q}=L_{11 q} i_{1 q}+L_{a q} i_{2 q}-L_{a q} i_{q},
\end{aligned}
\]
and
\[
\psi_{2 q}=L_{a q} i_{1 q}+L_{22 q} i_{2 q}-L_{a q} i_{q},
\]
where:
- \(L_{f f d}, L_{11 d}, L_{11 q}\), and \(L_{22 q}\) are the self-inductances of the rotor field circuit, \(d\)-axis damper winding \(1, q\)-axis damper winding 1 , and \(q\)-axis damper winding 2 . \(L_{f 1 d}\) is the rotor field circuit and \(d\)-axis damper winding 1 mutual inductance. They are defined by the following equations.
\[
\begin{aligned}
& L_{f f d}=L_{a d}+L_{f d} \\
& L_{f 1 d}=L_{f f d}-L_{f d} \\
& L_{11 d}=L_{f 1 d}+L_{1 d} \\
& L_{11 q}=L_{a q}+L_{1 q} \\
& L_{22 q}=L_{a q}+L_{2 q}
\end{aligned}
\]

These equations assume that per-unit mutual inductance \(L_{12 q}=L_{a q}\), that is, the stator and rotor currents in the \(q\)-axis all link a single mutual flux represented by \(L_{a q}\).

The rotor torque is defined by
\[
T_{e}=\Psi_{d} i_{q}-\Psi_{q} i_{d}
\]

These defining equations do not describe the time constants you can set in the dialog box. To see their relationship with the equation coefficients, see [1].

\section*{Plotting and Display Options}

You can perform plotting and display actions using the Power Systems menu on the block context menu.

Right-click the block and, from the Power Systems menu, select an option:
- Display Base Values displays the machine per-unit base values in the MATLAB Command Window.
- Display Associated Base Values displays associated per-unit base values in the MATLAB Command Window.
- Display Associated Initial Conditions displays associated initial conditions in the MATLAB Command Window.
- Plot Open-Circuit Saturation (pu) plots air-gap voltage, \(V_{a g}\), versus field current, \(i_{f d}\), both measured in per-unit, in a MATLAB figure window. The plot contains three traces:
- Unsaturated: Stator d-axis mutual inductance (unsaturated), Ladu you specify
- Saturated: Per-unit open-circuit lookup table (Vag versus ifd) you specify
- Derived: Open-circuit lookup table (per-unit) derived from the Per-unit opencircuit lookup table (Vag versus ifd) you specify. This data is used to calculate the saturation factor, \(K_{s}\), versus magnetic flux linkage, \(\psi_{a t}\), characteristic.
- Plot Saturation Factor (pu) plots saturation factor, \(K_{s}\), versus magnetic flux linkage, \(\psi_{a t}\), both measured in per-unit, in a MATLAB figure window using the present machine parameters. This parameter is derived from other parameters that you specify:
- Stator d-axis mutual inductance (unsaturated), Ladu
- Per-unit field current saturation data, ifd

\section*{- Per-unit air-gap voltage saturation data, Vag}

\section*{Ports}

The block has the following ports:
fd+
Electrical conserving port corresponding to the field winding positive terminal fd-

Electrical conserving port corresponding to the field winding negative terminal R

Mechanical rotational conserving port associated with the machine rotor
C
Mechanical rotational conserving port associated with the machine case
pu
Physical signal vector port associated with the machine per-unit measurements. The vector elements are:
- pu_fd Efd
- pu_fd_Ifd
- pu_torque
- pu_velocity
- pu_ed
- pu eq
- pu_e0
- pu_id
- pu_iq
- pu_i0

Expandable three-phase port associated with the stator windings

\section*{n}

Electrical conserving port associated with the neutral point of the wye winding configuration

\section*{Parameters}
- "Main" on page 1-892
- "Impedances" on page 1-893
- "Time Constants" on page 1-894
- "Saturation" on page 1-895
- "Initial Conditions" on page 1-896

\section*{Main}

\section*{Rated apparent power}

Rated apparent power. The default value is 555 e 6 V *A.

\section*{Rated voltage}

RMS rated line-line voltage. The default value is 24 e 3 V .

\section*{Rated electrical frequency}

Nominal electrical frequency at which rated apparent power is quoted. The default value is 60 Hz .

\section*{Number of pole pairs}

Number of machine pole pairs. The default value is 1.

\section*{Specify field circuit input required to produce rated terminal voltage at no load} by

Choose between Field circuit voltage and Field circuit current. The default value is Field circuit current.

\section*{Field circuit current}

This parameter is visible only when Specify field circuit input required to produce rated terminal voltage at no load by is set to Field circuit current. The default value is 1300 A.

\section*{Field circuit voltage}

This parameter is visible only when Specify field circuit input required to produce rated terminal voltage at no load by is set to Field circuit voltage. The default value is 92.95 V .

\section*{Zero sequence}

Option to neglect zero-sequence terms. Choices are:
- Include - Include zero-sequence terms. To prioritize model fidelity, use this default setting. Using this option results in an error for simulations that use the Partitioning solver. For more information, see "Increase Simulation Speed Using the Partitioning Solver" (Simscape).
- Exclude - Exclude zero-sequence terms. To prioritize simulation speed for desktop simulation or real-time deployment, select this option.

\section*{Impedances}

\section*{Stator resistance, Ra}

Stator resistance. The default value is 0.003 pu .

\section*{Stator leakage reactance, Xl}

Stator leakage reactance. The default value is 0.15 pu.

\section*{d-axis synchronous reactance, Xd}

The \(d\)-axis synchronous reactance. The default value is 1.81 pu .

\section*{\(\mathbf{q}\)-axis synchronous reactance, \(\mathbf{X q}\)}

The \(q\)-axis synchronous reactance. The default value is 1.76 pu .

\section*{zero-sequence reactance, XO}

The zero-sequence reactance. The default value is 0.15 pu .

\section*{d-axis transient reactance, \(\mathrm{Xd}^{\prime}\)}

The \(d\)-axis transient reactance. The default value is 0.3 pu .

\section*{\(\mathbf{q}\)-axis transient reactance, \(\mathbf{X q}{ }^{\prime}\)}

The \(q\)-axis transient reactance. The default value is 0 pu .
d-axis subtransient reactance, \(\mathrm{Xd}^{\text {" }}\)
The \(d\)-axis subtransient reactance. The default value is 0.23 pu .
\(\mathbf{q}\)-axis subtransient reactance, \(\mathbf{X q}{ }^{\prime \prime}\)
The \(q\)-axis subtransient reactance. The default value is 0.25 pu .

\section*{Time Constants}

\section*{Specify d-axis transient time constant}

Select between Open-circuit value and Short-circuit value. The default value is Open-circuit value.

\section*{d-axis transient open-circuit, Td0'}

The \(d\)-axis transient open-circuit time constant. This parameter is visible only when Specify d-axis transient time constant is set to Open-circuit value. The default value is 8 s .

\section*{d-axis transient short-circuit, Td'}

The \(d\)-axis transient short-circuit time constant. This parameter is visible only when Specify d-axis transient time constant is set to Short-circuit value. The default value is 1.326 s .

\section*{Specify d-axis subtransient time constant}

Select between Open-circuit value and Short-circuit value. The default value is Open-circuit value.
d-axis subtransient open-circuit, Td0"
The \(d\)-axis subtransient open-circuit time constant. This parameter is visible only when Specify d-axis subtransient time constant is set to Open-circuit value. The default value is 0.03 s .

\section*{d-axis subtransient short-circuit, \(\mathbf{T d}^{\prime \prime}\)}

The \(d\)-axis subtransient short-circuit time constant. This parameter is visible only when Specify d-axis subtransient time constant is set to Short-circuit value. The default value is 0.023 s .

\section*{Specify q-axis transient time constant}

Select between Open-circuit value and Short-circuit value. The default value is Open-circuit value.
q-axis transient open-circuit, Tq0'
The \(q\)-axis transient open-circuit time constant. This parameter is visible only when Specify q-axis transient time constant is set to Open-circuit value. The default value is 1 s .
\(\mathbf{q}\)-axis transient short-circuit, \(\mathbf{T q}^{\mathbf{\prime}}\)
The \(q\)-axis transient short-circuit time constant. This parameter is visible only when Specify q-axis transient time constant is set to Short-circuit value. The default value is 0.3693 s .

\section*{Specify \(q\)-axis subtransient time constant}

Select between Open-circuit value and Short-circuit value. The default value is Open-circuit value.

\section*{q-axis subtransient open-circuit, Tq0"}

The \(q\)-axis subtransient open-circuit time constant. This parameter is visible only when Specify q-axis subtransient time constant is set to Open-circuit value. The default value is 0.07 s .

\section*{\(\mathbf{q}\)-axis subtransient short-circuit, Tq"}

The \(q\)-axis subtransient short-circuit time constant. This parameter is visible only when Specify q-axis subtransient time constant is set to Short-circuit value. The default value is 0.0269 s .

\section*{Saturation}

\section*{Magnetic saturation representation}

Block magnetic saturation representation. Options are:
- None
- Per-unit open-circuit lookup table (Vag versus ifd)

The default value is None.

\section*{Per-unit field current saturation data, ifd}

The field current, \(i_{f d}\), data populates the air-gap voltage, \(V_{a g}\), versus field current, \(i_{f d}\), lookup table. This parameter is only visible when you set Magnetic saturation representation to Per-unit open-circuit lookup table (Vag versus ifd). This parameter must contain a vector with at least five elements. The default value is \([0.00,0.48,0.76,1.38,1.79] \mathrm{pu}\).

\section*{Per-unit air-gap voltage saturation data, Vag}

The air-gap voltage, \(V_{a g}\), data populates the air-gap voltage, \(V_{a g}\), versus field current, \(i_{f d}\), lookup table. This parameter is only visible when you set Magnetic saturation representation to Per-unit open-circuit lookup table (Vag versus ifd). This parameter must contain a vector with at least five elements. The default value is \([0.00,0.80,1.08,1.31,1.40] \mathrm{pu}\).

\section*{Initial Conditions}

\section*{Specify initialization by}

Select between Electrical power and voltage output and Mechanical and magnetic states. The default value is Electrical power and voltage output.

\section*{Terminal voltage magnitude}

Initial RMS line-line voltage. This parameter is visible only when you set Specify initialization by to Electrical power and voltage output. The default value is 24 e 3 V .

\section*{Terminal voltage angle}

Initial voltage angle. This parameter is visible only when you set Specify initialization by to Electrical power and voltage output. The default value is 0 deg.

\section*{Terminal active power}

Initial active power. This parameter is visible only when you set Specify initialization by to Electrical power and voltage output. The default value is 500 e 6 V *A.

\section*{Terminal reactive power}

Initial reactive power. This parameter is visible only when you set Specify initialization by to Electrical power and voltage output. The default value is \(0 \mathrm{~V} * \mathrm{~A}\).

\section*{Initial rotor angle}

Initial rotor angle. During steady-state operation, set this parameter to the sum of the load angle and required terminal voltage offset. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 deg .

\section*{Initial stator d-axis magnetic flux linkage}

Stator \(d\)-axis initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu.

\section*{Initial stator q-axis magnetic flux linkage}

Stator \(q\)-axis initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu.

\section*{Initial stator zero-sequence magnetic flux linkage}

Zero-sequence initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu.

\section*{Initial field circuit magnetic flux linkage}

Field circuit initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu.

\section*{Initial d-axis damper winding 1 magnetic flux linkage}

The \(d\)-axis damper winding 1 initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu .

\section*{Initial \(\mathbf{q}\)-axis damper winding 1 magnetic flux linkage}

The \(q\)-axis damper winding 1 initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu .

\section*{Initial \(\mathbf{q}\)-axis damper winding \(\mathbf{2}\) magnetic flux linkage}

The \(q\)-axis damper winding 2 initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu .

\section*{References}
[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.
[2] Lyshevski, S. E. Electromechanical Systems, Electric Machines and Applied Mechatronics. Boca Raton, FL: CRC Press, 1999.

\section*{See Also}

Synchronous Machine Measurement | Synchronous Machine Model 2.1 (fundamental) | Synchronous Machine Model 2.1 (standard) | Synchronous Machine Round Rotor (fundamental) | Synchronous Machine Salient Pole (fundamental) | Synchronous Machine Salient Pole (standard)

\author{
Topics \\ "Expand and Collapse Three-Phase Ports on a Block" \\ "Marine Full Electric Propulsion Power System" \\ "Three-Phase Synchronous Machine Control" \\ "Three-Phase Synchronous Machine Governor Control Design" \\ \section*{Introduced in R2013b}
}

\section*{Synchronous Machine Salient Pole (fundamental)}

Salient-pole synchronous machine with fundamental parameterization


\section*{Library}

Simscape / Power Systems / Simscape Components / Machines / Synchronous Machine (Salient Pole)

\section*{Description}

The Synchronous Machine Salient Pole (fundamental) block models a salient-pole synchronous machine using fundamental parameters.

\section*{Electrical Defining Equations}

The synchronous machine equations are expressed with respect to a rotating reference frame defined by the equation
\[
\theta_{e}(t)=N \theta_{r}(t),
\]
where:
- \(\theta_{e}\) is the electrical angle.
- \(N\) is the number of pole pairs.
- \(\theta_{r}\) is the rotor angle.

Park's transformation maps the synchronous machine equations to the rotating reference frame with respect to the electrical angle. Park's transformation is defined by
\[
P_{s}=\frac{2}{3}\left[\begin{array}{ccc}
\cos \theta_{e} & \cos \left(\theta_{e}-\frac{2 \pi}{3}\right) & \cos \left(\theta_{e}+\frac{2 \pi}{3}\right) \\
-\sin \theta_{e} & -\sin \left(\theta_{e}-\frac{2 \pi}{3}\right) & -\sin \left(\theta_{e}+\frac{2 \pi}{3}\right) \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right] .
\]

Park's transformation is used to define the per-unit synchronous machine equations. The stator voltage equations are defined by
\[
\begin{aligned}
& e_{d}=\frac{1}{\omega_{\text {base }}} \frac{\mathrm{d} \psi_{d}}{\mathrm{~d} t}-\Psi_{q} \omega_{r}-R_{a} i_{d}, \\
& e_{q}=\frac{1}{\omega_{\text {base }}} \frac{\mathrm{d} \psi_{q}}{\mathrm{~d} t}+\Psi_{d} \omega_{r}-R_{a} i_{q},
\end{aligned}
\]
and
\[
e_{0}=\frac{1}{\omega_{\text {base }}} \frac{d \Psi_{0}}{d t}-R_{a} i_{0},
\]
where:
- \(e_{d}, e_{q}\), and \(e_{0}\) are the \(d\)-axis, \(q\)-axis, and zero-sequence stator voltages, defined by
\[
\left[\begin{array}{l}
e_{d} \\
e_{q} \\
e_{0}
\end{array}\right]=P_{s}\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right] .
\]
\(v_{a}, v_{b}\), and \(v_{c}\) are the stator voltages measured from port \(\sim\) to neutral port n.
- \(\omega_{\text {base }}\) is the per-unit base electrical speed.
- \(\psi_{d}, \psi_{q}\), and \(\psi_{0}\) are the \(d\)-axis, \(q\)-axis, and zero-sequence stator flux linkages.
- \(\omega_{r}\) is the per-unit rotor rotational speed.
- \(R_{a}\) is the stator resistance.
- \(i_{d}, i_{q}\), and \(i_{0}\) are the \(d\)-axis, \(q\)-axis, and zero-sequence stator currents, defined by
\[
\left[\begin{array}{l}
i_{d} \\
i_{q} \\
i_{0}
\end{array}\right]=P_{s}\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right] .
\]
\(i_{a}, i_{b}\), and \(i_{c}\) are the stator currents flowing from port \(\sim\) to port \(n\).
The rotor voltage equations are defined by
\[
\begin{aligned}
& e_{f d}=\frac{1}{\omega_{b a s e}} \frac{d \Psi_{f d}}{d t}+R_{f d} i_{f d}, \\
& e_{1 d}=\frac{1}{\omega_{b a s e}} \frac{d \Psi_{1 d}}{d t}+R_{1 d} i_{1 d}=0,
\end{aligned}
\]
and
\[
e_{1 q}=\frac{1}{\omega_{b a s e}} \frac{d \Psi_{1 q}}{d t}+R_{1 q} i_{1 q}=0
\]
where:
- \(e_{f d}\) is the field voltage.
- \(e_{1 d}\), and \(e_{1 q}\) are the voltages across the \(d\)-axis damper winding 1 and \(q\)-axis damper winding 1 . They are equal to 0 .
- \(\psi_{f d}, \psi_{1 d}\), and \(\psi_{1 q}\) are the magnetic fluxes linking the field circuit, \(d\)-axis damper winding 1 , and \(q\)-axis damper winding 1 .
- \(R_{f d}, R_{1 d}\), and \(R_{1 q}\) are the resistances of rotor field circuit, \(d\)-axis damper winding 1, and \(q\)-axis damper winding 1 .
- \(i_{f d}, i_{1 d}\), and \(i_{1 q}\) are the currents flowing in the field circuit, \(d\)-axis damper winding 1 , and \(q\)-axis damper winding 1 .

The saturation equations are defined by
\[
\begin{aligned}
& \psi_{a d}=\psi_{d}+L_{l} i_{d}, \\
& \psi_{a q}=\psi_{q}+L_{l} i_{q}, \\
& \psi_{a t}=\sqrt{\psi_{a d}^{2}+\psi_{a q}^{2}},
\end{aligned}
\]
\(K_{s}=1\) (If saturation is disabled),
\(K_{s}=f\left(\psi_{a t}\right)\) (If saturation is enabled),
and
\[
L_{a d}=K_{s} * L_{a d u},
\]
where:
- \(\psi_{a d}\) is the \(d\)-axis air-gap or mutual flux linkage.
- \(\psi_{a q}\) is the \(q\)-axis air-gap or mutual flux linkage.
- \(\psi_{a t}\) is the air-gap flux linkage.
- \(K_{s}\) is the saturation factor.
- \(L_{\text {adu }}\) is the unsaturated mutual inductance of the stator \(d\)-axis.
- \(L_{a d}\) is the mutual inductance of the stator \(d\)-axis.

The saturation factor function, f , is calculated from the per-unit open-circuit lookup table as:
\[
\begin{aligned}
& L_{a d}=\frac{d \psi_{a t}}{d i_{f d}}, \\
& V_{a g}=g\left(i_{f d}\right),
\end{aligned}
\]
and
\[
L_{a d}=\frac{d g\left(i_{f d}\right)}{d i_{f d}}=\frac{d V_{a g}}{d i_{f d}},
\]
where:
- \(V_{a g}\) is the per-unit air-gap voltage.

In per-unit,
\[
K_{s}=\frac{L_{a d}}{L_{a d u}},
\]
and
\[
\psi_{a t}=V_{a g}
\]
can be rearranged to
\[
K_{s}=f\left(\psi_{a t}\right) .
\]

The stator flux linkage equations are defined by
\[
\begin{aligned}
& \Psi_{d}=-\left(L_{a d}+L_{l}\right) i_{d}+L_{a d} i_{f d}+L_{a d} i_{1 d}, \\
& \Psi q=-\left(L_{a q}+L_{l}\right) i_{q}+L_{a q} i_{1 q},
\end{aligned}
\]
and
\[
\Psi_{0}=-L_{0} i_{0},
\]
where:
- \(L_{l}\) is the stator leakage inductance.
- \(L_{a d}\) and \(L_{a q}\) are the mutual inductances of the stator \(d\)-axis and \(q\)-axis.

The rotor flux linkage equations are defined by
\[
\begin{aligned}
& \psi_{f d}=L_{f f d} i_{f d}+L_{f 1 d} i_{1 d}-L_{a d} i_{d}, \\
& \psi_{1 d}=L_{f 1 d} i_{f d}+L_{11 d} i_{1 d}-L_{a d} i_{d},
\end{aligned}
\]
and
\[
\psi_{1 q}=L_{11 q} i_{1 q}-L_{a q} i_{q},
\]
where:
- \(L_{f f d}, L_{11 d}\), and \(L_{11 q}\) are the self-inductances of the rotor field circuit, \(d\)-axis damper winding 1 , and \(q\)-axis damper winding \(1 . L_{f 1 d}\) is the rotor field circuit and \(d\)-axis damper winding 1 mutual inductance. They are defined by the following equations.
\[
\begin{aligned}
& L_{f f d}=L_{a d}+L_{f d} \\
& L_{f 1 d}=L_{f f d}-L_{f d} \\
& L_{11 d}=L_{f 1 d}+L_{1 d} \\
& L_{11 q}=L_{a q}+L_{1 q}
\end{aligned}
\]

These equations assume that per-unit mutual inductance \(L_{12 q}=L_{a q}\), that is, the stator and rotor currents in the \(q\)-axis all link a single mutual flux represented by \(L_{a q}\).

The rotor torque is defined by
\[
T_{e}=\Psi_{d} i_{q}-\Psi_{q} i_{d}
\]

\section*{Plotting and Display Options}

You can perform plotting and display actions using the Power Systems menu on the block context menu.

Right-click the block and, from the Power Systems menu, select an option:
- Display Base Values displays the machine per-unit base values in the MATLAB Command Window.
- Display Associated Base Values displays associated per-unit base values in the MATLAB Command Window.
- Display Associated Initial Conditions displays associated initial conditions in the MATLAB Command Window.
- Plot Open-Circuit Saturation (pu) plots air-gap voltage, \(V_{a g}\), versus field current, \(i_{f d}\), both measured in per-unit, in a MATLAB figure window. The plot contains three traces:
- Unsaturated: Stator d-axis mutual inductance (unsaturated), Ladu you specify
- Saturated: Per-unit open-circuit lookup table (Vag versus ifd) you specify
- Derived: Open-circuit lookup table (per-unit) derived from the Per-unit opencircuit lookup table (Vag versus ifd) you specify. This data is used to calculate the saturation factor, \(K_{s}\), versus magnetic flux linkage, \(\psi_{a t}\), characteristic.
- Plot Saturation Factor (pu) plots saturation factor, \(K_{s}\), versus magnetic flux linkage, \(\psi_{a t}\), both measured in per-unit, in a MATLAB figure window using the present machine parameters. This parameter is derived from other parameters that you specify:
- Stator d-axis mutual inductance (unsaturated), Ladu
- Per-unit field current saturation data, ifd
- Per-unit air-gap voltage saturation data, Vag

\section*{Ports}

The block has the following ports:
fd+
Electrical conserving port corresponding to the field winding positive terminal fd-

Electrical conserving port corresponding to the field winding negative terminal R

Mechanical rotational conserving port associated with the machine rotor C

Mechanical rotational conserving port associated with the machine case

\section*{pu}

Physical signal vector port associated with the machine per-unit measurements. The vector elements are:
- pu_fd_Efd
- pu_fd_Ifd
- pu_torque
- pu velocity
- pu_ed
- pu_eq
- pu_e0
- pu_id
- pu_iq
- pu_i0

Expandable three-phase port associated with the stator windings
n
Electrical conserving port associated with the neutral point of the wye winding configuration

\section*{Parameters}
- "Main" on page 1-906
- "Impedances" on page 1-907
- "Saturation" on page 1-908
- "Initial Conditions" on page 1-909

\section*{Main}

\section*{Rated apparent power}

Rated apparent power. The default value is 300 e 6 V *A.

\section*{Rated voltage}

RMS rated line-line voltage. The default value is 24 e 3 V .

\section*{Rated electrical frequency}

Nominal electrical frequency at which rated apparent power is quoted. The default value is 60 Hz .

\section*{Number of pole pairs}

Number of machine pole pairs. The default value is 10.

\section*{Specify field circuit input required to produce rated terminal voltage at no load} by

Choose between Field circuit voltage and Field circuit current. The default value is Field circuit current.

\section*{Field circuit current}

This parameter is visible only when Specify field circuit input required to produce rated terminal voltage at no load by is set to Field circuit current. The default value is 1000 A.

\section*{Field circuit voltage}

This parameter is visible only when Specify field circuit input required to produce rated terminal voltage at no load by is set to Field circuit voltage. The default value is 216.54 V .

\section*{Zero sequence}

Option to neglect zero-sequence terms. Choices are:
- Include - Include zero-sequence terms. To prioritize model fidelity, use this default setting. Using this option results in an error for simulations that use the Partitioning solver. For more information, see "Increase Simulation Speed Using the Partitioning Solver" (Simscape).
- Exclude - Exclude zero-sequence terms. To prioritize simulation speed for desktop simulation or real-time deployment, select this option.

\section*{Impedances}

\section*{Stator d-axis mutual inductance (unsaturated), Ladu}

Unsaturated stator \(d\)-axis mutual inductance, \(L_{a d u}\). If Magnetic saturation representation is set to None, this is equivalent to the stator \(d\)-axis mutual inductance, \(L_{a d}\). The default value is 0.9 pu .

\section*{Stator q-axis mutual inductance, Laq}

Stator \(q\)-axis mutual inductance, Laq. The default value is 0.55 pu .

\section*{Stator zero-sequence inductance, L0}

Stator zero-sequence inductance, L0. The default value is 0.15 pu .

\section*{Stator leakage inductance, Ll}

Stator leakage inductance. The default value is 0.15 pu .

\section*{Stator resistance, Ra}

Stator resistance. The default value is 0.011 pu .

\section*{Rotor field circuit inductance, Lfd}

Rotor field circuit inductance. The default value is 0.2571 pu .

\section*{Rotor field circuit resistance, Rfd}

Rotor field circuit resistance. The default value is 0.0006 pu .

\section*{Rotor d-axis damper winding 1 inductance, L1d}

Rotor \(d\)-axis damper winding 1 inductance. The default value is 0.2 pu .

\section*{Rotor d-axis damper winding 1 resistance, R1d}

Rotor \(d\)-axis damper winding 1 resistance. The default value is 0.0354 pu .

\section*{Rotor \(\mathbf{q}\)-axis damper winding 1 inductance, L1q}

Rotor \(q\)-axis damper winding 1 inductance. The default value is 0.2567 pu.

\section*{Rotor \(q\)-axis damper winding 1 resistance, R1q}

Rotor \(q\)-axis damper winding 1 resistance. The default value is 0.0428 pu .

\section*{Saturation}

\section*{Magnetic saturation representation}

Block magnetic saturation representation. Options are:
- None
- Per-unit open-circuit lookup table (Vag versus ifd)

The default value is None.

\section*{Per-unit field current saturation data, ifd}

The field current, \(i_{f d}\), data populates the air-gap voltage, \(V_{a g}\), versus field current, \(i_{f d}\), lookup table. This parameter is only visible when you set Magnetic saturation
representation to Per-unit open-circuit lookup table (Vag versus ifd). This parameter must contain a vector with at least five elements. The default value is \([0.00,0.48,0.76,1.38,1.79] \mathrm{pu}\).

\section*{Per-unit air-gap voltage saturation data, Vag}

The air-gap voltage, \(V_{a g}\), data populates the air-gap voltage, \(V_{a g}\), versus field current, \(i_{f d}\), lookup table. This parameter is only visible when you set Magnetic saturation representation to Per-unit open-circuit lookup table (Vag versus ifd). This parameter must contain a vector with at least five elements. The default value is [0.00 0.43 0.59 0.71 0.76] pu.

\section*{Initial Conditions}

\section*{Specify initialization by}

Select between Electrical power and voltage output and Mechanical and magnetic states. The default value is Electrical power and voltage output.

\section*{Terminal voltage magnitude}

Initial RMS line-line voltage. This parameter is visible only when you set Specify initialization by to Electrical power and voltage output. The default value is 24 e 3 V .

\section*{Terminal voltage angle}

Initial voltage angle. This parameter is visible only when you set Specify initialization by to Electrical power and voltage output. The default value is 0 deg.

\section*{Terminal active power}

Initial active power. This parameter is visible only when Specify initialization by is set to Electrical power and voltage output. The default value is \(270 \mathrm{e} 6 \mathrm{~V} * \mathrm{~A}\).

\section*{Terminal reactive power}

Initial reactive power. This parameter is visible only when you set Specify
initialization by to Electrical power and voltage output. The default value is 0 V *.

\section*{Initial rotor angle}

Initial rotor angle. During steady-state operation, set this parameter to the sum of the load angle and required terminal voltage offset. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 deg .

\section*{Initial stator d-axis magnetic flux linkage}

Stator \(d\)-axis initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu.

\section*{Initial stator \(\mathbf{q}\)-axis magnetic flux linkage}

Stator \(q\)-axis initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu.

\section*{Initial stator zero-sequence magnetic flux linkage}

Zero-sequence initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu.

\section*{Initial field circuit magnetic flux linkage}

Field circuit initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu.

\section*{Initial d-axis damper winding 1 magnetic flux linkage}

The \(d\)-axis damper winding 1 initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu .

\section*{Initial \(\mathbf{q}\)-axis damper winding 1 magnetic flux linkage}

The \(q\)-axis damper winding 1 initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu .

\section*{Initial \(\mathbf{q}\)-axis damper winding \(\mathbf{2}\) magnetic flux linkage}

The \(q\)-axis damper winding 2 initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu .

\section*{References}
[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.
[2] Lyshevski, S. E. Electromechanical Systems, Electric Machines and Applied Mechatronics. Boca Raton, FL: CRC Press, 1999.

\section*{See Also}

Synchronous Machine Measurement | Synchronous Machine Model 2.1 (fundamental) | Synchronous Machine Model 2.1 (standard) | Synchronous Machine Round Rotor (fundamental) | Synchronous Machine Round Rotor (standard) | Synchronous Machine Salient Pole (standard)

\author{
Topics \\ "Expand and Collapse Three-Phase Ports on a Block" \\ "SM Torque Control" \\ "SM Velocity Control"
}

Introduced in R2013b

\section*{Synchronous Machine Salient Pole (standard)}

Salient-pole synchronous machine with standard parameterization


\section*{Library}

Simscape / Power Systems / Simscape Components / Machines / Synchronous Machine (Salient Pole)

\section*{Description}

The Synchronous Machine Salient Pole (standard) block models a salient-pole synchronous machine n using standard parameters.

\section*{Electrical Defining Equations}

The synchronous machine equations are expressed with respect to a rotating reference frame defined by the equation
\[
\theta_{e}(t)=N \theta_{r}(t),
\]
where:
- \(\theta_{e}\) is the electrical angle.
- \(N\) is the number of pole pairs.
- \(\theta_{r}\) is the rotor angle.

Park's transformation maps the synchronous machine equations to the rotating reference frame with respect to the electrical angle. Park's transformation is defined by
\[
P_{s}=\frac{2}{3}\left[\begin{array}{ccc}
\cos \theta_{e} & \cos \left(\theta_{e}-\frac{2 \pi}{3}\right) & \cos \left(\theta_{e}+\frac{2 \pi}{3}\right) \\
-\sin \theta_{e} & -\sin \left(\theta_{e}-\frac{2 \pi}{3}\right) & -\sin \left(\theta_{e}+\frac{2 \pi}{3}\right) \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right]
\]

Park's transformation is used to define the per-unit synchronous machine equations. The stator voltage equations are defined by
\[
\begin{aligned}
& e_{d}=\frac{1}{\omega_{\text {base }}} \frac{\mathrm{d} \psi_{d}}{\mathrm{~d} t}-\Psi_{q} \omega_{r}-R_{a} i_{d} \\
& e_{q}=\frac{1}{\omega_{\text {base }}} \frac{\mathrm{d} \psi_{q}}{\mathrm{~d} t}+\Psi_{d} \omega_{r}-R_{a} i_{q}
\end{aligned}
\]
and
\[
e_{0}=\frac{1}{\omega_{\text {base }}} \frac{d \Psi_{0}}{d t}-R_{a} i_{0}
\]
where:
- \(e_{d}, e_{q}\), and \(e_{0}\) are the \(d\)-axis, \(q\)-axis, and zero-sequence stator voltages, defined by
\[
\left[\begin{array}{l}
e_{d} \\
e_{q} \\
e_{0}
\end{array}\right]=P_{s}\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right] .
\]
\(v_{a}, v_{b}\), and \(v_{c}\) are the stator voltages measured from port \(\sim\) to neutral port n.
- \(\omega_{\text {base }}\) is the per-unit base electrical speed.
- \(\psi_{d}, \psi_{q}\), and \(\psi_{0}\) are the \(d\)-axis, \(q\)-axis, and zero-sequence stator flux linkages.
- \(\omega_{r}\) is the per-unit rotor rotational speed.
- \(R_{a}\) is the stator resistance.
- \(i_{d}, i_{q}\), and \(i_{0}\) are the \(d\)-axis, \(q\)-axis, and zero-sequence stator currents, defined by
\[
\left[\begin{array}{l}
i_{d} \\
i_{q} \\
i_{0}
\end{array}\right]=P_{s}\left[\begin{array}{c}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right] .
\]
\(i_{a}, i_{b}\), and \(i_{c}\) are the stator currents flowing from port \(\sim\) to port n.
The rotor voltage equations are defined by
\[
\begin{aligned}
& e_{f d}=\frac{1}{\omega_{b a s e}} \frac{d \Psi_{f d}}{d t}+R_{f d} i_{f d}, \\
& e_{1 d}=\frac{1}{\omega_{b a s e}} \frac{d \Psi_{1 d}}{d t}+R_{1 d} i_{1 d}=0,
\end{aligned}
\]
and
\[
e_{1 q}=\frac{1}{\omega_{b a s e}} \frac{d \Psi_{1 q}}{d t}+R_{1 q} i_{1 q}=0
\]
where:
- \(e_{f d}\) is the field voltage.
- \(e_{1 d}\), and \(e_{1 q}\) are the voltages across the \(d\)-axis damper winding 1 and \(q\)-axis damper winding 1 . They are equal to 0 .
- \(\psi_{f d}, \psi_{1 d}\), and \(\psi_{1 q}\), are the magnetic fluxes linking the field circuit, \(d\)-axis damper winding 1 , and \(q\)-axis damper winding 1 .
- \(\quad R_{f d}, R_{1 d}\), and \(R_{1 q}\) are the resistances of rotor field circuit, \(d\)-axis damper winding 1, and \(q\)-axis damper winding 1 .
- \(i_{f d}, i_{1 d}\), and \(i_{1 q}\) are the currents flowing in the field circuit, \(d\)-axis damper winding 1 , and \(q\)-axis damper winding 1 .

The saturation equations are defined by
\[
\begin{aligned}
& \psi_{a d}=\psi_{d}+L_{l} i_{d} \\
& \psi_{a q}=\psi_{q}+L_{l} i_{q} \\
& \psi_{a t}=\sqrt{\psi_{a d}^{2}+\psi_{a q}^{2}}
\end{aligned}
\]
\(K_{s}=1\) (If saturation is disabled),
\(K_{s}=f\left(\psi_{a t}\right)\) (If saturation is enabled),
and
\[
L_{a d}=K_{s} * L_{a d u},
\]
where:
- \(\psi_{a d}\) is the \(d\)-axis air-gap or mutual flux linkage.
- \(\psi_{a q}\) is the \(q\)-axis air-gap or mutual flux linkage.
- \(\psi_{a t}\) is the air-gap flux linkage.
- \(K_{s}\) is the saturation factor.
- \(L_{\text {adu }}\) is the unsaturated mutual inductance of the stator \(d\)-axis.
- \(L_{a d}\) is the mutual inductance of the stator \(d\)-axis.

The saturation factor function, f , is calculated from the per-unit open-circuit lookup table as:
\[
\begin{aligned}
& L_{a d}=\frac{d \psi_{a t}}{d i_{f d}}, \\
& V_{a g}=g\left(i_{f d}\right),
\end{aligned}
\]
and
\[
L_{a d}=\frac{d g\left(i_{f d}\right)}{d i_{f d}}=\frac{d V_{a g}}{d i_{f d}},
\]
where:
- \(V_{a g}\) is the per-unit air-gap voltage.

In per-unit,
\[
K_{s}=\frac{L_{a d}}{L_{a d u}}
\]
and
\[
\psi_{a t}=V_{a g}
\]
can be rearranged to
\[
K_{s}=f\left(\psi_{a t}\right) .
\]

The stator flux linkage equations are defined by
\[
\begin{aligned}
& \Psi_{d}=-\left(L_{a d}+L_{l}\right) i_{d}+L_{a d} i_{f d}+L_{a d} i_{1 d}, \\
& \Psi q=-\left(L_{a q}+L_{l}\right) i_{q}+L_{a q} i_{1 q},
\end{aligned}
\]
and
\[
\Psi_{0}=-L_{0} i_{0}
\]
where:
- \(L_{l}\) is the stator leakage inductance.
- \(L_{a d}\) and \(L_{a q}\) are the mutual inductances of the stator \(d\)-axis and \(q\)-axis.

The rotor flux linkage equations are defined by
\[
\begin{aligned}
& \psi_{f d}=L_{f f d} i_{f d}+L_{f 1 d} i_{1 d}-L_{a d} i_{d}, \\
& \psi_{1 d}=L_{f 1 d} i_{f d}+L_{1 d d} i_{1 d}-L_{a d} i_{d},
\end{aligned}
\]
and
\[
\psi_{1 q}=L_{11 q} i_{1 q}-L_{a q} i_{q},
\]
where:
- \(L_{f f d}, L_{11 d}\), and \(L_{11 q}\) are the self-inductances of the rotor field circuit, \(d\)-axis damper winding 1 , and \(q\)-axis damper winding \(1 . L_{f 1 d}\) is the rotor field circuit and \(d\)-axis damper winding 1 mutual inductance. They are defined by the following equations.
\[
\begin{aligned}
& L_{f f d}=L_{a d}+L_{f d} \\
& L_{f 1 d}=L_{f f d}-L_{f d} \\
& L_{11 d}=L_{f 1 d}+L_{1 d} \\
& L_{11 q}=L_{a q}+L_{1 q}
\end{aligned}
\]

These equations assume that per-unit mutual inductance \(L_{12 q}=L_{a q}\), that is, the stator and rotor currents in the \(q\)-axis all link a single mutual flux represented by \(L_{a q}\).

The rotor torque is defined by
\[
T_{e}=\Psi_{d} i_{q}-\Psi_{q} i_{d}
\]

These defining equations do not describe the time constants you can set in the dialog box. To see their relationship with the equation coefficients, see [1].

\section*{Plotting and Display Options}

You can perform plotting and display actions using the Power Systems menu on the block context menu.

Right-click the block and, from the Power Systems menu, select an option:
- Display Base Values displays the machine per-unit base values in the MATLAB Command Window.
- Display Associated Base Values displays associated per-unit base values in the MATLAB Command Window.
- Display Associated Initial Conditions displays associated initial conditions in the MATLAB Command Window.
- Plot Open-Circuit Saturation (pu) plots air-gap voltage, \(V_{a g}\), versus field current, \(i_{f d}\), both measured in per-unit, in a MATLAB figure window. The plot contains three traces:
- Unsaturated: Stator d-axis mutual inductance (unsaturated), Ladu you specify
- Saturated: Per-unit open-circuit lookup table (Vag versus ifd) you specify
- Derived: Open-circuit lookup table (per-unit) derived from the Per-unit opencircuit lookup table (Vag versus ifd) you specify. This data is used to calculate the saturation factor, \(K_{s}\), versus magnetic flux linkage, \(\psi_{a t}\), characteristic.
- Plot Saturation Factor (pu) plots saturation factor, \(K_{s}\), versus magnetic flux linkage, \(\psi_{a t}\), both measured in per-unit, in a MATLAB figure window using the present machine parameters. This parameter is derived from other parameters that you specify:
- Stator d-axis mutual inductance (unsaturated), Ladu
- Per-unit field current saturation data, ifd
- Per-unit air-gap voltage saturation data, Vag

\section*{Ports}

The block has the following ports:

\section*{fd +}

Electrical conserving port corresponding to the field winding positive terminal fd-

Electrical conserving port corresponding to the field winding negative terminal R

Mechanical rotational conserving port associated with the machine rotor

\section*{C}

Mechanical rotational conserving port associated with the machine case

\section*{pu}

Physical signal vector port associated with the machine per-unit measurements. The vector elements are:
- pu_fd_Efd
- pu_fd_Ifd
- pu_torque
- pu_velocity
- pu_ed
- pu_eq
- pu_e0
- pu_id
- pu_iq
- pu_i0

Expandable three-phase port associated with the stator windings
n
Electrical conserving port associated with the neutral point of the wye winding configuration

\section*{Parameters}
- "Main" on page 1-920
- "Impedances" on page 1-921
- "Time Constants" on page 1-921
- "Saturation" on page 1-922
- "Initial Conditions" on page 1-923

\section*{Main}

\section*{Rated apparent power}

Rated apparent power. The default value is \(300 \mathrm{e} 6 \mathrm{~V} * \mathrm{~A}\).

\section*{Rated voltage}

RMS rated line-line voltage. The default value is 24 e 3 V .

\section*{Rated electrical frequency}

Nominal electrical frequency at which rated apparent power is quoted. The default value is 60 Hz .

\section*{Number of pole pairs}

Number of machine pole pairs. The default value is 10.

\section*{Specify field circuit input required to produce rated terminal voltage at no load by}

Choose between Field circuit voltage and Field circuit current. The default value is Field circuit current.

\section*{Field circuit current}

This parameter is visible only when Specify field circuit input required to produce rated terminal voltage at no load by is set to Field circuit current. The default value is 1000 A .

\section*{Field circuit voltage}

This parameter is visible only when Specify field circuit input required to produce rated terminal voltage at no load by is set to Field circuit voltage. The default value is 216.54 V .

\section*{Zero sequence}

Option to neglect zero-sequence terms. Choices are:
- Include - Include zero-sequence terms. To prioritize model fidelity, use this default setting. Using this option results in an error for simulations that use the Partitioning solver. For more information, see "Increase Simulation Speed Using the Partitioning Solver" (Simscape).
- Exclude - Exclude zero-sequence terms. To prioritize simulation speed for desktop simulation or real-time deployment, select this option.

\section*{Impedances}

\section*{Stator resistance, Ra}

Stator resistance. The default value is 0.011 pu .

\section*{Stator leakage reactance, Xl}

Stator leakage reactance. The default value is 0.15 pu .

\section*{\(\mathbf{d}\)-axis synchronous reactance, Xd}

The \(d\)-axis synchronous reactance. The default value is 1.05 pu .

\section*{\(\mathbf{q}\)-axis synchronous reactance, \(\mathbf{X q}\)}

The \(q\)-axis synchronous reactance. The default value is 0.7 pu .

\section*{zero-sequence reactance, \(X 0\)}

The zero-sequence reactance. The default value is 0.15 pu .

\section*{d-axis transient reactance, \(\mathrm{Xd}^{\prime}\)}

The \(d\)-axis transient reactance. The default value is 0.35 pu .

\section*{d-axis subtransient reactance, Xd' \(^{\prime \prime}\)}

The \(d\)-axis subtransient reactance. The default value is 0.25 pu .

\section*{\(\mathbf{q}\)-axis subtransient reactance, \(\mathbf{X q}{ }^{\prime \prime}\)}

The \(q\)-axis subtransient reactance. The default value is 0.325 pu .

\section*{Time Constants}

\section*{Specify d-axis transient time constant}

Select between Open-circuit value and Short-circuit value. The default value is Open-circuit value.

\section*{d-axis transient open-circuit, Td0'}

The \(d\)-axis transient open-circuit time constant. This parameter is visible only when Specify d-axis transient time constant is set to Open-circuit value. The default value is 5.25 s .

\section*{d-axis transient short-circuit, Td'}

The \(d\)-axis transient short-circuit time constant. This parameter is visible only when Specify d-axis transient time constant is set to Short-circuit value. The default value is 1.75 s .

\section*{Specify d-axis subtransient time constant}

Select between Open-circuit value and Short-circuit value. The default value is Open-circuit value.
d-axis subtransient open-circuit, Td0"
The \(d\)-axis subtransient open-circuit time constant. This parameter is visible only when Specify d-axis subtransient time constant is set to Open-circuit value. The default value is 0.03 s .

\section*{d-axis subtransient short-circuit, Td \({ }^{\prime \prime}\)}

The \(d\)-axis subtransient short-circuit time constant. This parameter is visible only when Specify d-axis subtransient time constant is set to Short-circuit value. The default value is 0.0214 s .

\section*{Specify \(q\)-axis subtransient time constant}

Select between Open-circuit value and Short-circuit value. The default value is Open-circuit value.
\(q\)-axis subtransient open-circuit, Tq0"
The \(q\)-axis subtransient open-circuit time constant. This parameter is visible only when Specify q-axis subtransient time constant is set to Open-circuit value. The default value is 0.05 s .

\section*{\(\mathbf{q}\)-axis subtransient short-circuit, Tq"}

The \(q\)-axis subtransient short-circuit time constant. This parameter is visible only when Specify q-axis subtransient time constant is set to Short-circuit value. The default value is 0.0232 s .

\section*{Saturation}

\section*{Magnetic saturation representation}

Block magnetic saturation representation. Options are:
- None
- Per-unit open-circuit lookup table (Vag versus ifd)

The default value is None.

\section*{Per-unit field current saturation data, ifd}

The field current, \(i_{f d}\), data populates the air-gap voltage, \(V_{a g}\), versus field current, \(i_{f d}\), lookup table. This parameter is only visible when you set Magnetic saturation
representation to Per-unit open-circuit lookup table (Vag versus \(i f d)\). This parameter must contain a vector with at least five elements. The default value is \([0.00,0.48,0.76,1.38,1.79] \mathrm{pu}\).

\section*{Per-unit air-gap voltage saturation data, Vag}

The air-gap voltage, \(V_{a g}\), data populates the air-gap voltage, \(V_{a g}\), versus field current, \(i_{f d}\), lookup table. This parameter is only visible when you set Magnetic saturation representation to Per-unit open-circuit lookup table (Vag versus ifd). This parameter must contain a vector with at least five elements. The default value is [0.00 0.430 .590 .710 .76\(]\) pu.

\section*{Initial Conditions}

\section*{Specify initialization by}

Select between Electrical power and voltage output and Mechanical and magnetic states. The default value is Electrical power and voltage output.

\section*{Terminal voltage magnitude}

Initial RMS line-line voltage. This parameter is visible only when you set Specify initialization by to Electrical power and voltage output. The default value is 24 e 3 V .

\section*{Terminal voltage angle}

Initial voltage angle. This parameter is visible only when you set Specify initialization by to Electrical power and voltage output. The default value is 0 deg.

\section*{Terminal active power}

Initial active power. This parameter is visible only when Specify initialization by is set to Electrical power and voltage output. The default value is 270 e 6 V *A.

\section*{Terminal reactive power}

Initial reactive power. This parameter is visible only when you set Specify
initialization by to Electrical power and voltage output. The default value is \(0 \mathrm{~V}^{*} \mathrm{~A}\).

\section*{Initial rotor angle}

Initial rotor angle. During steady-state operation, set this parameter to the sum of the load angle and required terminal voltage offset. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 deg.

\section*{Initial stator d-axis magnetic flux linkage}

Stator \(d\)-axis initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu.

\section*{Initial stator \(\mathbf{q}\)-axis magnetic flux linkage}

Stator \(q\)-axis initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu.

\section*{Initial stator zero-sequence magnetic flux linkage}

Zero-sequence initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu.

\section*{Initial field circuit magnetic flux linkage}

Field circuit initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu.

\section*{Initial d-axis damper winding 1 magnetic flux linkage}

The \(d\)-axis damper winding 1 initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu .

\section*{Initial \(\mathbf{q}\)-axis damper winding 1 magnetic flux linkage}

The \(q\)-axis damper winding 1 initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu .

\section*{Initial \(\mathbf{q}\)-axis damper winding \(\mathbf{2}\) magnetic flux linkage}

The \(q\)-axis damper winding 2 initial flux linkage. This parameter is visible only when you set Specify initialization by to Mechanical and magnetic states. The default value is 0 pu .

\section*{References}
[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.
[2] Lyshevski, S. E. Electromechanical Systems, Electric Machines and Applied Mechatronics. Boca Raton, FL: CRC Press, 1999.

\section*{See Also}

Synchronous Machine Measurement | Synchronous Machine Model 2.1 (fundamental) | Synchronous Machine Model 2.1 (standard) | Synchronous Machine Round Rotor (fundamental) | Synchronous Machine Salient Pole (fundamental) | Synchronous Machine Salient Pole (fundamental)

\author{
Topics \\ "Expand and Collapse Three-Phase Ports on a Block" \\ "Marine Full Electric Propulsion Power System" \\ Introduced in R2013b
}

\section*{Synchronous Reluctance Machine}

\section*{Synchronous reluctance machine with sinusoidal flux distribution Library: Simscape / Power Systems / Simscape Components / Machines / Reluctance}


\section*{Description}

The Synchronous Reluctance Machine block represents a synchronous reluctance machine (SynRM) with sinusoidal flux distribution. The figure shows the equivalent electrical circuit for the stator windings.


\section*{Motor Construction}

The diagram shows the motor construction with a single pole-pair on the rotor. For the axes convention shown, when rotor mechanical angle \(\theta_{r}\) is zero, the \(a\)-phase and
permanent magnet fluxes are aligned. The block supports a second rotor axis definition for which rotor mechanical angle is defined as the angle between the \(a\)-phase magnetic axis and the rotor \(q\)-axis.


\section*{Equations}

The combined voltage across the stator windings is
\[
\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right]=\left[\begin{array}{ccc}
R_{s} & 0 & 0 \\
0 & R_{s} & 0 \\
0 & 0 & R_{s}
\end{array}\right]\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right]+\left[\begin{array}{c}
\frac{d \psi_{a}}{d t} \\
\frac{d \psi_{b}}{d t} \\
\frac{d \psi_{c}}{d t}
\end{array}\right],
\]
where:
- \(v_{a}, v_{b}\), and \(v_{c}\) are the individual phase voltages across the stator windings.
- \(R_{s}\) is the equivalent resistance of each stator winding.
- \(i_{a}, i_{b}\), and \(i_{c}\) are the currents flowing in the stator windings.
- \(\psi_{a}, \psi_{b}\), and \(\psi_{c}\) are the magnetic fluxes that link each stator winding.

The permanent magnet, excitation winding, and the three stator windings contribute to the flux that links each winding. The total flux is defined as
\[
\left[\begin{array}{l}
\psi_{a} \\
\psi_{b} \\
\psi_{c}
\end{array}\right]=\left[\begin{array}{lll}
L_{a a} & L_{a b} & L_{a c} \\
L_{b a} & L_{b b} & L_{b c} \\
L_{c a} & L_{c b} & L_{c c}
\end{array}\right]\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right]
\]
where:
- \(L_{a a}, L_{b b}\), and \(L_{c c}\) are the self-inductances of the stator windings.
- \(L_{a b}, L_{a c}, L_{b a}, L_{b c}, L_{c a}\), and \(L_{c b}\) are the mutual inductances of the stator windings.

The inductances in the stator windings are functions of rotor electrical angle and are defined as
\[
\begin{aligned}
& L_{a a}=L_{s}+L_{m} \cos \left(2 \theta_{r}\right) \\
& L_{b b}=L_{s}+L_{m} \cos \left(2\left(\theta_{r}-\frac{2 \pi}{3}\right)\right), \\
& L_{c c}=L_{s}+L_{m} \cos \left(2\left(\theta_{r}+\frac{2 \pi}{3}\right)\right), \\
& L_{a b}=L_{b a}=-M_{s}-L_{m} \cos \left(\theta_{r}+\frac{\pi}{6}\right), \\
& L_{b c}=L_{c b}=-M_{s}-L_{m} \cos \left(\theta_{r}+\frac{\pi}{6}-\frac{2 \pi}{3}\right), \\
& L_{c a}=L_{a c}=-M_{s}-L_{m} \cos \left(\theta_{r}+\frac{\pi}{6}+\frac{2 \pi}{3}\right),
\end{aligned}
\]
where:
- \(L_{s}\) is the stator self-inductance per phase. This value is the average self-inductance of each of the stator windings.
- \(L_{m}\) is the stator inductance fluctuation. This value is the amplitude of the fluctuation in self-inductance and mutual inductance with changing rotor angle.
- \(\theta_{r}\) is the rotor mechanical angle.
- \(M_{s}\) is the stator mutual inductance. This value is the average mutual inductance between the stator windings.

\section*{Simplified Equations}

Applying the Park transformation to the block electrical defining equations produces an expression for torque that is independent of rotor angle.

The Park transformation, \(K\), is defined as
\[
K=\frac{2}{3}\left[\begin{array}{ccc}
\cos \theta_{e} & \cos \left(\theta_{e}-\frac{2 \pi}{3}\right) & \cos \left(\theta_{e}+\frac{2 \pi}{3}\right) \\
-\sin \theta_{e} & -\sin \left(\theta_{e}-\frac{2 \pi}{3}\right) & -\sin \left(\theta_{e}+\frac{2 \pi}{3}\right) \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right]
\]
where \(\theta_{e}\) is the electrical angle. The electrical angle depends on the rotor mechanical angle and the number of pole pairs such that
\[
\theta_{e}=N \theta_{r},
\]
where:
- \(N\) is the number of pole pairs.
- \(\theta_{r}\) is the rotor mechanical angle.

Applying the Park transformation to the first two electrical defining equations produces equations that define the behavior of the block:
\[
v_{d}=R_{s} i_{d}+L_{d} \frac{d i_{d}}{d t}-N \omega i_{q} L_{q},
\]
\[
\begin{aligned}
& v_{q}=R_{s} i_{q}+L_{q} \frac{d i_{q}}{d t}+N \omega i_{d} L_{d}, \\
& v_{0}=R_{s} i_{0}+L_{0} \frac{d i_{0}}{d t} \\
& T=\frac{3}{2} N\left(i_{q} i_{d} L_{d}-i_{d} i_{q} L_{q}\right) \\
& J \frac{d \omega}{d t}=T-T_{L}-B_{m} \omega
\end{aligned}
\]
where:
- \(i_{d}, i_{q}\), and \(i_{0}\) are the \(d\)-axis, \(q\)-axis, and zero-sequence currents, defined by
\[
\left[\begin{array}{l}
i_{d} \\
i_{q} \\
i_{0}
\end{array}\right]=P\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right],
\]
where \(i_{a}, i_{b}\), and \(i_{c}\) are the stator currents.
- \(v_{d}, v_{q}\), and \(v_{0}\) are the \(d\)-axis, \(q\)-axis, and zero-sequence currents, defined by
\[
\left[\begin{array}{l}
v_{d} \\
v_{q} \\
v_{0}
\end{array}\right]=P\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right]
\]
where \(v_{a}, v_{b}\), and \(v_{c}\) are the stator currents.
- The \(d q 0\) inductances are defined, respectively as
\[
L_{d}=L_{s}+M_{s}+\frac{3}{2} L_{m}
\]
\[
L_{q}=L_{s}+M_{s}-\frac{3}{2} L_{m}
\]
- \(L_{0}=L_{s}-2 M_{s}\).
- \(R_{s}\) is the stator resistance per phase.
- \(N\) is the number of rotor pole pairs.
- \(T\) is the rotor torque. For the Synchronous Reluctance Machine block, torque flows from the machine case (block conserving port \(\mathbf{C}\) ) to the machine rotor (block conserving port \(\mathbf{R}\) ).
- \(T_{L}\) is the load torque.
- \(B_{m}\) is the rotor damping.
- \(\omega\) is the rotor mechanical rotational speed.
- \(J\) is the rotor inertia.

\section*{Assumptions}

The block assumes that the flux distribution is sinusoidal.

\section*{Variables}

Use the Variables settings to specify the priority and initial target values for the block variables before simulation. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape) .

Unlike block parameters, variables do not have conditional visibility. The Variables settings include all the existing block variables. If a variable is not used in the set of equations corresponding to the selected block configuration, the values specified for this variable are ignored.

\section*{Ports}

\section*{Conserving}

\section*{R - Machine rotor}
mechanical rotational
Mechanical rotational conserving port associated with the machine rotor.

\section*{C - Machine case \\ mechanical rotational}

Mechanical rotational conserving port associated with the machine case.

\section*{~ - Three-phase composite \\ electrical}

Expandable three-phase port associated with the stator windings.

\section*{n - Neutral phase}
electrical
Electrical conserving port associated with the neutral phase.

\section*{Parameters}

\section*{Main}

Number of pole pairs - Rotor pole pairs 6 (default) | integer

Number of permanent magnet pole pairs on the rotor.
Stator parameterization - Parameterization method
Specify Ld, Lq and L0 (default)|Specify Ls, Lm, and Ms
Method for parameterizing the stator.

\section*{Dependencies}

Selecting Specify Ld, Lq and L0 enables these parameters:
- Stator d-axis inductance, Ld
- Stator q-axis inductance, Lq
- Stator zero-sequence inductance, L0

Selecting Specify Ls, Lm, and Ms enables these parameters:
- Stator self-inductance per phase, Ls

\section*{- Stator inductance fluctuation, \(\mathbf{L m}\)}
- Stator mutual inductance, Ms

\section*{Stator d-axis inductance, Ld - Inductance 0.0031 H (default)}

Direct-axis inductance of the machine stator.

\section*{Dependencies}

To enable this parameter, set Stator parameterization to Specify Ld, Lq and L0.
Stator q-axis inductance, Lq - Inductance 0.004 H (default)

Quadrature-axis inductance of the machine stator.

\section*{Dependencies}

To enable this parameter, set Stator parameterization to Specify Ld, Lq and L0.

\section*{Stator zero-sequence inductance, L0 - Inductance 0.0005 H (default)}

Zero-axis inductance for the machine stator.

\section*{Dependencies}

To enable this parameter, set Stator parameterization to Specify Ld, Lq and L0.

\section*{Stator self-inductance per phase, Ls - Inductance 0.0025 H (default)}

Average self-inductance of the three stator windings.

\section*{Dependencies}

To enable this parameter, set Stator parameterization to Specify Ls, Lm, and Ms.

\section*{Stator inductance fluctuation, Lm - Inductance -0.0003 H (default)}

Amplitude of the fluctuation in self-inductance and mutual inductance with the rotor angle.

\section*{Dependencies}

To enable this parameter, set Stator parameterization to Specify Ls, Lm, and Ms.

\section*{Stator mutual inductance, Ms - Inductance}
0.0010 H (default)

Average mutual inductance between the stator windings.

\section*{Dependencies}

To enable this parameter, set Stator parameterization to Specify Ls, Lm, and Ms.

\section*{Stator resistance per phase, Rs - Resistance}
0.7 Ohm (default)

Resistance of each of the stator windings.

\section*{Zero sequence - Option to neglect zero-sequence terms Include (default)|Exclude}

Option to neglect zero-sequence terms. Choices are:
- Include - Include zero-sequence terms. To prioritize model fidelity, use this default setting. Using this option results in an error for simulations that use the Partitioning solver. For more information, see "Increase Simulation Speed Using the Partitioning Solver" (Simscape).
- Exclude - Exclude zero-sequence terms. To prioritize simulation speed for desktop simulation or real-time deployment, select this option.

\section*{Mechanical}

Rotor inertia - Inertia
0.01 kg*m^2 (default)

Inertia of the rotor attached to mechanical translational port \(\mathbf{R}\).

\section*{Rotor Damping - Damping}
\(0 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})\) (default)
Rotary damping.

\section*{Rotor angle definition - Angle \\ Angle between the a-phase magnetic axis and the d-axis (default)|Angle between the a-phase magnetic axis and the \(q\)-axis}

Reference point for the rotor angle measurement. If you select the default value, the rotor and \(a\)-phase fluxes are aligned for a zero-rotor angle. Otherwise, an \(a\)-phase current generates the maximum torque value for a zero-rotor angle.

\section*{References}
[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.
[2] Mbayed, R. Analysis of Faulted Power Systems. Hoboken, NJ: Wiley-IEEE Press, 1995.
[3] Anderson, P. M. Contribution to the Control of the Hybrid Excitation Synchronous Machine for Embedded Applications. Universite de Cergy Pontoise, Neuville sur Oise, France, 2012.

\section*{See Also}

\section*{Simscape Blocks}

Brushless DC Motor | Hybrid Excitation Synchronous Machine | Permanent Magnet Synchronous Motor | Switched Reluctance Machine | Synchronous Machine Field Circuit (pu) | Synchronous Machine Measurement

\section*{Introduced in R2017b}

\section*{Tap-Changing Transformer}

Single-phase tap-changing transformer
Library: Simscape / Power Systems / Simscape Components / Passive Devices / Fundamental Components


\section*{Description}

The Tap-Changing Transformer block represents a single-phase tap-changing transformer. You can vary the turns-ratio of the transformer during the simulation using the control input.

Use this component to regulate or change the output voltage of a linear transformer during a simulation. To model the effects of saturation, consider using the Nonlinear Transformer block.

\section*{Operating Principle}

Use the control input \(\mathbf{c}\) to change the tap position of the transformer.
- Increase cabove the Control threshold, \(t\), to increase the tap position \(p\) by one.
- Decrease c below the negative of the Control threshold to decrease the tap position \(p\) by one.

This figure shows the tap-response to a control input.


In the diagram:
- \(N_{0}\) is the nominal number of turns for the tap-changer winding.
- \(\delta\) is the percent change in turns per tap position step. Specify this value using the Change per tap (\%) parameter.
- \(p_{\min }\) and \(p_{\max }\) are the minimum and maximum allowable tap indices. Specify these values with the Minimum tap index (nominal=0) and Maximum tap index (nominal=0) parameters.

To select the tap-changer winding, use the Tap-changer location parameter. The overall turns ratio, \(n\), depends on this location:
- Primary
\[
n=\frac{N_{p}\left(N_{0}, \delta, p\right)}{N_{s}}=n_{0}\left(1+\frac{\delta p}{100}\right)
\]
- Secondary
\[
n=\frac{N_{p}}{N_{s}\left(N_{0}, \delta, p\right)}=n_{0}\left(1+\frac{\delta p}{100}\right)^{-1}
\]
where \(n_{0}\) is the nominal turns ratio for the transformer.

\section*{Equivalent Circuit}

The equivalent circuit is shown in the diagram.


Here:
- \(R_{p}\) and \(R_{s}\) are the primary and secondary series resistances, respectively. Changes in the tap position affect these values.
- \(L_{l p}\) and \(L_{l s}\) are the primary and secondary leakage inductances, respectively. Changes in the tap position affect these values.
- \(\quad R_{m}\) and \(M\) are the magnetization resistance and inductance, respectively. Changes in the tap position affect these values.
- \(n\) is the turns ratio of the transformer.
- \(G_{p}\) and \(G_{s}\) are the primary and secondary leakage conductances, respectively. Changes in the tap position do not affect these values.

\section*{Ports}

\section*{Conserving}

\section*{1+ - Line 1 positive terminal}
electrical

Electrical conserving port associated with the positive terminal of line 1.

\section*{1- - Line 1 negative terminal electrical}

Electrical conserving port associated with the negative terminal of line 1.

\section*{2+ - Line 2 positive terminal \\ electrical}

Electrical conserving port associated with the positive terminal of line 2.

\section*{2- - Line 2 negative terminal \\ electrical}

Electrical conserving port associated with the negative terminal of line 2.
c - Control input
physical
Input physical signal that specifies the input control value.

\section*{Parameters}

\section*{Nominal}

\section*{Turns ratio (primary/secondary) - Turns ratio}

1 (default) | positive number
Turns ratio of the transformer in the nominal tap position. The turns ratio is defined as the primary number of turns divided by the secondary number of turns.

Primary leakage inductance - Line 1 leakage inductance
1e-6 H (default) | positive number
Leakage inductance of the primary winding.
Secondary leakage inductance - Line 2 leakage inductance
1e-6 H (default) | positive number
Leakage inductance of the secondary winding.

\section*{Core-loss resistance - Mutual resistance \\ le6 0hm (default) | zero or positive number}

Mutual resistance of the transformer.

\section*{Magnetization inductance - Magnetization inductance 100e-6 H (default) | positive number}

Magnetization inductance of the transformer.

\section*{Primary series resistance - Line 1 series resistance 0 Ohm (default) | zero or positive number}

Series resistance of the primary winding.

\section*{Secondary series resistance - Line 2 series resistance} 0 Ohm (default) | zero or positive number

Series resistance of the secondary winding.

\section*{Primary leakage conductance - Line 1 leakage conductance}

0 1/Ohm (default) | zero or positive number
Leakage conductance of the primary winding. Set this value to be nonzero for achieving numerical convergence in some circuit topologies.

\section*{Secondary leakage conductance - Line 2 leakage conductance}

\section*{0 1/Ohm (default) | zero or positive number}

Leakage conductance of the secondary winding. Set this value to be nonzero for achieving numerical convergence in some circuit topologies.

\section*{Tap}

\section*{Tap-changer location - Tap-changer winding Primary (default)|Secondary}

Specify whether the tap-changer is on the primary or secondary winding.

\section*{Minimum tap index (nominal=0) - Minimum tap position \\ -5 (default) | zero or negative integer}

Minimum allowable position of the tap-changer.

\title{
Maximum tap index (nominal=0) - Maximum tap position \\ 5 (default) | zero or positive integer
}

Maximum allowable position of the tap-changer.

\section*{Change per tap (\%) - Tap change step}

\section*{\(1 \%\) (default) | positive number}

Percent change in the number of turns per tap position step of the tap-changer winding. Set this value such that the absolute percent change at the minimum and maximum tap indices is less than \(100 \%\).

\section*{Control threshold - Shift threshold}
0.5 (default)

Control value at which the tap changes position. To lower the tap position, apply a control signal \(\mathbf{c}\) smaller than the negative of this value. To increase the tap position, apply a control signal c greater than this value.

\section*{See Also}

Nonlinear Transformer

Introduced in R2018a

\section*{Thermal Resistor}

Heat transfer by conduction through a layer of material

\section*{Library}

Semiconductors / Fundamental Components / Thermal

\section*{Description}

The Thermal Resistor block represents heat transfer by conduction through a layer of material. The heat transfer is:
- Governed by Fourier's law
- Proportional to the temperature difference across the layer of material
- Inversely proportional to the thermal resistance of the material

The equation for conductive heat transfer is:
\[
Q_{A B}=\frac{T_{A B}}{R_{\text {thermal }}},
\]
where:
- \(Q_{A B}\) is the heat flow through the material.
- \(T_{A B}\) is the temperature difference across the layer of material.
- \(R_{\text {thermal }}\) is the thermal resistance of the material.

Thermal resistance can be calculated as:
\[
R_{\text {thermal }}=\frac{D}{k A} \text {, }
\]
where:
- \(D\) is the thickness of the layer of material.
- \(k\) is the thermal conductivity of the material.
- \(A\) is the area normal to the heat flow direction.

Use the Thermal Resistor block to parameterize an equivalent component in terms of thermal resistance of the material layer. To parameterize an equivalent component in terms of the thickness, thermal conductivity, and area of the material layer, use the Conductive Heat Transfer block from the Simscape Foundation library.

\section*{Parameters}
- "Parameters Tab" on page 1-943
- "Variables Tab" on page 1-943

\section*{Parameters Tab}

\section*{Thermal resistance}

The default value for the thermal resistance, \(R_{\text {thermal }}\), is \(1 \mathrm{e}-3 \mathrm{~K} / \mathrm{W}\).

\section*{Variables Tab}

Use the Variables settings to specify the priority and initial target values for the block variables before simulation. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape) .

Unlike block parameters, variables do not have conditional visibility. The Variables settings include all the existing block variables. If a variable is not used in the set of equations corresponding to the selected block configuration, the values specified for this variable are ignored.

\section*{Ports}

The block has the following ports:

\section*{A}

Thermal conserving port associated with surface A of the material that the heat flows through.

B
Thermal conserving port associated with surface B of the material that the heat flows through.

\author{
See Also \\ Cauer Thermal Model Element | Foster Thermal Model \\ Introduced in R2016a
}

\section*{Three Element Demux}

Convert three-element physical signal vector into scalar physical signals


\section*{Library}

Sensors

\section*{Description}

The Three Element Demux block splits a three-element physical signal vector into three scalar physical signals.

\section*{Ports}

The block has the following ports:
abc
Three-element physical signal input port.
a
Scalar physical signal output port.
b
Scalar physical signal output port.
C
Scalar physical signal output port.

\section*{Introduced in R2013b}

\section*{Three-Level Converter}

Twelve-pulse three-phase three-level neutral-point clamped controlled converter.


\section*{Library}

Simscape / Power Systems / Simscape Components / Semiconductors

\section*{Description}

The Three-Level Converter block models a twelve-pulse three-phase three-level neutralpoint clamped controlled converter. You can use this block to connect a three-phase AC network to a three-level DC network.

\section*{Model}

The block contains three bridge arms, each of which has four switching devices and the associated anti-parallel diodes. Options for the type of switching devices are:
- GTO
- Ideal Semiconductor Switch
- IGBT
- MOSFET
- Thyristor

Each component in the three-arm circuit is the same switching device, which you specify using an option in the Converter block dialog box. The switching devices are in the Semiconductors > Fundamental Components sublibrary.

The figure shows the equivalent circuit for the block using an Ideal Semiconductor block as the switching device.


You control the gate ports of the 12 switching devices via an input to the Three-Level Converter block \(\mathbf{G}\) port.

1 Use a Twelve-Pulse Gate Multiplexer block to multiplex all 12 gate signals into a single vector.
2 Connect the output of the Twelve-Pulse Gate Multiplexer block to the Three-Level Converter block \(\mathbf{G}\) port.

You use the Diodes tab of the block dialog box to include an integral protection diode for each switching device. An integral diode protects the semiconductor device by providing
a conduction path for reverse current. An inductive load can produce a high reversevoltage spike when the semiconductor device suddenly switches off the voltage supply to the load.

The table shows how to set the Integral protection diode parameter based on your goals.
\begin{tabular}{|l|l|l|}
\hline Goal & Value to Select & Block Behavior \\
\hline Prioritize simulation speed. & \begin{tabular}{l} 
Protection diode with \\
no dynamics
\end{tabular} & \begin{tabular}{l} 
The block includes an \\
integral copy of the Diode \\
block. To parameterise the \\
internal Diode block, use the \\
Protection parameters.
\end{tabular} \\
\hline \begin{tabular}{l} 
Precisely specify reverse- \\
mode charge dynamics.
\end{tabular} & \begin{tabular}{l} 
Protection diode with \\
charge dynamics
\end{tabular} & \begin{tabular}{l} 
The block includes an \\
integral copy of the \\
Commutation Diode block. \\
To parameterise the internal \\
Commutation Diode block, \\
use the Protection \\
parameters.
\end{tabular} \\
\hline
\end{tabular}

You use the Snubbers tab of the block dialog box to include a snubber circuit for each switching device. Each snubber consists of a resistor and capacitor connected in series. Typically, a snubber circuit protects a switching device against very high voltages produced by an inductive load when the device turns off the voltage supply to the load. Snubber circuits also prevent excessive rates of change of current when a switching device turns on.

\section*{Parameters}
- "Switching Devices Tab" on page 1-949
- "Diodes Tab" on page 1-952
- "Snubbers Tab" on page 1-955

\section*{Switching Devices Tab}

\section*{Switching device}

Converter switching device. The default value is Ideal Semiconductor Switch.

The switching devices you can select are:
- GTO
- Ideal Semiconductor Switch
- IGBT
- MOSFET

When you select GT0, parameters for the GTO block appear.

\section*{Additional GTO Parameters}

\section*{Forward voltage, Vf}

Minimum voltage required across the anode and cathode block ports for the gradient of the device i-v characteristic to be \(1 / \mathrm{R}_{\text {on }}\), where \(\mathrm{R}_{\text {on }}\) is the value of On-state resistance. The default value is 0.8 V .

\section*{On-state resistance}

Rate of change of voltage versus current above the forward voltage. The default value is 0.0010 hm .

\section*{Off-state conductance}

Anode-cathode conductance when the device is off. The value must be less than \(1 / R\), where \(R\) is the value of \(\mathbf{O n}\)-state resistance. The default value is \(1 \mathrm{e}-61 / 0 \mathrm{hm}\).

\section*{Gate trigger voltage, Vgt}

Gate-cathode voltage threshold. The device turns on when the gate-cathode voltage is above this value. The default value is 1 V .

\section*{Gate turn-off voltage, Vgt_off}

Gate-cathode voltage threshold. The device turns off when the gate-cathode voltage is below this value. The default value is -1 V .

\section*{Holding current}

Current threshold. The device stays on when the current is above this value, even when the gate-cathode voltage falls below the gate trigger voltage. The default value is 1 A .

For more information, see GTO.

When you select Ideal Semiconductor Switch, parameters for the Ideal Semiconductor Switch block appear.

\section*{Additional Ideal Semiconductor Switch Parameters}

\section*{On-state resistance}

Anode-cathode resistance when the device is on. The default value is 0.0010 hm .

\section*{Off-state conductance}

Anode-cathode conductance when the device is off. The value must be less than \(1 / R\), where \(R\) is the value of \(\mathbf{O n}\)-state resistance. The default value is \(1 \mathrm{e}-61 / 0 \mathrm{hm}\).

\section*{Threshold voltage, Vth}

Gate-cathode voltage threshold. The device turns on when the gate-cathode voltage is above this value. The default value is 6 V .

For more information, see Ideal Semiconductor Switch.

When you select IGBT, parameters for the IGBT block appear.

\section*{Additional IGBT Parameters}

\section*{Forward voltage, Vf}

Minimum voltage required across the collector and emitter block ports for the gradient of the diode i-v characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of On-state resistance. The default value is 0.8 V .

\section*{On-state resistance}

Collector-emitter resistance when the device is on. The default value is 0.0010 hm .

\section*{Off-state conductance}

Collector-emitter conductance when the device is off. The value must be less than \(1 / R\), where \(R\) is the value of \(\mathbf{O n}\)-state resistance. The default value is \(1 \mathrm{e}-61 / 0 \mathrm{hm}\).

\section*{Threshold voltage, Vth}

Collector-emitter voltage at which the device turns on. The default value is 6 V .
For more information, see IGBT.

When you select MOSFET, parameters for the MOSFET block appear.

\section*{Additional MOSFET Parameters}

\section*{On-state resistance, R_DS(on)}

Drain-source resistance when the device is on. The default value is 0.0010 hm .

\section*{Off-state conductance}

Drain-source conductance when the device is off. The value must be less than \(1 / R\), where \(R\) is the value of \(\mathbf{O n}\)-state resistance. The default value is \(1 \mathrm{e}-61 / 0 \mathrm{hm}\).

\section*{Threshold voltage, Vth}

Gate-source voltage threshold. The device turns on when the gate-source voltage is above this value. The default value is 6 V .

For more information, see MOSFET.

\section*{Diodes Tab}

\section*{Integral protection diode}

Integral protection diode for each switching device. Choose between Diode with no dynamics and Diode with charge dynamics. The default value is Diode with no dynamics.

When you select Diode with no dynamics, additional parameters appear.

\section*{Additional Parameters for Diode with no dynamics}

\section*{Forward voltage}

Minimum voltage required across the + and - block ports for the gradient of the diode \(I-V\) characteristic to be \(1 / R_{o n}\), where \(R_{\text {on }}\) is the value of On resistance. The default value is 0.8 V .

\section*{On resistance}

Rate of change of voltage versus current above the Forward voltage. The default value is 0.0010 hm .

\section*{Off conductance}

Conductance of the reverse-biased diode. The default value is \(1 \mathrm{e}-51 / 0 \mathrm{hm}\).
For more information on these parameters, see Diode.

When you select Protection diode with charge dynamics, additional parameters appear.

\section*{Additional Parameters for Diode with charge dynamics}

\section*{Forward voltage}

Minimum voltage required across the + and - block ports for the gradient of the diode I-V characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of \(\mathbf{O n}\) resistance. The default value is 0.8 V .

\section*{On resistance}

Rate of change of voltage versus current above the Forward voltage. The default value is 0.0010 hm .

\section*{Off conductance}

Conductance of the reverse-biased diode. The default value is \(1 \mathrm{e}-51 / 0 \mathrm{hm}\).

\section*{Junction capacitance}

Diode junction capacitance. The default value is 50 nF .

\section*{Peak reverse current, iRM}

Peak reverse current measured by an external test circuit. This value must be less than zero. The default value is -235 A .

\section*{Initial forward current when measuring iRM}

Initial forward current when measuring peak reverse current. This value must be greater than zero. The default value is 300 A .

\section*{Rate of change of current when measuring iRM}

Rate of change of current when measuring peak reverse current. This value must be less than zero. The default value is \(-50 \mathrm{~A} / \mu \mathrm{s}\).

\section*{Reverse recovery time parameterization}

Determines how you specify reverse recovery time in the block. The default value is Specify reverse recovery time directly.

If you select Specify stretch factor or Specify reverse recovery charge, you specify a value that the block uses to derive the reverse recovery time. For more information on these options, see "Alternatives to Specifying trr Directly" on page 1254.

\section*{Reverse recovery time, trr}

Interval between the time when the current initially goes to zero (when the diode turns off) and the time when the current falls to less than \(10 \%\) of the peak reverse current. The default value is \(15 \mu \mathrm{~s}\).

This parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery time directly.

The value of the Reverse recovery time, trr parameter must be greater than the value of the Peak reverse current, iRM parameter divided by the value of the Rate of change of current when measuring iRM parameter.

\section*{Reverse recovery time stretch factor}

Value that the block uses to calculate Reverse recovery time, trr. This value must be greater than 1 . The default value is 3 .

This parameter is visible only if you set Reverse recovery time parameterization to Specify stretch factor.

Specifying the stretch factor is an easier way to parameterize the reverse recovery time than specifying the reverse recovery charge. The larger the value of the stretch factor, the longer it takes for the reverse recovery current to dissipate.

\section*{Reverse recovery charge, Qrr}

Value that the block uses to calculate Reverse recovery time, trr. Use this parameter if the data sheet for your diode device specifies a value for the reverse recovery charge instead of a value for the reverse recovery time.

The reverse recovery charge is the total charge that continues to dissipate when the
diode turns off. The value must be less than \(-\frac{i^{2}{ }_{R M}}{2 a}\), where:
- \(i_{R M}\) is the value specified for Peak reverse current, iRM.
- \(a\) is the value specified for Rate of change of current when measuring iRM.

The default value is \(1500 \mu \mathrm{As}\).
The parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery charge.

For more information on these parameters, see Commutation Diode.

\section*{Snubbers Tab}

\section*{Snubber}

Snubber for each switching device. The default value is None.

\section*{Snubber resistance}

This parameter is visible only if you set Snubber to RC snubber. The default value is 0.1 hm.

\section*{Snubber capacitance}

This parameter is visible only if you set Snubber to RC snubber. The default value is 1e-7 F.

\section*{Ports}

The block has the following ports:
G
Vector input port associated with the gate terminals of the switching devices. Connect this port to a Twelve-Pulse Gate Multiplexer block.
\(\sim\)
Expandable three-phase port.
\(+\)
Electrical conserving port associated with the DC positive terminal.
0
Electrical conserving port associated with the DC neutral terminal.

Electrical conserving port associated with the DC negative terminal.

\section*{See Also}

Average-Value Inverter | Average-Value Rectifier | Converter | Rectifier | Twelve-Pulse Gate Multiplexer

\footnotetext{
Topics
"Expand and Collapse Three-Phase Ports on a Block"

Introduced in R2014b
}

\section*{Three-Phase Bridge Cycloconverter Voltage Controller}

PI-based RMS voltage control for three-phase bridge cycloconverters Library: Simscape / Power Systems / Simscape Components / Control / Converter Control


\section*{Description}

The Three-Phase Bridge Cycloconverter Voltage Controller block implements a PI-based root-mean-square (RMS) voltage controller for three-phase bridge cycloconverters.

To convert a three-phase signal directly from a higher frequency to a lower frequency, use this block with a three-phase bridge cycloconverter. Refer to "Three-Phase Bridge Cycloconverter" for an example of such a conversion.

\section*{Operating Principle}

The controller regulates the cycloconverter line-to-neutral RMS voltage to a given value and a given electrical frequency. The structure of the cycloconverter controller is illustrated in this diagram.


In the diagram:
- The controller integrates the desired output frequency \(f_{\text {ref }}\) to produce the reference electrical angle \(\theta_{e_{-} r e f}\).
- The Signal Conditioning block filters the cycloconverter line-to-neutral voltage \(v_{\text {cyc }}\) and current \(i_{\text {cyc }}\) to produce the per-unit RMS voltage \(v_{\text {rms_cyc }}\) and smoothed current signal \(i_{\text {cyc lpf }}\).
- The PI Controller generates a reference phase voltage in the \(q\)-axis from the error between the desired output RMS voltage \(V_{\text {ref }}\) and \(v_{\text {rms_cyc }}\).
- The Inverse Park Transform block converts the reference phase voltage in \(d q 0\) coordinates to a phase voltage \(v_{a b c \_r e f}\) in \(a b c\)-coordinates.
- The Three-Phase Sinusoidal Measurement (PLL) block estimates the phase angle \(\theta\) of the input voltage signal \(v_{a b c}\).

The Modulator and Bank Selector blocks create the 36 pulses to drive the cycloconverter using the reference phase voltage \(v_{\text {abc_ref, }}\), estimated phase angle \(\theta\), and filtered cycloconverter current \(i_{\text {cyc_lpf. }}\). To generate the firing angles, the controller uses the cosine wave crossing method.

This diagram shows the signal conditioning logic.


In the diagram:
- The Park Transform blocks convert the measured cycloconverter voltage \(v_{c y c}\) and current \(i_{c y c}\) into \(d\) - and \(q\)-axis components ( \(v_{d}, v_{q}, i_{d}, i_{q}\) ) using the reference electrical angle \(\theta_{e_{-} r e f}\).
- The Low-Pass Filter (LPF) blocks remove the high-frequency noise from each of the \(d\) and \(q\)-axis voltage and currents to produce the filtered components ( \(v_{d_{-} l p f}, v_{q_{-} l p f}, i_{d_{-} l p f}\), \(\left.i_{q-l p f}\right)\).
- The block calculates the cycloconverter per-unit RMS voltage \(v_{\text {rms_cyc }}\) by taking the squared sum of the \(d q\) components, dividing by \(\sqrt{2}\), and finally converting from SI to per-unit representation.
- The Inverse Park Transform converts the \(d q\) filtered current back to the \(a b c\)-axis and outputs it as \(i_{\text {cy__lpf. }}\).

The cycloconverter reference line-to-neutral rms voltage output is given in per-unit representation.

\section*{Visualization}

The block outputs a bus containing six signals for visualization:
- The estimated phase angle \(\theta\) of the input voltage signal \(v_{a b c}\)
- The desired RMS voltage \(V_{\text {ref }}\) of the output signal
- The reference phase voltages \(v_{a b c}\) ref of the desired output signal
- The filtered line-to-neutral cycloconverter RMS voltage \(v_{r m s}\) _cyc
- The filtered cycloconverter phase currents \(i_{c y c}\) lpf
- The filtered cycloconverter phase voltages \(v_{\text {cyc_lpf }}\)

\section*{Ports}

\section*{Input}

\section*{VRef - Reference voltage \\ scalar}

Reference line-to-neutral RMS voltage, expressed in per-unit representation. Data Types: single | double

\section*{fRef - Reference frequency scalar}

Reference electrical frequency, in Hz.
Data Types: single | double

\section*{vabc - Phase voltages}
vector
Measured phase voltages of the source, in V.
Data Types: single | double

\section*{Vcyc - Cycloconverter voltages \\ vector}

Measured cycloconverter phase voltages, in V.
Data Types: single | double

\section*{Icyc - Cycloconverter currents \\ vector}

Measured cycloconverter phase currents, in A.

\section*{Data Types: single | double}

\section*{Output}

\section*{P - Pulses}
vector
Thyristor pulse vector to control a three-phase bridge cycloconverter.
Data Types: single | double

\section*{Visualization - Visualization bus \\ bus}

Bus containing internal signals for visualization. For a full list of signals, refer to the "Visualization" on page 1-959 section.

Data Types: single | double

\section*{Parameters}

Rated voltage (phase-to-phase RMS) - Rated RMS voltage
6000 (default) | positive number
Rated RMS voltage for per-unit conversion calculations, in V.

\section*{Loop filter proportional gain - LF proportional gain}

2 (default) | positive number
Loop filter proportional gain for the phase-locked loop (PLL) estimating the phase of the input signal. This value determines the aggressiveness of the PLL in tracking and locking to the phase angle. Increase this value to improve reaction time of the tracking to step changes in the phase angle.

\section*{Loop filter integral gain - LF integral gain}

20 (default) | positive number
Loop filter integral gain for the phase-locked loop (PLL) estimating the phase of the input signal. Increase this value to increase the rate at which steady-state error is eliminated in the phase angle. This value also determines the aggressiveness of the PLL in tracking and locking to the phase.

\section*{Filters time constant (s) - Time constant}

1e-2 (default) | positive number
Time constant of the low-pass filters in the Signal Conditioning block of the controller. These filters reduce undesired high-frequency noise in the cycloconverter phase voltage and current measurements.

\section*{Controller proportional gain - Proportional gain \\ 1 (default) | positive number}

Proportional gain for the PI-controller that generates the reference phase voltage for the cycloconverter. Increase this value to increase the aggressiveness of the controller.

\section*{Controller integral gain - Integral gain}

12 (default) | positive number
Integral gain of the PI-controller that generates the reference phase voltage for the cycloconverter. Increase this value to increase the rate at which steady-state error is eliminated in the phase voltage signal.

\section*{Controller anti-windup gain - Anti-windup gain}

10 (default) | positive number
Anti-windup gain of the PI-controller that generates the reference phase voltage for the cycloconverter.
```

Thyristor pulse width (rad) - Pulse width
5*pi/6 (default)| positive number

```

Angular width of pulses sent to the cycloconverter.

\section*{Bank selector current threshold (A) - Current threshold}

5 (default) | positive number
Current threshold for switching between positive and negative converters.

\section*{Pulse ordering - Pulse ordering rule}

Sequential device order (default)|Natural order of commutation
Strategy used for the ordering of generated pulses.
Sample time (-1 for inherited) - Sample time
- 1 (default) | positive number

Sample time for the block ( -1 for inherited). If you use this block inside a triggered subsystem, set the sample time to -1. If you use this block in a continuous variable-step model, set the sample time explicitly.

\section*{References}
[1] Chen, H., M. H. Johnson, and D. C. Aliprantis. "Low-frequency AC transmission for offshore wind power." IEEE Transactions on Power Delivery. Vol. 28, Number 4, 2013, pp. 2236-2244.

\section*{See Also}

\section*{Blocks}

Integrator with Wrapped State (Discrete or Continuous) | Low-Pass Filter (Discrete or Continuous) | Park Transform | Three-Phase Sinusoidal Measurement (PLL)

\section*{Introduced in R2017b}

\section*{Three-Phase Hysteresis Current Controller}

Three-phase hysteresis current control
Library: Simscape / Power Systems / Simscape Components / Control / General Machine Control


\section*{Description}

The Three-Phase Hysteresis Current Controller block implements three-phase hysteresis current control for power converters.


\section*{Ports}

\section*{Input}
iabc* - Current
vector
Three-phase reference currents.
Data Types: single | double

\section*{iabc - Current \\ vector}

Measured three-phase currents.
Data Types: single | double

\section*{Output}

\section*{S - Controller output \\ vector}

Six-pulse vector for power converter control.
Data Types: single | double

\section*{Parameters}

\section*{Current hysteresis band (A) - Hysteresis band \\ 1 (default) | positive number}

Hysteresis band, \(h\), for the current controller. The switch-on point is \(h / 2\) and the switch-off point is \(-h / 2\).

\section*{Sample time (-1 for inherited) - Block sample time} - 1 (default) | positive scalar

Time, in s, between consecutive block executions. During execution, the block produces outputs and, if appropriate, updates its internal state. For more information, see "What Is Sample Time?" (Simulink) and "Specify Sample Time" (Simulink).

If this block is inside a triggered subsystem, inherit the sample time by setting this parameter to -1. If this block is in a continuous variable-step model, specify the sample time explicitly using a positive scalar.

\section*{See Also}

Brushless DC Motor | Velocity Controller

\section*{Introduced in R2018a}

\section*{Three-Phase Power Measurement}

Measure three-phase real and reactive power
Library: Simscape / Power Systems / Simscape Components / Control / Measurements


\section*{Description}

The Three-Phase Power Measurement block measures the real and reactive power of an element in a three-phase network. The block outputs the power quantities for each frequency component you specify in the selected symmetrical sequence.

Use this block to measure power for both sinusoidal and nonsinusoidal periodic signals. For single-phase power measurement, consider using the Power Measurement block.

Set the Sample time parameter to 0 for continuous-time operation, or explicitly for discrete-time operation.

Specify a vector of all frequency components to include in the power output using the Harmonic numbers parameter:
- To output the DC component, specify 0.
- To output the component corresponding to the fundamental frequency, specify 1.
- To output components corresponding to higher-order harmonics, specify \(\mathrm{n}>1\).

\section*{Equations}

For each specified harmonic \(k\), the block calculates the real power \(P_{k}\) and reactive power \(Q_{k}\) for the specified sequence from the phasor equation:
\[
P_{k}+j Q_{k}=\frac{3}{2}\left(V_{k} e^{j \theta_{V_{k}}}\right)\left(\overline{\left(I_{k} e^{j \theta_{l_{k}}}\right.}\right),
\]
where:
\(V_{k} e^{j \theta_{V_{k}}}\) is the phasor representing the \(k\)-component voltage of the selected sequence.
- \(\overline{I_{k} e^{j \theta_{I_{k}}}}\) is the complex conjugate of \(I_{k} e^{j \theta_{I_{k}}}\), the phasor representing the \(k\)-component current of the selected sequence.

Select the symmetrical sequence used in the power calculation using the Sequence parameter:
- Positive:
\[
V_{k} e^{j \theta_{V_{k}}}=V_{k+} e^{j \theta_{V_{k+}}}, I_{k} e^{j \theta_{I_{k}}}=I_{k+} e^{j \theta_{I_{k+}}}
\]
- Negative:
\[
V_{k} e^{j \theta_{V_{k}}}=V_{k-} e^{j \theta_{V_{k-}}}, I_{k} e^{j \theta_{I_{k}}}=I_{k-} e^{j \theta_{I_{k-}}}
\]
- Zero:
\[
V_{k} e^{j \theta_{V_{k}}}=V_{k 0} e^{j \theta_{V_{k 0}}}, I_{k} e^{j \theta_{I_{k}}}=I_{k 0} e^{j \theta_{l_{k 0}}}
\]

The block calculates the symmetrical set of +-0 voltage phasors from the set of \(a b c\) voltage phasors using the symmetrical components transform \(S\) :
\[
\left[\begin{array}{l}
V_{k+} e^{j \theta_{V_{k+}}} \\
V_{k-} e^{j \theta_{V_{k-}}} \\
V_{k 0} e^{j \theta_{V k 0}}
\end{array}\right]=S\left[\begin{array}{l}
V_{k a} e^{j \theta_{V_{k a}}} \\
V_{k b} e^{j \theta_{V_{k b}}} \\
V_{k c} e^{j \theta_{V k c}}
\end{array}\right]
\]

For more information about this transform, see Symmetrical Components Transform.
The block obtains this set of \(a b c\) voltage phasors from the three-phase input voltage \(V(t)\) as:
\[
\left[\begin{array}{l}
V_{k a} e^{j \theta_{V l a}} \\
V_{k b} e^{j \theta_{V / k}} \\
V_{k c} e^{j \theta_{V c c}}
\end{array}\right]=\frac{2}{T} \int_{t-T}^{t} V(t) \sin (2 \pi k F t) d t+j \frac{2}{T} \int_{t-T}^{t} V(t) \cos (2 \pi k F t) d t
\]
where \(T\) is the period of the input signal, or equivalently the inverse of its base frequency \(F\).

The block calculates the symmetrical set of current phasors in the same way as it does the voltage.

If the input signals have a finite number of harmonics \(n\), the total real power \(P\) and total reactive power \(Q\) for the specified sequence can be calculated from their components:
\[
\begin{aligned}
& P=\sum_{k=0}^{n} P_{k} \\
& Q=\sum_{k=1}^{n} Q_{k} .
\end{aligned}
\]

The summation for \(Q\) does not include the DC component ( \(k=0\) ), because this component only contributes to real power.

\section*{Ports}

\section*{Input}

\section*{V - Input voltage}
vector
Three-phase voltage across element from which to measure power, in V.
Data Types: single | double

\section*{I - Input current}
vector

Three-phase current through element from which to measure power, in A.
Data Types: single | double

\section*{Output}

P - Real power
vector
Real power for selected frequency components, in W.
Data Types: single | double

\section*{P - Reactive power}
vector
Reactive power for selected frequency components, in var.
Data Types: single \| double

\section*{Parameters}

\section*{Base frequency ( Hz ) - Fundamental frequency}

60 (default) | positive number
Fundamental frequency corresponding to component \(k=1\).

\section*{Harmonic numbers - Frequency components}

\section*{[0 12 3] (default)|vector}

Frequency components to include in the output. Specify either a scalar value corresponding to the desired component or a vector of all desired components.
- The value \(k=0\) corresponds to the DC component.
- The value \(k=1\) corresponds to the fundamental frequency.
- Values \(k>1\) correspond to higher-level harmonics.

If you specify a vector, the order of the power outputs correspond to the order of this vector.

\section*{Sequence - Symmetrical sequence}

\section*{Positive (default) | Negative | Zero}

Symmetrical sequence of the power output.

\section*{Sample time - Block sample time}

0 (default) | positive number
Sample time for the block. For continuous operation, set this property to 0 . For discrete operation, specify the sample time explicitly. This block does not support inherited sample time.

\section*{See Also}

\section*{Blocks}

Power Measurement | RMS Measurement | Sinusoidal Measurement (PLL) | Three-Phase Sinusoidal Measurement (PLL)
```

Introduced in R2017b

```

\section*{Three-Phase Sinusoidal Measurement (PLL)}

Estimate three-phase sinusoidal characteristics using a phase-locked loop Library: Simscape / Power Systems / Simscape Components / Control / Measurements


\section*{Description}

The Three-Phase Sinusoidal Measurement (PLL) block estimates the frequency characteristics of a balanced three-phase sinusoidal signal. The block uses a standard phase-locked loop (PLL) strategy to estimate the frequency and phase angle of the input signal. It also outputs the magnitude of the input signal.

Use this block in control applications when the frequency, phase angle, or magnitude are required and cannot be measured directly. To estimate the frequency characteristics of a non-three-phase or unbalanced sinusoidal signal, use the Sinusoidal Measurement (PLL) block instead.

\section*{Equations}

The phase-locked loop generates a sinusoid that approximates the input signal \(u(t)\) with the form:
\[
y(t)=A(t) \sin \left(\phi_{0}+\int 2 \pi f(t) d t\right)
\]
where:
- \(y\) is the estimate of the input signal.
- \(A\) is the amplitude of the input signal.
- \(\phi_{0}\) is the initial phase angle of the input signal.

Because the input signal is assumed to be balanced, the block calculates the amplitude directly from the instantaneous amplitude of the three phases. The estimated phase angle \(\phi\) is the angle of this generated sinusoid:
\[
\phi(t)=\phi_{0}+\int 2 \pi f(t) d t
\]
where \(f\) if the frequency of the sinusoid, and \(\phi_{0}\) is the initial phase angle.
This diagram shows the overall structure of the phase-locked loop.


In the diagram:
- The phase detector produces an error signal relative to the phase difference \(e_{\phi}\) between the input sinusoid \(u\) and the synthesized sinusoid \(y\). It also outputs the amplitude \(A\).
- The loop filter provides an estimate of the input angular frequency \(\omega\) by filtering out the high-frequency components of the phase difference. The block also outputs the converted frequency \(f\) in Hz .
- The voltage-controlled oscillator integrates the angular speed to produce the phase estimate \(\phi\) which it sends to the Phase Detector for comparison.

\section*{Ports}

\section*{Input}

\section*{abc - Input signal}

\section*{vector}

Three-phase input signal.
Data Types: single | double

\section*{Output}
```

freq - Frequency
scalar

```

Estimated frequency of the input signal, in Hz .
Data Types: single | double

\section*{angle - Phase angle}
scalar
Estimated phase angle of the first phase of the input signal, in rad.
Data Types: single \| double

\section*{mag - Magnitude}
scalar
Magnitude of the input signal.
Data Types: single | double

\section*{Parameters}

Loop filter proportional gain - LF proportional gain
200 (default) | positive scalar

Proportional gain for the loop filter. Increase this value to increase the rate at which steady-state error is eliminated in the phase angle. This value also determines the aggressiveness of the PLL in tracking and locking to the phase angle.

\section*{Loop filter integral gain - LF integral gain}

2000 (default) | positive scalar
Integral gain for the loop filter. This determines the aggressiveness of the PLL in tracking and locking to the phase. Increase this value to reduce and eliminate steady-state error in the phase angle.

\section*{Initial frequency ( Hz ) - Initial frequency}

\section*{60 Hz (default) | scalar}

Initial estimate of the input frequency.

\section*{Initial phase angle (rad) - Initial phase \\ 0 rad (default) | scalar or vector}

Initial estimate of the phase angle.

\section*{Sample time (-1 for inherited) - Block sample time}
-1 (default) |-1 or positive number
Sample time for the block ( -1 for inherited). Set this to 0 for continuous operation, or explicitly for discrete operation. If you use this block inside a triggered subsystem, set the sample time to -1. If you use this block in a continuous variable-step model, you can specify the sample time explicitly.

\section*{See Also}

\section*{Blocks}

RMS Measurement | Sinusoidal Measurement (PLL)

\section*{Introduced in R2017b}

\section*{Thyristor}

Thyristor


\section*{Library}

Semiconductors / Fundamental Components

\section*{Description}

The Thyristor block models a thyristor. The I-V characteristic for a thyristor is such that the thyristor turns on if the gate-cathode voltage exceeds the specified gate trigger voltage. The device turns off if the load current falls below the specified holding-current value.



In the on state, the anode-cathode path behaves like a linear diode with forward-voltage drop, \(V_{f}\), and on-resistance, \(R_{\text {on }}\).

In the off state, the anode-cathode path behaves like a linear resistor with a low off-state conductance, \(G_{\text {off }}\).

The defining Simscape equations for the block are:
```

if (v > Vf)\&\&((G>Vgt)||(i>Ih))
i == (v - Vf*(1-Ron*Goff))/Ron;
else
i == v*Goff;
end

```
where:
- \(v\) is the anode-cathode voltage.
- \(V f\) is the forward voltage.
- \(G\) is the gate voltage.
- Vgt is the gate trigger voltage.
- \(i\) is the anode-cathode current.
- Ih is the holding current.
- Ron is the on-state resistance.
- Goff is the off-state conductance.

Using the Integral Diode tab of the block dialog box, you can include an integral cathodeanode diode. An integral diode protects the semiconductor device by providing a conduction path for reverse current. An inductive load can produce a high reverse-voltage spike when the semiconductor device suddenly switches off the voltage supply to the load.

The table shows you how to set the Integral protection diode parameter based on your goals.
\begin{tabular}{|l|l|l|}
\hline Goal & Value to Select & Block Behavior \\
\hline Prioritize simulation speed. & \begin{tabular}{l} 
Protection diode with \\
no dynamics
\end{tabular} & \begin{tabular}{l} 
The block includes an \\
integral copy of the Diode \\
block. To parameterise the \\
internal Diode block, use the \\
Protection parameters.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Goal & Value to Select & Block Behavior \\
\hline \begin{tabular}{l} 
Precisely specify reverse- \\
mode charge dynamics.
\end{tabular} & \begin{tabular}{l} 
Protection diode with \\
charge dynamics
\end{tabular} & \begin{tabular}{l} 
The block includes an \\
integral copy of the \\
Commutation Diode block. \\
To parameterise the internal \\
Commutation Diode block, \\
use the Protection \\
parameters.
\end{tabular} \\
\hline
\end{tabular}

\section*{Modeling Variants}

The block provides four modeling variants. To select the desired variant, right-click the block in your model. From the context menu, select Simscape > Block choices, and then one of these variants:
- PS Control Port - Contains a physical signal port that is associated with the gate terminal. This variant is the default.
- Electrical Control Port - Contains an electrical conserving port that is associated with the gate terminal.
- PS Control Port | Thermal Port - Contains a thermal port and a physical signal port that is associated with the gate terminal.
- Electrical Control Port | Thermal Port - Contains a thermal port and an electrical conserving port that is associated with the gate terminal.

The variants of this block without the thermal port do not simulate heat generation in the device.

The variants with the thermal port allow you to model the heat that switching events and conduction losses generate. For numerical efficiency, the thermal state does not affect the electrical behavior of the block. The thermal port is hidden by default. To enable the thermal port, select a thermal block variant.

\section*{Thermal Loss Equations}

The figure shows an idealized representation of the output voltage, \(V_{\text {out }}\), and the output current, \(I_{\text {out }}\), of the semiconductor device. The interval shown includes the entire \(n\)th switching cycle, during which the block turns off and then on.


When the semiconductor turns on during the \(n\)th switching cycle, the amount of thermal energy that the device dissipates increments by a discrete amount. If you select Voltage, current, and temperature for the Thermal loss dependent on parameter, the equation for the incremental change is
\[
E_{\text {on }(n)}=\frac{V_{\text {off }(n)}}{V_{o f f} \text { _data }} f c n\left(T, I_{\text {on }(n-1)}\right),
\]
where:
- \(E_{\text {on(n) }}\) is the switch-on loss at the \(n\)th switch-on event.
- \(V_{\text {off( } n \text { ) }}\) is the off-state output voltage, \(V_{\text {out }}\), just before the device switches on during the \(n\)th switching cycle.
- \(V_{\text {off_data }}\) is the Off-state voltage for losses data parameter value.
- \(T\) is the device temperature.
- \(I_{o n(n-1)}\) is the on-state output current, \(I_{o u t}\), just before the device switches off during the cycle that precedes the nth switching cycle.

The function \(f c n\) is a 2-D lookup table with linear interpolation and linear extrapolation:
\[
E=\text { tablelookup }\left(T_{j_{-}} \text {data }, I_{\text {out_data }}, E_{\text {on_data }}, T, I_{\text {on }(n-1)}\right),
\]
where:
- \(T_{j_{-} \text {data }}\) is the Temperature vector, \(\mathbf{T j}\) parameter value.
- \(I_{\text {out_data }}\) is the Output current vector, Iout parameter value.
- \(E_{\text {on_data }}\) is the Switch-on loss, Eon=fcn(Tj,Iout) parameter value.

If you select Voltage and current for the Thermal loss dependent on parameter, when the semiconductor turns on during the \(n\)th switching cycle, the equation that the block uses to calculate the incremental change in the discrete amount of thermal energy that the device dissipates is
\[
E_{\text {on }(n)}=\left(\frac{V_{\text {off }(n)}}{V_{\text {off_data }}}\right)\left(\frac{I_{\text {on }(n-1)}}{I_{\text {out_scalar }}}\right)\left(E_{\text {on_s }_{-} \text {scalar }}\right)
\]
where:
- \(I_{\text {out_scalar }}\) is the Output current, Iout parameter value.
- \(E_{\text {on_scalar }}\) is the Switch-on loss parameter value.

When the semiconductor turns off during the \(n\)th switching cycle, the amount of thermal energy that the device dissipates increments by a discrete amount. If you select Voltage, current, and temperature for the Thermal loss dependent on parameter, the equation for the incremental change is
\[
E_{o f f(n)}=\frac{V_{o f f(n)}}{V_{o f f_{-} \text {data }}} f c n\left(T, I_{o n(n)}\right),
\]
where:
- \(E_{\text {off( } n)}\) is the switch-off loss at the \(n\)th switch-off event.
- \(V_{\text {off( } n)}\) is the off-state output voltage, \(V_{\text {out }}\), just before the device switches on during the \(n\)th switching cycle.
- \(V_{\text {off_data }}\) is the Off-state voltage for losses data parameter value.
- \(T\) is the device temperature.
- \(I_{o n(n)}\) is the on-state output current, \(I_{o u t}\), just before the device switches off during the \(n\)th switching cycle.

The function \(f c n\) is a 2-D lookup table with linear interpolation and linear extrapolation:
\[
E=\operatorname{tablelookup}\left(T_{j_{-}} \text {data }, I_{\text {out_data }}, E_{\text {off_data }}, T, I_{\text {on }(n)}\right),
\]
where:
- \(T_{j_{-} d a t a}\) is the Temperature vector, \(\mathbf{T j}\) parameter value.
- \(I_{\text {out_data }}\) is the Output current vector, Iout parameter value.
- \(E_{\text {off_data }}\) is the Switch-off loss, \(\mathbf{E o f f}=\mathbf{f c n}(T \mathbf{T}, I \mathbf{I o u t})\) parameter value.

If you select Voltage and current for the Thermal loss dependent on parameter, when the semiconductor turns off during the \(n\)th switching cycle, the equation that the block uses to calculate the incremental change in the discrete amount of thermal energy that the device dissipates is
\[
E_{\text {off }(n)}=\left(\frac{V_{\text {off }(n)}}{V_{\text {off_data }}}\right)\left(\frac{I_{\text {on }(n-1)}}{I_{\text {out_scalar }}}\right)\left(E_{\text {off__scalar }}\right)
\]
where:
- \(I_{\text {out_scalar }}\) is the Output current, Iout parameter value.
- \(E_{\text {off_scalar }}\) is the Switch-off loss parameter value.

If you select Voltage, current, and temperature for the Thermal loss dependent on parameter, then, for both the on state and the off state, the heat loss due to electrical conduction is
\[
E_{\text {conduction }}=\int f c n\left(T, I_{\text {out }}\right) d t,
\]
where:
- \(E_{\text {conduction }}\) is the heat loss due to electrical conduction.
- \(T\) is the device temperature.
- \(I_{\text {out }}\) is the device output current.

The function \(f c n\) is a 2-D lookup table:
\[
Q_{\text {conduction }}=\operatorname{tablelookup}\left(T_{j_{-} \text {data }}, I_{\text {out_data }}, I_{\text {out_data_repmat }} * V_{\text {on_data }}, T, I_{\text {out }}\right),
\]
where:
- \(T_{j_{-} \text {data }}\) is the Temperature vector, \(\mathbf{T j}\) parameter value.
- \(I_{\text {out_data }}\) is the Output current vector, Iout parameter value.
- \(I_{\text {out_data_repmat }}\) is a matrix that contains length, \(T_{j_{-} \text {data }}\), copies of \(I_{\text {out_data }}\).
- \(V_{\text {on_data }}\) is the \(\mathbf{O n}\)-state voltage, Von=fcn(Tj,Iout) parameter value.

If you select Voltage and current for the Thermal loss dependent on parameter, then, for both the on state and the off state, the heat loss due to electrical conduction is
\[
E_{\text {conduction }}=\int\left(I_{\text {out }} * V_{\text {on_scalar }}\right) d t
\]
where \(V_{\text {on_scalar }}\) is the \(\mathbf{O n}\)-state voltage parameter value.

The block uses the Energy dissipation time constant parameter to filter the amount of heat flow that the block outputs. The filtering allows the block to:
- Avoid discrete increments for the heat flow output
- Handle a variable switching frequency

The filtered heat flow is
\[
Q=\frac{1}{\tau}\left(\sum_{i=1}^{n} E_{\text {on }(i)}+\sum_{i=1}^{n} E_{\text {off }(i)}+E_{\text {conduction }}-\int Q d t\right)
\]
where:
- \(Q\) is the heat flow from the component.
- \(\tau\) is the Energy dissipation time constant parameter value.
- \(n\) is the number of switching cycles.
- \(E_{\text {on(i) }}\) is the switch-on loss at the \(i\) th switch-on event.
- \(E_{\text {off(i) }}\) is the switch-off loss at the \(i\) th switch-off event.
- \(E_{\text {conduction }}\) is the heat loss due to electrical conduction.
- \(\int Q d t\) is the total heat previously dissipated from the component.

\section*{Ports}

The figure shows the block port names.


G
Port associated with the gate terminal. You can set the port to either a physical signal or electrical port.
A
Electrical conserving port associated with the anode terminal.
K
Electrical conserving port associated with the cathode terminal.
H
Thermal conserving port. The thermal port is optional and is hidden by default. To enable this port, select a variant that includes a thermal port.

\section*{Parameters}
- "Main Tab" on page 1-984
- "Integral Diode Tab" on page 1-984
- "Thermal Model Tab" on page 1-987

\section*{Main Tab}

\section*{Forward voltage, Vf}

Forward voltage at which the device turns on. The default value is 0.8 V .

\section*{On-state resistance}

Anode-cathode resistance when the device is on. The default value is 0.0010 hm .

\section*{Off-state conductance}

Anode-cathode conductance when the device is off. The value must be less than \(1 / R\), where \(R\) is the value of \(\mathbf{O n}\)-state resistance. The default value is \(1 e-51 / 0 \mathrm{hm}\).

\section*{Gate trigger voltage, Vgt}

Gate-cathode voltage threshold. The device turns on when the gate-cathode voltage is above this value. The default value is 6 V .

\section*{Holding current}

Current threshold. The device stays on when the current is above this value, even when the gate-cathode voltage falls below the gate trigger voltage. The default value is 1 A .

\section*{Integral Diode Tab}

\section*{Integral protection diode}

Block integral protection diode. The default value is None.
The diodes you can select are:
- Protection diode with no dynamics
- Protection diode with charge dynamics

When you select Protection diode with no dynamics, additional parameters appear.

\section*{Additional Parameters for Protection diode with no dynamics}

\section*{Forward voltage}

Minimum voltage required across the + and - block ports for the gradient of the diode \(I-V\) characteristic to be \(1 / R_{o n}\), where \(R_{o n}\) is the value of On resistance. The default value is 0.8 V .

\section*{On resistance}

Rate of change of voltage versus current above the Forward voltage. The default value is 0.0010 hm .

\section*{Off conductance}

Conductance of the reverse-biased diode. The default value is \(1 \mathrm{e}-51 / 0 \mathrm{hm}\).
For more information on these parameters, see Diode.

When you select Protection diode with charge dynamics, additional parameters appear.

\section*{Additional Parameters for Protection diode with charge dynamics}

\section*{Forward voltage}

Minimum voltage required across the + and - block ports for the gradient of the diode I-V characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of \(O n\) resistance. The default value is 0.8 V .

\section*{On resistance}

Rate of change of voltage versus current above the Forward voltage. The default value is 0.0010 hm .

\section*{Off conductance}

Conductance of the reverse-biased diode. The default value is \(1 \mathrm{e}-51 / 0 \mathrm{hm}\).

\section*{Junction capacitance}

Diode junction capacitance. The default value is 50 nF .

\section*{Peak reverse current, iRM}

Peak reverse current measured by an external test circuit. This value must be less than zero. The default value is -235 A.

\section*{Initial forward current when measuring iRM}

Initial forward current when measuring peak reverse current. This value must be greater than zero. The default value is 300 A .

\section*{Rate of change of current when measuring iRM}

Rate of change of current when measuring peak reverse current. This value must be less than zero. The default value is \(-50 \mathrm{~A} / \mu \mathrm{s}\).

\section*{Reverse recovery time parameterization}

Determines how you specify reverse recovery time in the block. The default value is Specify reverse recovery time directly.

If you select Specify stretch factor or Specify reverse recovery charge, you specify a value that the block uses to derive the reverse recovery time. For more information on these options, see "Alternatives to Specifying trr Directly" on page 1254.

\section*{Reverse recovery time, trr}

Interval between the time when the current initially goes to zero (when the diode turns off) and the time when the current falls to less than \(10 \%\) of the peak reverse current. The default value is \(15 \mu \mathrm{~s}\).

This parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery time directly.

The value of the Reverse recovery time, trr parameter must be greater than the value of the Peak reverse current, iRM parameter divided by the value of the Rate of change of current when measuring iRM parameter.

\section*{Reverse recovery time stretch factor}

Value that the block uses to calculate Reverse recovery time, trr. This value must be greater than 1. The default value is 3 .

This parameter is visible only if you set Reverse recovery time parameterization to Specify stretch factor.

Specifying the stretch factor is an easier way to parameterize the reverse recovery time than specifying the reverse recovery charge. The larger the value of the stretch factor, the longer it takes for the reverse recovery current to dissipate.

\section*{Reverse recovery charge, Qrr}

Value that the block uses to calculate Reverse recovery time, trr. Use this parameter if the data sheet for your diode device specifies a value for the reverse recovery charge instead of a value for the reverse recovery time.

The reverse recovery charge is the total charge that continues to dissipate when the
diode turns off. The value must be less than \(-\frac{i^{2}{ }_{R M}}{2 a}\),
where:
- \(i_{R M}\) is the value specified for Peak reverse current, iRM.
- \(a\) is the value specified for Rate of change of current when measuring iRM.

The default value is \(1500 \mu \mathrm{As}\).
The parameter is visible only if you set Reverse recovery time parameterization to Specify reverse recovery charge.

For more information on these parameters, see Commutation Diode.

\section*{Thermal Model Tab}

The Thermal Model tab is enabled only when you select a block variant that includes a thermal port.

\section*{Thermal loss dependent on}

Select a parameterization method. The option that you select determines which other parameters are enabled. Options are:
- Voltage and current - Use scalar values to specify the output current, switch-on loss, switch-off loss, and on-state voltage data.
- Voltage, current, and temperature - Use vectors to specify the output current, switch-on loss, switch-off loss, on-state voltage, and temperature data. This is the default parameterization method.

\section*{Off-state voltage for losses data}

The output voltage of the device during the off state. This is the blocking voltage at which the switch-on loss and switch-off loss data are defined. The default value is 300 V.

\section*{Energy dissipation time constant}

Time constant used to average the switch-on losses, switch-off losses, and conduction losses. This value is equal to the period of the minimum switching frequency. The default value is \(1 \mathrm{e}-4 \mathrm{~s}\).

\section*{Additional Parameters for Parameterizing by Voltage, Current, and Temperature}

\section*{Temperature vector, \(\mathbf{T j}\)}

Temperature values at which the switch-on loss, switch-off loss, and on-state voltage are specified. Specify this parameter using a vector quantity. The default value is [ 298.15398 .15 ] K.

\section*{Output current vector, Iout}

Output currents for which the switch-on loss, switch-off- loss and on-state voltage are defined. The first element must be zero. Specify this parameter using a vector quantity. The default value is [ 01050100200400600 ] A.

\section*{Switch-on loss, Eon=fen(Tj,Iout)}

Energy dissipated during a single switch on event. This parameter is defined as a function of temperature and final on-state output current. Specify this parameter using a vector quantity. The default value is [ \(02.9 \mathrm{e}-40.001430 .00286\) 0.00571 0.01314 0.02286; 0 5.7e-4 0.00263 0.00514 0.01029 0.02057 0.03029 ] J.

\section*{Switch-off loss, Eoff=fen(Tj,Iout)}

Energy dissipated during a single switch-off event. This parameter is defined as a function of temperature and final on-state output current. Specify this parameter using a vector quantity. The default value is [ \(02.1 e-40.001070 .00214\) 0.00429 0.009859999999999999 0.01714; 0 4.3e-4 0.00197 0.00386 0.00771 0.01543 0.02271 ] J.

\section*{On-state voltage, Von=fen(Tj,Iout)}

Voltage drop across the device while it is in a triggered conductive state.. This parameter is defined as a function of temperature and final on-state output current. Specify this parameter using a vector quantity. The default value is [ 01.11 .3 \(1.451 .752 .252 .7 ; 011.151 .351 .72 .353\) ] V.

\section*{Additional Parameters for Parameterizing by Voltage and Current}

\section*{Output current, Iout}

Output currents for which the switch-on loss, switch-off loss, and on-state voltage are defined. The first element must be zero. Specify this parameter using a scalar quantity. The default value is 600 A .

\section*{Switch-on loss}

Energy dissipated during a single switch-on event. This parameter is defined as a function of temperature and final on-state output current. Specify this parameter using a scalar quantity. The default value is 0.02286 J .

\section*{Switch-off loss}

Energy dissipated during a single switch-off event. This parameter is defined as a function of temperature and final on-state output current. Specify this parameter using a scalar quantity. The default value is 0.01714 J .

\section*{On-state voltage}

Voltage drop across the block while it is in a triggered conductive state. This parameter is defined as a function of temperature and final on-state output current. Specify this parameter using a scalar quantity. The default value is 2.7 V .

\section*{See Also}

Commutation Diode | Diode | GTO | IGBT | Ideal Semiconductor Switch | MOSFET

\section*{Topics}
"Quantifying IGBT Thermal Losses"
"Simulate Thermal Losses in Semiconductors"
"Switch Between Physical Signal and Electrical Ports"

\section*{Introduced in R2013b}

\section*{Thyristor 6-Pulse Generator}

Generate thyristor 6-pulse waveform in single-pulsing mode Library: Simscape / Power Systems / Simscape Components / Control / Pulse Width Modulation


\section*{Description}

The Thyristor 6-Pulse Generator block implements a thyristor 6-pulse waveform generator in single-pulsing mode.

You can use this block to perform phase-controlled AC-to-DC conversion by:
- Measuring the synchronization angle of the AC signal with a phase-locked loop
- Controlling a thyristor converter network with the pulses generated by this block

\section*{Model}

The figure shows the equivalent circuit for the Thyristor 6-Pulse Generator.


Based on the synchronization angle, theta, and the firing angle, alpha, the block internally generates six ramps, one for each of the pulse elements in its output vector.

The block generates a pulse at one of the outputs when the associated ramp meets or crosses the specified firing angle in the upward direction. This figure shows such a pulse generation mechanism for one of the outputs.


Set the pulse ordering strategy to modify the distinct phase-shift of each ramp, and as a result, the order of generated pulses:
- Set the Pulse ordering property to Sequential device order to generate pulses in sequential order. Use this strategy to generate pulses for the Converter block or other thyristor networks that use sequential ordering.

- Set the Pulse ordering property to Natural order of commutation to generate pulses in the natural order. Use this strategy to generate pulses for thyristor networks that use natural ordering.


\section*{Ports}

\section*{Input}
theta - Synchronization angle, radians
scalar
Synchronization angle in the range [0, 2*pi], in radians.
Data Types: single | double

\section*{alpha - Firing angle, radians}
scalar
Thyristor firing angle in radians.
Data Types: single | double

\section*{Output}

\section*{P - Pulse vector}
vector
Thyristor pulse vector.
Data Types: single | double

\section*{Parameters}

\section*{Pulse ordering - Pulse ordering strategy}

Sequential device order (default)|Natural order of commutation
Specify the rule for pulse ordering based on the configuration of the thyristor network you are controlling. Use the Sequential device order strategy to generate pulses for the Converter block.

\section*{Pulse width (rad) - Pulse width}
\(5 *\) pi/6 rad (default) | positive scalar in range [0, pi]
Specify the width of each pulse in the range [0, pi].

\section*{Sample time (-1 for inherited) - Block sample time 1e-5 (default) | positive scalar}

Time, in s, between consecutive block executions. During execution, the block produces outputs and, if appropriate, updates its internal state. For more information, see "What Is Sample Time?" (Simulink) and "Specify Sample Time" (Simulink).

If this block is inside a triggered subsystem, inherit the sample time by setting this parameter to -1. If this block is in a continuous variable-step model, specify the sample time explicitly using a positive scalar.

\section*{References}
[1] Pelly, B. R. Thyristor Phase-Controlled Converters and Cycloconverters: Operation, Control, and Performance. New York, NY: John Wiley \& Sons, Inc., 1971.

\section*{See Also}

\section*{Blocks}

Three-Phase Sinusoidal Measurement (PLL) | Thyristor 12-Pulse Generator | Thyristor Rectifier Voltage Controller

\section*{Simscape Blocks}

Converter | Six-Pulse Gate Multiplexer | Thyristor

\section*{Introduced in R2017b}

\section*{Thyristor 12-Pulse Generator}

Generate thyristor 12-pulse waveform in single-pulsing mode
Library: Simscape / Power Systems / Simscape Components / Control / Pulse Width Modulation


\section*{Description}

The Thyristor 12-Pulse Generator block implements a thyristor 12-pulse waveform generator in single-pulsing mode.

You can use this block to perform phase-controlled AC to DC conversion by:
- Measuring the synchronization angle of the AC signal with a phase-locked loop
- Controlling a thyristor converter network with the pulses generated by this block

\section*{Model}

The Thyristor 12-Pulse Generator outputs six pulses for a delta gate driver and six pulses for a wye gate driver. The delta connection can lead (Delta11) or lag (Delta1). For information on the control model, see the Thyristor 6-Pulse Generator block.

\section*{Ports}

\section*{Input}

\section*{theta - Synchronization angle, rad}
scalar
Synchronization angle in the range [0, \(2 *\) pi], in rad.
Data Types: single|double

\section*{alpha - Firing angle, rad \\ scalar}

Thyristor firing angle in rad.
Data Types: single | double

\section*{Output}

\section*{Pdelta - Delta pulse vector}
vector
Thyristor pulse vector for the delta connection.
Data Types: single | double

\section*{Pwye - Wye pulse vector vector}

Thyristor pulse vector for the wye connection.
Data Types: single | double

\section*{Parameters}

\section*{Pulse ordering - Pulse ordering strategy}

Sequential device order (default)|Natural order of commutation
Specify the rule for pulse ordering based on the configuration of the thyristor network you are controlling. Use the Sequential device order strategy to generate pulses for the Converter block.

\section*{Delta connection - Delta sinusoidal phase variance model}

Leading (Delta11) (default)|Lagging (Delta1)
Sinusoidal phase variance model for the delta connection.
```

Pulse width (rad) - Pulse width
5*pi/6 rad (default) | positive scalar in range [0, pi]

```

Specify the width of each pulse in the range [0, pi].

\section*{Sample time (-1 for inherited) - Block sample time 1e-5 (default) | positive scalar}

Time, in s, between consecutive block executions. During execution, the block produces outputs and, if appropriate, updates its internal state. For more information, see "What Is Sample Time?" (Simulink) and "Specify Sample Time" (Simulink).

If this block is inside a triggered subsystem, inherit the sample time by setting this parameter to -1. If this block is in a continuous variable-step model, specify the sample time explicitly using a positive scalar.

\section*{References}
[1] Pelly, B. R. Thyristor Phase-Controlled Converters and Cycloconverters: Operation, Control, and Performance. New York, NY: John Wiley \& Sons, Inc., 1971.

\section*{See Also}

\section*{Blocks}

Three-Phase Sinusoidal Measurement (PLL) | Thyristor 6-Pulse Generator | Thyristor Rectifier Voltage Controller

\author{
Simscape Blocks \\ Converter | Thyristor | Twelve-Pulse Gate Multiplexer | Wye-Delta1-Wye Transformer | Wye-Delta11-Wye Transformer
}

\section*{Introduced in R2018a}

\section*{Thyristor Rectifier Voltage Controller}

\section*{Discrete-time PI-based DC-link voltage control for thyristor rectifiers Library: Simscape / Power Systems / Simscape Components / Control / Converter Control}


\section*{Description}

The Thyristor Rectifier Voltage Controller block implements a discrete-time proportionalintegral (PI) based DC-link voltage controller for thyristor rectifiers.

\section*{Model}

To regulate the output DC-link voltage of a thyristor rectifier, the Thyristor Rectifier Voltage Controller block determines firing angles using the cosine wave-crossing method. The figure shows the control structure, which includes a three-phase phase-locked loop (PLL).


\section*{Ports}

\section*{Input}

\section*{VdcRef - Reference DC voltage, V}
scalar
Desired DC-link voltage.
Data Types: single | double

\section*{Vdc - DC-link voltage, V}
scalar
Measured DC-link voltage.
Data Types: single | double

\section*{Reset - External reset}
scalar

External reset signal (rising edge) for integrators.

\section*{Data Types: single | double}

\section*{Vabc - Three-phase voltage, V}
vector
Three-phase voltage specified as a vector of that contains the \(a-b\)-, and \(c\)-phase voltages.
Data Types: single | double

\section*{Output}

\author{
P - Pulses \\ vector
}

Pulse control signal.
Data Types: single | double

\section*{Parameters}

\section*{Loop filter proportional gain - Loop filter \(\boldsymbol{K}_{\boldsymbol{p}}\) 2 (default) | positive scalar}

Loop filter proportional gain for the phase-locked loop (PLL).

\section*{Loop filter integral gain - Loop filter \(\boldsymbol{K}_{\boldsymbol{i}}\)}

20 (default) | positive scalar
Loop filter integral gain for the phase-locked loop (PLL).

\section*{Proportional gain - Controller \(\boldsymbol{K}_{\boldsymbol{p}}\)}

1 (default) | positive scalar
Proportional gain for the PI-controller that generates the reference phase voltage.

\section*{Integral gain - Controller \(\boldsymbol{K}_{\boldsymbol{i}}\) \\ 1 (default) | positive scalar}

Integral gain for the PI-controller that generates the reference phase voltage.

\section*{Thyristor pulse width (rad) - Pulse width 5*pi/6 (default) | positive scalar}

Angular width of pulses.

\section*{Pulse ordering - Pulse ordering rule}

Sequential device order (default)|Natural order of commutation
Model for the ordering the generated pulses.

\section*{Sample time (-1 for inherited) - Block sample time -1 (default) | positive scalar}

Time, in s, between consecutive block executions. During execution, the block produces outputs and, if appropriate, updates its internal state. For more information, see "What Is Sample Time?" (Simulink) and "Specify Sample Time" (Simulink).

If this block is inside a triggered subsystem, inherit the sample time by setting this parameter to -1. If this block is in a continuous variable-step model, specify the sample time explicitly using a positive scalar.

Time constant voltage filter - DC voltage filter \(\boldsymbol{\tau}\)
0.001 (default) | positive scalar

Time constant for the DC voltage filter.

\section*{Dependencies}

The Time constant voltage filter parameter is only visible when the Filter DC voltage check box is selected.
```

Filter DC voltage - DC voltage filter option
on (default) | off

```

When the check box is:
- Selected - The block filters the DC voltage signal.
- Cleared - The block does not filter the DC voltage signal.

\section*{Dependencies}

The Time constant voltage filter parameter is only visible when the Filter DC voltage check box is selected.

\section*{References}
[1] Pelly, B. R. Thyristor Phase-Controlled Converters and Cycloconverters: Operation, Control, and Performance. New York, NY: John Wiley \& Sons, Inc., 1971.

\section*{See Also}

Converter | Six-Pulse Gate Multiplexer | Three-Phase Sinusoidal Measurement (PLL) | Thyristor 12-Pulse Generator | Thyristor 6-Pulse Generator | Twelve-Pulse Gate Multiplexer

\section*{Introduced in R2018a}

\section*{Time-Based Fault}

Time-based single-phase, two-phase, or three-phase grounded or ungrounded fault


\section*{Library}

Passive Devices / Faults

\section*{Description}

The Time-Based Fault block models any permutation of a single-phase, two-phase, or three-phase grounded or ungrounded fault. You specify the fault activation time using the block Fault start time parameter. The fault becomes inactive when the fault duration that you specify elapses.

You can set the Time-Based Fault block to represent any of these permutations:
- Single-phase-to-ground fault (a-g, b-g, or c-g)
- Two-phase fault (a-b, b-c, or c-a)
- Two-phase-to-ground fault (a-b-g, b-c-g, or c-a-g)
- Three-phase fault (a-b-c)
- Three-phase-to-ground fault (a-b-c-g)

The figure shows the equivalent circuit diagram for the Time-Based Fault block.


You can determine the resistance in the equivalent circuit using the equations in the table.
\begin{tabular}{|l|l|l|l|l|}
\hline Fault type & Value of \(\boldsymbol{R}_{\mathbf{a}}\) & Value of \(\boldsymbol{R}_{\mathbf{b}}\) & Value of \(\boldsymbol{R}_{\mathbf{c}}\) & Value of \(\boldsymbol{R}_{\boldsymbol{g}}\) \\
\hline None / inactive & \(\frac{1}{G_{p n}}\) & \(\frac{1}{G_{p n}}\) & \(\frac{1}{G_{p n}}\) & \begin{tabular}{l} 
Infinity / open \\
circuit
\end{tabular} \\
\hline a-g & \(R_{p n}\) & \(\frac{1}{G_{p n}}\) & \(\frac{1}{G_{p n}}\) & \(R_{n g}\) \\
\hline b-g & \(\frac{1}{G_{p n}}\) & \(R_{p n}\) & \(\frac{1}{G_{p n}}\) & \(R_{n g}\) \\
\hline c-g & \(\frac{1}{G_{p n}}\) & \(\frac{1}{G_{p n}}\) & \(R_{p n}\) & \(R_{n g}\) \\
\hline a-b & \(R_{p n}\) & \(R_{p n}\) & \(\frac{1}{G_{p n}}\) & \begin{tabular}{l} 
Infinity / open \\
circuit
\end{tabular} \\
\hline b-c & \(\frac{1}{G_{p n}}\) & \(R_{p n}\) & \begin{tabular}{l} 
Infinity / open \\
circuit
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Fault type & Value of \(\boldsymbol{R}_{\mathbf{a}}\) & Value of \(\boldsymbol{R}_{\mathbf{b}}\) & Value of \(\boldsymbol{R}_{\mathbf{c}}\) & Value of \(\boldsymbol{R}_{\boldsymbol{g}}\) \\
\hline c-a & \(R_{p n}\) & \(\frac{1}{G_{p n}}\) & \(R_{p n}\) & \begin{tabular}{l} 
Infinity / open \\
circuit
\end{tabular} \\
\hline a-b-g & \(R_{p n}\) & \(R_{p n}\) & \(\frac{1}{G_{p n}}\) & \(R_{n g}\) \\
\hline b-c-g & \(\frac{1}{G_{p n}}\) & \(R_{p n}\) & \(R_{p n}\) & \(R_{n g}\) \\
\hline c-a-g & \(R_{p n}\) & \(\frac{1}{G_{p n}}\) & \(R_{p n}\) & \(R_{n g}\) \\
\hline a-b-c & \(R_{p n}\) & \(R_{p n}\) & \(R_{p n}\) & \begin{tabular}{l} 
Infinity / open \\
circuit
\end{tabular} \\
\hline a-b-c-g & \(R_{p n}\) & \(R_{p n}\) & \(R_{p n}\) & \(R_{n g}\) \\
\hline
\end{tabular}
where:
- \(R_{a}\) is the resistance between the a-phase and the neutral point of a wye connection.
- \(R_{b}\) is the resistance between the b-phase and the neutral point of a wye connection.
- \(R_{c}\) is the resistance between the c-phase and the neutral point of a wye connection.
- \(R_{g}\) is the resistance between the neutral point of a wye connection and electrical reference.
- \(R_{p n}\) is the value of the Faulted phase-neutral resistance parameter.
- \(R_{n g}\) is the value of the Faulted neutral-ground resistance parameter.
- \(G_{p n}\) is the value of the Unfaulted phase-neutral conductance parameter.

\section*{Parameters}
- "Main Tab" on page 1-1007
- "Parasitics Tab" on page 1-1008

\section*{Main Tab}

\section*{Fault type}

Select one of the following:
- None - Specifies that the fault is not active. This is the default value.
- Single-phase to ground (a-g)
- Single-phase to ground (b-g)
- Single-phase to ground (c-g)
- Two-phase (a-b)
- Two-phase (b-c)
- Two-phase (c-a)
- Two-phase to ground (a-b-g)
- Two-phase to ground (b-c-g)
- Two-phase to ground (c-a-g)
- Three-phase (a-b-c)
- Three-phase to ground (a-b-c-g)

\section*{Faulted phase-neutral resistance}

Resistance between the phase connection and the neutral point when the fault is active. This parameter is visible if the Fault type parameter is set to anything other than None. The default value is \(1 \mathrm{e}-3 \mathrm{Ohm}\).

\section*{Faulted neutral-ground resistance}

Resistance between the neutral point and the electrical reference when fault is active. This parameter is visible if the Fault type parameter is set to any fault which includes a ground connection. The default value is 1e-3 0 hm .

\section*{Fault start time}

Simulation time when the fault becomes active. This parameter is visible if the Fault type parameter is set to anything other than None. The default value is 1 s .

\section*{Fault duration}

Period of time that the fault is active. This parameter is visible if the Fault type parameter is set to anything other than None. The default value is 0.1 s .

\section*{Parasitics Tab}

\section*{Unfaulted phase-neutral conductance}

Conductance between the phase connections and the neutral point when a phase is not involved in the fault. The default value is \(1 \mathrm{e}-61 / 0 \mathrm{hm}\).

\section*{Ports}

The block has one expandable three-phase port for connecting the fault to the system.

\author{
See Also \\ Enabled Fault \\ Introduced in R2014a
}

\section*{Transmission Line}

Three-phase transmission line using lumped-parameter pi-line model


\section*{Library}

Passive Devices

\section*{Description}

The Transmission Line block models a three-phase transmission line using the lumpedparameter pi-line model. This model takes into account phase resistance, phase selfinductance, line-line mutual inductance and resistance, line-line capacitance, and lineground capacitance.

To simplify the block-defining equations, Clarke's transformation is used. The resulting equations are:
\(\left.V_{1}^{\prime}-V_{2}^{\prime}=\left[\begin{array}{llll}R+2 R_{m} & & & \\ & & R-R_{m} & \\ & & R-R_{p m}\end{array}\right], \begin{array}{lll}I_{1}^{\prime}+\left[\begin{array}{lll}L+2 M & & \\ & L-M & \\ & & L-M\end{array}\right] \frac{d I_{1}^{\prime}}{d t} \\ & & \\ C_{g}^{\prime} & & \\ & C_{g}+3 C_{l} & \\ & & C_{g}+3 C_{l}\end{array}\right] \frac{d V_{2}^{\prime}}{d t}\)
\(I_{1}^{\prime}=T^{\prime} I_{1}\)
\[
\begin{aligned}
& I_{2}^{\prime}=T^{\prime} I_{2} \\
& V_{1}^{\prime}=T^{\prime} V_{1} \\
& V_{2}^{\prime}=T^{\prime} V_{2} \\
& T=\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}
1 & \sqrt{2} & 0 \\
1 & -1 / \sqrt{2} & \sqrt{3 / 2} \\
1 & -1 / \sqrt{2} & -\sqrt{3 / 2}
\end{array}\right]
\end{aligned}
\]
where:
- \(R\) is the line resistance for the segment.
- \(R_{m}\) is the mutual resistance for the segment.
- \(L\) is the line inductance for the segment.
- \(C_{g}\) is the line-ground capacitance for the segment.
- \(C_{l}\) is the line-line capacitance for the segment.
- \(T\) is the Clarke's transformation matrix.
- I1 is the three-phase current flowing into the \(\sim 1\) port.
- \(I 2\) is the three-phase current flowing into the \(\sim 2\) port.
- \(V 1\) is the three-phase voltage at the \(\sim 1\) port.
- \(V 2\) is the three-phase voltage at the \(\sim 2\) port.

The positive and zero-sequence parameters are defined by the diagonal terms in the transformed equations:
\(R_{0}=R+2 R_{m}\)
\(R_{1}=R-R_{m}\)
\(L_{0}=L+2 M\)
\(L_{1}=L-M\)
\(C_{0}=C_{g}\)
\(C_{1}=C_{g}+3 C_{l}\)
Rearranging these equations gives the physical line quantities in terms of positive and zero-sequence parameters:
\(R=\frac{2 R_{1}+R_{0}}{3}\)
\(R_{m}=\frac{R_{0}-R_{1}}{3}\)
\(L=\frac{2 L_{1}+L_{0}}{3}\)
\(M=\frac{L_{0}-L_{1}}{3}\)
\(C_{l}=\frac{C_{1}-C_{0}}{3}\)
\(C_{g}=C_{0}\)
The figure shows the equivalent electrical circuit for a single-segment pi-line model using Clarke's transformation.


To increase fidelity, you can use the Number of segments parameter to repeat the pisection N times, resulting in an N -segment transmission line model. More segments significantly slows down your simulation.

To improve numerical performance, you can add parasitic resistance and conductance components. Choosing large values for these components improves simulation speed but decreases simulation accuracy.

\section*{Parameters}
- "Main tab" on page 1-1012
- "Parasitics tab" on page 1-1013

\section*{Main tab}

\section*{Line length}

Length of the transmission line. The default value is 1 km .

\section*{Resistance}

Resistance of the transmission line per phase per-unit length. The default value is \(0.020 \mathrm{hm} / \mathrm{km}\).

\section*{Inductance}

Self-inductance of the transmission line per phase per-unit length. The default value is \(0.5 \mathrm{mH} / \mathrm{km}\).

\section*{Mutual inductance}

Line-line mutual inductance per-unit length. Set this to 0 to remove mutual inductance. The default value is \(0.1 \mathrm{mH} / \mathrm{km}\).

\section*{Line-line capacitance}

Line-line capacitance per-unit length. The default value is \(0.3 \mu \mathrm{~F} / \mathrm{km}\).

\section*{Line-ground capacitance}

Line-ground capacitance per-unit length. The default value is \(0 \mu \mathrm{~F} / \mathrm{km}\) (no line-ground capacitance).

\section*{Mutual Resistance}

Line-line mutual resistance per unit length. The default value is \(00 \mathrm{hm} / \mathrm{km}\) (no lineline mutual resistance).

\section*{Number of segments}

Number of segments in the pi-line model. The default value is 1.

\section*{Parasitics tab}

\section*{Parasitic series resistance}

Resistance value, divided by the number of segments, that is added in series with every capacitor in the model. The default value is 1e-6 0 hm .

\section*{Parasitic parallel conductance}

Conductance value, divided by the number of segments, that is added in parallel with every series resistor and inductor in the model. The default value is \(1 \mathrm{e}-61 / 0 \mathrm{hm}\).

\section*{Ports}

The block has the following ports:
~1
Expandable three-phase port
\(\sim 2\)
Expandable three-phase port
g1
Electrical conserving port corresponding to ground connection at \(\sim 1\) end of the transmission line
g2
Electrical conserving port corresponding to ground connection at \(\sim 2\) end of the transmission line

\section*{See Also}

\section*{Topics}
"Expand and Collapse Three-Phase Ports on a Block"

Introduced in R2013b

\section*{Twelve-Pulse Gate Multiplexer}

Multiplex gate input signals to Three-Level Converter block


\section*{Library}

Simscape / Power Systems / Simscape Components / Semiconductors

\section*{Description}

The Twelve-Pulse Gate Multiplexer block routes gate voltage signals to the 12 switching devices in a Three-Level Converter block. The block multiplexes the 12 gate signals into a single vector. Gate signals are ordered as \(a\)-phase, \(b\)-phase, and then \(c\)-phase, with four gate signals per phase.

If you want to use Simscape Electronics to model the electronics that drive the ThreeLevel Converter block, you can switch the input ports of the Twelve-Pulse Gate Multiplexer block from physical signal ports to electrical ports.

When you switch the block inputs to electrical ports, the block shows 12 pairs of electrical connections, each pair corresponding to the gate and cathode of a switching device.

\section*{Ports}

The block has the following ports:
\(\mathrm{Ga}(1), \mathrm{Ga}(2), \mathrm{Ga}(3), \mathrm{Ga}(4)\)
Ports associated with the gate terminals of the Three-Level Converter \(a\)-phase switching devices. You can set the ports to either physical signal or electrical ports.
```

Gb(1),Gb(2),Gb(3),Gb(4)

```

Ports associated with the gate terminals of the Three-Level Converter \(b\)-phase switching devices. You can set the ports to either physical signal or electrical ports.

\section*{Gc(1), Gc(2), Gc(3), Gc(4)}

Ports associated with the gate terminals of the Three-Level Converter c-phase switching devices. You can set the ports to either physical signal or electrical ports.

\section*{G}

Vector output port associated with the multiplexed gate signals. Connect this port to the G port of the Three-Level Converter block.
\(\mathrm{Ka}(1), \mathrm{Ka}(2), \mathrm{Ka}(3), \mathrm{Ka}(4)\)
Electrical conserving ports associated with the individual cathode terminals corresponding to the Three-Level Converter block \(a\)-phase switching devices. These ports are visible only if you set the input ports of the Twelve-Pulse Gate Multiplexer block to electrical ports.
\(\mathrm{Kb}(1), \mathrm{Kb}(2), \mathrm{Kb}(3), \mathrm{Kb}(4)\)
Electrical conserving ports associated with the individual cathode terminals corresponding to the Three-Level Converter block \(b\)-phase switching devices. These ports are visible only if you set the input ports of the Twelve-Pulse Gate Multiplexer block to electrical ports.

\section*{\(\mathrm{Kc}(1), \mathrm{Kc}(2), \mathrm{Kc}(3), \mathrm{Kc}(4)\)}

Electrical conserving ports associated with the individual cathode terminals corresponding to the Three-Level Converter block c-phase switching devices. These ports are visible only if you set the input ports of the Twelve-Pulse Gate Multiplexer block to electrical ports.

\section*{See Also}

Six-Pulse Gate Multiplexer | Three-Level Converter

\section*{Topics}
"Switch Between Physical Signal and Electrical Ports"

\section*{Introduced in R2014b}

\title{
Two-Pulse Gate Multiplexer
}

Combine two gate-pulse voltage signals into a single vector
Library: Simscape / Power Systems / Simscape Components / Semiconductors


\section*{Description}

The Two-Pulse Gate Multiplexer block multiplexes two separate voltage signals into a single vector. The vectorized signal can control the gates of two switching devices in a converter, such as a Two-Quadrant Chopper block.

\section*{Model}

Each of two model variants for the Two-Pulse Gate Multiplexer block corresponds to a Block choice option. To access the block choices, in the model window, right-click the block, and then use either of these methods:
- From the context menu, select Simscape > Block choices.
- On the Simulink Editor menu bar, select View > Property Inspector. In the Property Inspector window, click the value of the Block choice.

The model variants are:
- PS ports - Two-pulse gate multiplexer with physical signal ports. Select this default option to control switching device gates in a converter block using Simulink gatecontrol voltage signals. To multiplex and connect Simulink signals to the gate-control inport of a converter block:

1 Convert each voltage signal using a Simulink-PS Converter block.
2 Multiplex the converted gate signals into a single vector using the multiplexor block.
3 Connect the vector signal to the \(\mathbf{G}\) port of the converter.
- Electrical ports - Two-pulse gate multiplexer with electrical conserving ports. To control switching device gates in a converter block using Simscape Electronics blocks,
select this option. The electrical ports include pairs of electrical connections. Each pair corresponds to the gate and cathode of a switching device in the connected converter block.

\section*{Ports}

\section*{Input}

\section*{G1 - Gate-control voltage signal 1}
physical signal
Physical signal port associated with the gate terminal of the first switching device in a connected converter block.

\section*{Dependencies}

This port only appears for the PS ports block choice.

\section*{Data Types: double}

\section*{G2 - Gate-control voltage signal 2}
physical signal
Physical signal port associated with the gate terminal of the second switching device in a connected converter block.

\section*{Dependencies}

This port only appears for the PS ports block choice.
Data Types: double

\section*{Conserving}

\section*{G1 - Gate-control voltage signal 1}
electrical
Electrical conserving port associated with the gate terminal of the first switching device in a connected converter block.

\section*{Dependencies}

This port only appears for the Electrical ports block choice.

\section*{a - A-phase AC reference point \\ electrical}

Electrical conserving port associated with the \(A\)-phase for the high-side switching device.
Dependencies
This port only appears for the Electrical ports block choice.

\section*{G2 - Gate-control voltage signal 2}

\section*{electrical}

Electrical conserving port associated with the gate terminal of the second switching device in a connected converter block.

\section*{Dependencies}

This port only appears for the Electrical ports block choice.

\section*{L - DC reference point}
electrical
Electrical conserving port associated with the DC negative connection for the low-side switching device.

\section*{Dependencies}

This port only appears for the Electrical ports block choice.

\section*{See Also}

Four-Pulse Gate Multiplexer | Six-Pulse Gate Multiplexer | Twelve-Pulse Gate Multiplexer | Two-Quadrant Chopper

\section*{Topics}

Switch Between Physical Signal and Electrical Ports

Introduced in R2018a

\section*{Two-Quadrant Chopper}

Two-quadrant controlled DC-DC chopper
Library: Simscape / Power Systems / Simscape Components / Semiconductors


\section*{Description}

The Two-Quadrant Chopper block represents a two-quadrant controlled chopper for converting a fixed DC input to a variable DC output. The block contains two switching devices. Options for the type of switching devices are:
- GTO - Gate turn-off thyristor. For information on the I-V characteristic of the device, see GTO.
- Ideal semiconductor switch - For information on the I-V characteristic of the device, see Ideal Semiconductor Switch.
- IGBT - Insulated-gate bipolar transistor. For information on the I-V characteristic of the device, see IGBT.
- MOSFET - N-channel metal-oxide-semiconductor field-effect transistor. For information on the I-V characteristic of the device, see MOSFET.
- Thyristor - For information on the I-V characteristic of the device, see Thyristor.

\section*{Model}

Each of two model variants for the Two-Quadrant Chopper block corresponds to a Block choice option. To access the block choices, in the model window, right-click the block, and then use either of these methods:
- From the context menu, select Simscape > Block choices.
- On the Simulink Editor menu bar, select View > Property Inspector. In the Property Inspector window, click the value of the Block choice.

The model variants are:
- First- and second- quadrant chopper. This block choice is the default. The figures show the equivalent circuit and the operation for the first- and second- quadrant model.


- First- and fourth- quadrant chopper. The figures show the equivalent circuit and the operation for the first- and fourth- quadrant model.



\section*{Protection}

The block contains an integral protection diode for each switching device. The integral diode protects the semiconductor device by providing a conduction path for reverse current. An inductive load can produce a high reverse-voltage spike when the semiconductor device suddenly switches off the voltage supply to the load.

To configure the internal protection diode block, use the Protection Diode parameters. This table shows how to set the Model dynamics parameter based on your goals.
\begin{tabular}{|l|l|l|}
\hline Goals & Value to Select & Integral Protection Diode \\
\hline Prioritize simulation speed. & \begin{tabular}{l} 
Protection diode with \\
no dynamics
\end{tabular} & The Diode block \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Goals & Value to Select & Integral Protection Diode \\
\hline \begin{tabular}{l} 
Prioritize model fidelity by \\
precisely specifying reverse- \\
mode charge dynamics.
\end{tabular} & \begin{tabular}{l} 
Protection diode with \\
charge dynamics
\end{tabular} & \begin{tabular}{l} 
The Commutation Diode \\
block
\end{tabular} \\
\hline
\end{tabular}

You can also include a snubber circuit for each switching device. Snubber circuits contain a series-connected resistor and capacitor. They protect switching devices against high voltages that inductive loads produce when the device turns off the voltage supply to the load. Snubber circuits also prevent excessive rates of current change when a switching device turns on.

To include and configure a snubber circuit for each switching device, use the Snubbers parameters.

\section*{Gate Control}

To connect Simulink gate-control voltage signals to the gate ports of the internal switching devices:

1 Convert each voltage signal using a Simulink-PS Converter block.
2 Multiplex the converted gate signals into a single vector using a Two-Pulse Gate Multiplexer block.
3 Connect the vector signal to the \(\mathbf{G}\) port.

\section*{Ports}

\section*{Conserving}

\section*{G - Switching device gate control}
electrical | vector
Electrical conserving port associated with the gate terminals of the switching devices.
Data Types: double
1+ - Positive DC voltage 1
electrical | scalar

Electrical conserving port associated with the positive terminal of the first DC voltage.

\section*{Data Types: double}

\section*{1- - Negative DC voltage 1 \\ electrical | scalar}

Electrical conserving port associated with the negative terminal of the first DC voltage.

\section*{Data Types: double}

\section*{2+ - Positive DC voltage 2}
electrical | scalar
Electrical conserving port associated with the positive terminal of the second DC voltage.
Data Types: double

\section*{2- - Negative DC voltage 2 electrical | scalar}

Electrical conserving port associated with the negative terminal of the second DC voltage. Data Types: double

\section*{Parameters}

\section*{Switching Devices}

This table shows how the visibility of Switching Devices parameters depends on the Switching device that you select. To learn how to read the table, see "Parameter Dependencies" on page A-2.

Switching Devices Parameter Dependencies
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{4}{|l|}{ Parameters and Options } & IGBT \\
\hline \begin{tabular}{l} 
Switching device \\
\begin{tabular}{l} 
Semiconducto \\
r Switch
\end{tabular}
\end{tabular} & GTO & MOSFET & Thyristor \\
\hline \begin{tabular}{l} 
On-state \\
resistance
\end{tabular} & Forward voltage & Forward voltage & \begin{tabular}{l} 
Drain-source on \\
resistance
\end{tabular} & Forward voltage \\
\hline \begin{tabular}{l} 
Off-state \\
conductance
\end{tabular} & \begin{tabular}{l} 
On-state \\
resistance
\end{tabular} & \begin{tabular}{l} 
On-state \\
resistance
\end{tabular} & \begin{tabular}{l} 
Off-state \\
conductance
\end{tabular} & \begin{tabular}{l} 
On-state \\
resistance
\end{tabular} \\
\hline \begin{tabular}{l} 
Threshold \\
voltage
\end{tabular} & \begin{tabular}{l} 
Off-state \\
conductance
\end{tabular} & \begin{tabular}{l} 
Off-state \\
conductance
\end{tabular} & \begin{tabular}{l} 
Threshold \\
voltage
\end{tabular} & \begin{tabular}{l} 
Off-state \\
conductance
\end{tabular} \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Gate trigger \\
voltage, Vgt
\end{tabular} & \begin{tabular}{l} 
Threshold \\
voltage
\end{tabular} & & \begin{tabular}{l} 
Gate trigger \\
voltage, Vgt
\end{tabular} \\
\cline { 2 - 2 } & \begin{tabular}{l} 
Gate turn-off \\
voltage, Vgt_off
\end{tabular} & & \begin{tabular}{l} 
Gate turn-off \\
voltage, Vgt_off
\end{tabular} \\
\cline { 2 - 2 } & Holding current
\end{tabular}

\section*{Switching device - Switch type}

\section*{Ideal Semiconductor Switch (default)|GTO|IGBT|MOSFET|Thyristor}

Switching device type for the converter.

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{Forward voltage - Voltage}

\section*{0.8 hm (default) | scalar}

For the different switching device types, the Forward voltage is taken as:
- GTO - Minimum voltage required across the anode and cathode block ports for the gradient of the device I-V characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of \(\mathbf{O n}\)-state resistance
- IGBT - Minimum voltage required across the collector and emitter block ports for the gradient of the diode I-V characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of \(\mathbf{O n}\)-state resistance
- Thyristor - Minimum voltage required for the device to turn on

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{On-state resistance - Resistance}
0.001 Ohm (default) | scalar

For the different switching device types, the On-state resistance is taken as:
- GTO - Rate of change of voltage versus current above the forward voltage
- Ideal semiconductor switch - Anode-cathode resistance when the device is on
- IGBT - Collector-emitter resistance when the device is on
- Thyristor - Anode-cathode resistance when the device is on

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{Drain-source on resistance - Resistance}
0.001 Ohm (default) | scalar

Resistance between the drain and the source, which also depends on the gate-to-source voltage.

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{Off-state conductance - Conductance}

1e-5 1/Ohm (default) | scalar
Conductance when the device is off. The value must be less than \(1 / R\), where \(R\) is the value of On-state resistance.

For the different switching device types, the On-state resistance is taken as:
- GTO - Anode-cathode conductance
- Ideal semiconductor switch - Anode-cathode conductance
- IGBT - Collector-emitter conductance
- MOSFET - Drain-source conductance
- Thyristor - Anode-cathode conductance

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{Threshold voltage - Voltage threshold}

6 V (default) | scalar
Gate voltage threshold. The device turns on when the gate voltage is above this value. For the different switching device types, the device voltage of interest is:
- Ideal semiconductor switch - Gate-emitter voltage
- IGBT - Gate-cathode voltage
- MOSFET - Gate-source voltage

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{Gate trigger voltage, Vgt - Voltage threshold}

1 V (default) | scalar
Gate-cathode voltage threshold. The device turns on when the gate-cathode voltage is above this value.

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{Gate turn-off voltage, Vgt_off - Voltage threshold}
```

-1 V (default)| scalar

```

Gate-cathode voltage threshold. The device turns off when the gate-cathode voltage is below this value.

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{Holding current - Current threshold}

\author{
1 A (default) | scalar
}

Gate current threshold. The device stays on when the current is above this value, even when the gate-cathode voltage falls below the gate trigger voltage.

\section*{Dependencies}

See the Switching Devices Parameter Dependencies table.

\section*{Protection Diode}

The visibility of Protection Diode parameters depends on how you configure the protection diode Model dynamics and Reverse recovery time parameterization parameters. To learn how to read this table, see "Parameter Dependencies" on page A2.

\section*{Protection Diode Parameter Dependencies}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Parameters and Options} \\
\hline \multicolumn{4}{|l|}{Model dynamics} \\
\hline Protection diode with no dynamics & \multicolumn{3}{|l|}{Protection diode with charge dynamics} \\
\hline Forward voltage & \multicolumn{3}{|l|}{Forward voltage} \\
\hline On resistance & \multicolumn{3}{|l|}{On resistance} \\
\hline \multirow[t]{8}{*}{Off conductance} & \multicolumn{3}{|l|}{Off conductance} \\
\hline & \multicolumn{3}{|l|}{Junction capacitance} \\
\hline & \multicolumn{3}{|l|}{Peak reverse current, iRM} \\
\hline & \multicolumn{3}{|l|}{Initial forward current when measuring iRM} \\
\hline & \multicolumn{3}{|l|}{Rate of change of current when measuring iRM} \\
\hline & \multicolumn{3}{|l|}{Reverse recovery time parameterization} \\
\hline & Specify stretch factor & Specify reverse recovery time directly & Specify reverse recovery charge \\
\hline & Reverse recovery time stretch factor & Reverse recovery time, trr & Reverse recovery charge, Qrr \\
\hline
\end{tabular}

\section*{Model dynamics - Diode model}

Protection diode with no dynamics (default)|Protection diode with charge dynamics

Diode type. The options are:
- Diode with no dynamics - Select this option to prioritize simulation speed using the Diode block.
- Diode with charge dynamics - Select this option to prioritize model fidelity in terms of reverse mode charge dynamics using the Commutation Diode block.

\section*{Dependencies}

See the Protection Diode Parameter Dependencies table.

\section*{Forward voltage - Voltage}
0.8 V (default) | scalar

Minimum voltage required across the positive and negative block ports for the gradient of the diode I-V characteristic to be \(1 / R_{\text {on }}\), where \(R_{\text {on }}\) is the value of \(\mathbf{O n}\) resistance.

\section*{On resistance - Resistance}
0.001 Ohm (default) | scalar

Rate of change of voltage versus current above the Forward voltage.

\section*{Off conductance - Conductance}

1e-5 1/0hm (default) | scalar
Conductance of the reverse-biased diode.

\section*{Junction capacitance - Capacitance}

50 nF (default) | scalar
Diode junction capacitance.

\section*{Dependencies}

See the Protection Diode Parameter Dependencies table.
Peak reverse current, iRM - Current
- 235 A (default) | scalar less than 0

Peak reverse current measured by an external test circuit.

\section*{Dependencies}

See the Protection Diode Parameter Dependencies table.

\section*{Initial forward current when measuring iRM - Current 300 A (default) | scalar greater than 0}

Initial forward current when measuring peak reverse current. This value must be greater than zero.

\section*{Dependencies}

See the Protection Diode Parameter Dependencies table.

\section*{Rate of change of current when measuring iRM - Current change rate -50 A/us (default) | scalar}

Rate of change of current when measuring peak reverse current.

\section*{Dependencies}

See the Protection Diode Parameter Dependencies table.
Reverse recovery time parameterization - Recovery-time model
Specify stretch factor (default)|Specify reverse recovery time directly |Specify reverse recovery charge

Model for parameterizing the recovery time. When you select Specify stretch factor or Specify reverse recovery charge, you can specify a value that the block uses to derive the reverse recovery time. For more information on these options, see "Alternatives to Specifying trr Directly" on page 1-254.

\section*{Dependencies}

See the Protection Diode Parameter Dependencies table.

\section*{Reverse recovery time stretch factor - Stretch factor 3 (default) | scalar greater than 1}

Value that the block uses to calculate Reverse recovery time, trr. Specifying the stretch factor is an easier way to parameterize the reverse recovery time than specifying the reverse recovery charge. The larger the value of the stretch factor, the longer it takes for the reverse recovery current to dissipate.

\section*{Dependencies}

See the Protection Diode Parameter Dependencies table.

\section*{Reverse recovery time, trr - Time}

\section*{15 us (default) | scalar}

Interval between the time when the current initially goes to zero (when the diode turns off) and the time when the current falls to less than 10 percent of the peak reverse current.

The value of the Reverse recovery time, trr parameter must be greater than the value of the Peak reverse current, iRM parameter divided by the value of the Rate of change of current when measuring iRM parameter.

\section*{Dependencies}

See the Protection Diode Parameter Dependencies table.

\section*{Reverse recovery charge, Qrr - Charge \\ 1500 s*uA (default) | scalar}

Value that the block uses to calculate Reverse recovery time, trr. Use this parameter if the data sheet for your diode device specifies a value for the reverse recovery charge instead of a value for the reverse recovery time.

The reverse recovery charge is the total charge that continues to dissipate when the
diode turns off. The value must be less than \(-\frac{i^{2}{ }_{R M}}{2 a}\),
where:
- \(i_{R M}\) is the value specified for Peak reverse current, iRM.
- \(a\) is the value specified for Rate of change of current when measuring iRM.

\section*{Dependencies}

See the Protection Diode Parameter Dependencies table.

\section*{Snubbers}

The table summarizes the Snubbers parameter dependencies. To learn how to read the table, see "Parameter Dependencies" on page A-2.

\section*{Snubbers Parameter Dependencies}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Snubbers Parameter Dependencies} \\
\hline \multicolumn{2}{|l|}{Snubber} \\
\hline \multirow[t]{3}{*}{None} & RC Snubber \\
\hline & Snubber resistance \\
\hline & Snubber capacitance \\
\hline
\end{tabular}

\section*{Snubber - Snubber model \\ None (default) | RC snubber}

Switching device snubber.

\section*{Dependencies}

See the Snubbers Parameter Dependencies table.

\section*{Snubber resistance - Resistance}
0.1 Ohm (default) | scalar

Resistance of the switching device snubber.

\section*{Dependencies}

See the Snubbers Parameter Dependencies table.

\section*{Snubber capacitance - Capacitance \\ 1e-7 (default) | F | scalar}

Capacitance of the switching device snubber.

\section*{Dependencies}

See the Snubbers Parameter Dependencies table.

\section*{References}
[1] Trzynadlowski, A. M. Introduction to Modern Power Electronics, 2nd Edition. Hoboken, NJ: John Wiley \& Sons Inc., 2010.

\author{
See Also \\ Four-Quadrant Chopper | Two-Pulse Gate Multiplexer \\ Introduced in R2018a
}

\section*{Two-Way Switch}

Three-phase double-throw switch


\section*{Library}

Switches \& Breakers

\section*{Description}

The Two-Way Switch block models a three-phase double-throw switch that uses an external signal to connect each phase of the port \(\sim 1\) with the corresponding phase of either port \(\sim 2\) or \(\sim 3\).

The table shows how the external signal vT controls the block behavior.
\begin{tabular}{|l|l|l|}
\hline Condition & Block Behavior & \begin{tabular}{l} 
Resistance \\
Parameter Used
\end{tabular} \\
\hline vT \(\leq\) Threshold & \begin{tabular}{l} 
Each phase of port \(\sim 1\) is connected to the \\
corresponding phase of port \(\sim 2\) via internal \\
resistance. Port \(\sim 3\) is unconnected.
\end{tabular} & \begin{tabular}{l} 
Open conductance \\
(port \(\sim 1\) to port \(\sim 3\) ). \\
Closed resistance \\
(port \(\sim 1\) to port \(\sim 2\) )
\end{tabular} \\
\hline vT > Threshold & \begin{tabular}{l} 
Each phase of port \(\sim 1\) is connected to the \\
corresponding phase of port \(\sim 3\) via internal \\
resistance. Port \(\sim 2\) is unconnected.
\end{tabular} & \begin{tabular}{l} 
Open conductance \\
(port \(\sim 1\) to port \(\sim 2\) ). \\
Closed resistance \\
(port \(\sim 1\) to port \(\sim 3\) )
\end{tabular} \\
\hline
\end{tabular}

\section*{Parameters}

\section*{Closed resistance}

Resistance between ports \(\sim 1\) and \(\sim 3\) when the switch is closed. The default value is 0.001 Ohm.

\section*{Open conductance}

Conductance between ports \(\sim 1\) and \(\sim 2\) when the switch is open. The default value is 1e-6 1/0hm.

\section*{Threshold}

Threshold voltage for the control port vT. When the voltage is above the threshold, the switch is closed. The default value is 0 V .

\section*{Ports}

The block has the following ports:
\[
\sim 1
\]

Expandable three-phase port
\(\sim 2\)
Expandable three-phase port
~3
Expandable three-phase port
vT
Scalar control port, which is either a physical signal or an electrical port.

\section*{See Also}

Single-Phase Switch | Single-Phase Two-Way Switch | Switch

\section*{Topics}
"Expand and Collapse Three-Phase Ports on a Block"
"Switch Between Physical Signal and Electrical Ports"

\section*{Introduced in R2013b}

\section*{Varistor}

\author{
Voltage-dependent resistor \\ Library: Simscape / Power Systems / Simscape Components / Passive Devices / Fundamental Components
}

\section*{Description}

The Varistor block represents a voltage-dependent resistor (VDR). This component is also commonly known as a metal-oxide varistor (MOV). The block exhibits high resistance at low voltages and low resistance at high voltages.

You can protect parts of an electrical circuit from high-voltage surges by placing this block in parallel with them. When a surge occurs, the resistance of the varistor drops significantly, causing the current to be shunted through the varistor rather than through the circuit.

Use the Parameterization parameter to choose between two different behaviors for this block. The Linear option focuses on the on- and off-states of the varistor and uses a linear relationship between current and voltage in both regions. The Power-law option uses an exponential relationship between current and voltage in the initial on-state. This option also adds a third, linear region at higher voltages.

\section*{Linear Parameterization}

This parameterization option separates the voltage-current relationship into two linear regions:
- Off-region - resistance is high and current increases slowly with increasing voltage.
- On-region - resistance is low and current increases rapidly with increasing voltage.

This figure shows the voltage-current relationship across the on- and off-regions.


Use linear parameterization in one of these scenarios:
- You are modeling voltage surges close to the threshold voltage
- You expect your varistor to behave linearly in all regions

The voltage-current relationship for the linear varistor is:
\[
i_{\text {varistor }}=\left\{\begin{array}{cl}
\frac{v_{\text {varistor }}}{R_{o f f}} & \left|v_{\text {varistor }}\right|<v_{\text {clamp }} \\
\frac{v_{\text {varistor }}}{R_{o n}}+c_{1} \operatorname{sgn}\left(v_{\text {varistor }}\right) & \left|v_{\text {varistor }}\right| \geq v_{\text {clamp }}
\end{array} .\right.
\]
where:
- \(v_{\text {varistor }}\) and \(i_{\text {varistor }}\) are the varistor voltage and current, respectively.
- \(v_{\text {clamp }}\) is the threshold voltage that separates the two regions of operation. Set this value using the Clamping voltage parameter.
- \(R_{o n}\) and \(R_{\text {off }}\) are the resistances in the on- and off-regions. Set these values using the On resistance and Off resistance, respectively.
- \(c_{1}\) is a constant used to enforce current continuity between the two regions:
\[
c_{1}=v_{\text {clamp }}\left(\frac{1}{R_{o f f}}-\frac{1}{R_{o n}}\right) .
\]

\section*{Power-Law Parameterization}

This parameterization option separates the voltage-current relationship into three regions:
- Leakage region - Resistance is high and current increases slowly with increasing voltage.
- Normal region - Resistance decreases exponentially with increasing voltage.
- Upturn region - Resistance is low and current increases rapidly with increasing voltage.

This figure shows the three regions of operation in log-log-scale.


Use power-law parameterization in one of these scenarios:
- You are modeling voltage surges across a large range of voltages
- You expect your varistor to behave exponentially in the first on-region

The voltage-current relationship for the power-law varistor is:
\[
i_{\text {varistor }}=\left\{\begin{array}{cc}
\frac{v_{\text {varistor }}}{R_{L}} & \left|v_{\text {varistor }}\right|<v_{L N} \\
k\left(v_{\text {varistor }}\right)^{\alpha}+c_{1} & v_{L N} \leq\left|v_{\text {varistor }}\right| \leq v_{N U} \\
\frac{v_{\text {varistor }}}{R_{U}}+c_{2} & \left|v_{\text {varistor }}\right|>v_{N U}
\end{array}\right.
\]
where:
- \(v_{\text {varistor }}\) and \(i_{\text {varistor }}\) are the varistor voltage and current, respectively.
- \(\alpha\) is the power-law exponent which determines the rate of current increase with voltage increase in the normal region. Set this value using the Normal-mode powerlaw exponent parameter.
- \(v_{L N}\) and the \(v_{N U}\) are the threshold voltages corresponding to the leakage-normal and normal-upturn transition points. Set these values using the Leakage to normal voltage transition and Normal to upturn voltage transition parameters, respectively.
- \(R_{L}\) and \(R_{U}\) are the resistances in the leakage- and upturn-regions. Set these values using the Leakage-mode resistance and Upturn-mode resistance parameters, respectively.
- \(k, c_{1}\), and \(c_{2}\) are constants used to enforce current continuity between the regions:
\[
\begin{aligned}
& k=\frac{1}{\alpha R_{U} v_{N U}^{\alpha-1}}, \\
& c_{1}=\frac{v_{L N}}{R_{L}}-\frac{v_{L N}^{\alpha}}{\alpha R_{U} v_{N U}^{\alpha-1}},
\end{aligned}
\]
and
\[
c_{2}=\frac{1}{\alpha R_{U} v_{N U}^{\alpha-1}}\left(v_{N U}^{\alpha}-v_{L N}^{\alpha}\right)-\frac{v_{N U}}{R_{U}}+\frac{v_{L N}}{R_{L}}
\]

\section*{Equivalent Circuit}

In addition to the varistor equations, you can also specify a constant terminal resistance \(R_{t}\) and device capacitance \(C\). This figure shows the equivalent circuit for the varistor in either parameterization mode.


\section*{Ports}

\section*{Conserving}

\section*{+ - Positive terminal \\ electrical}

Electrical conserving port associated with the varistor positive terminal.
- - Negative terminal
electrical
Electrical conserving port associated with the varistor negative terminal.

\section*{Parameters}

\section*{Parameterization - Varistor operation mode}

Linear (default) | Power-law
Choose how the varistor resistance changes with increasing voltages:
- Linear - Two regions. The low-voltage region has high resistance and the highvoltage region has low resistance.
- Power-law - Three regions. The leakage region has high resistance. The normal region has exponentially decreasing resistance. The upturn region has low resistance.

\section*{Clamping voltage - Threshold voltage}

260 (default) | positive number
Transition point voltage, \(v_{\text {clamp }}\), between the off- and on-states of the linear varistor.

\section*{Dependencies}

Enabled when the Parameterization parameter is set to Linear.

\section*{Off resistance - Low-voltage resistance}

3e8 (default) | positive number
Low-voltage resistance, \(R_{\text {off }}\), of the varistor in the off-state.

\section*{Dependencies}

Enabled when the Parameterization parameter is set to Linear.

\section*{On resistance - High-voltage resistance}

1 (default) | positive number
High-voltage resistance, \(R_{\text {on }}\), of the varistor in the on-state.

\section*{Dependencies}

Enabled when the Parameterization parameter is set to Linear.
Leakage to normal voltage transition - First threshold voltage 130 (default) | positive number

Transition point voltage, \(v_{L N}\), between the leakage and normal regions of the power-law varistor.

\section*{Dependencies}

Enabled when the Parameterization parameter is set to Power-law.

\section*{Normal to upturn voltage transition - Second threshold voltage 300 (default) | positive number}

Transition point voltage, \(v_{N U}\), between the normal and upturn regions of the power-law varistor.

\section*{Dependencies}

Enabled when the Parameterization parameter is set to Power-law.

\section*{Leakage-mode resistance - Low-voltage resistance}

3e8 (default) | positive number
Low-voltage resistance, \(R_{L}\), of the varistor in the leakage region.

\section*{Dependencies}

Enabled when the Parameterization parameter is set to Power-law.

\section*{Normal-mode power-law exponent - Mid-voltage resistance} 45 (default) | positive number

Exponent that determines rate of current increase with voltage increase of the varistor in the normal region.

\section*{Dependencies}

Enabled when the Parameterization parameter is set to Power-law.

\section*{Upturn-mode resistance - High-voltage resistance} 0.07 (default) | positive number

High-voltage resistance, \(R_{U}\), of the varistor in the upturn region.

\section*{Dependencies}

Enabled when the Parameterization parameter is set to Power-law.

\section*{Terminal resistance - Terminal resistance}

100e-6 (default) | non-negative number
Small, constant resistance in series with the varistor. Set this value to zero to remove the resistance from the equivalent circuit.

\section*{Capacitance - Parallel capacitance}
4.4 (default) | non-negative number

Capacitor in parallel with the varistor. Set this value to zero to remove the capacitor from the equivalent circuit.

\section*{See Also}

Resistor | Variable Resistor

\section*{Introduced in R2018a}

\section*{Velocity Controller}

Discrete-time velocity controller
Library: Simscape / Power Systems / Simscape Components / Control / General Machine Control


\section*{Description}

The Velocity Controller block implements a velocity controller in discrete-time.
You provide measured and reference rotor velocities ( \(w\) and \(w_{\text {ref }}\) ) as inputs to the block. The block then outputs a reference torque \(T_{\text {ref }}\) for an electric drive.


To prevent windup in the integrator, feed the saturated reference torque \(T_{\text {ref_sat }}\) from the electric drive back to the velocity controller.

\section*{Equations}

You can control the rotor angular velocity with discrete sample time \(T_{s}\) using one of three common approaches:
- Proportional-integral (PI) control, with proportional and integral gains \(K_{p_{-} w}\) and \(K_{i-w}\) :
\[
T_{r e f}=\left(K_{p_{-} w}+K_{i_{-} w} \frac{T_{s} z}{z-1}\right)\left(w_{r e f}-w\right)
\]
- Proportional (P) control, with proportional gain \(K_{p_{-} w}\) :
\[
T_{r e f}=K_{p_{-} w}\left(w_{r e f}-w\right)
\]
- P-PI control characterized by a double velocity feedback loop as shown in the following figure:


Here, the PI Controller block is structured as in the PI control strategy, and \(K_{v}\) is the proportional gain for a \(P\) controller.

\section*{Ports}

\section*{Input}

\section*{wRef - Desired velocity \\ scalar}

Desired or reference velocity, in rad/s.
Data Types: single | double
wMechanical - Actual velocity
scalar
Measured mechanical velocity, in rad/s.

\section*{Data Types: single | double}

\section*{TqRefSat - Saturated reference torque scalar}

Saturated torque reference used for integral anti-windup gain, in N*m.

\section*{Data Types: single | double}

\section*{Reset - Integral reset}
scalar
External reset signal (rising edge) for the integrator.
Data Types: single | double

\section*{Output}

\section*{TqRefUnsat - Unsaturated desired torque scalar}

Unsaturated reference torque, in \(\mathrm{N}^{*} \mathrm{~m}\).
Data Types: single | double

\section*{Parameters}

\section*{Control type - Control model}

PI control (default)|P control|P-PI control
Type of controller:
- PI control - Proportional-integral control using a single feedback loop
- P control - Proportional-integral control using a single feedback loop
- P-PI control - Proportional and proportional-integral control using a double feedback loop

\section*{Dependencies}

The Control type options affect the visibility or configurability of these parameters:
- Controller integral gain
- P controller proportional gain
- Anti-windup gain
- Integral anti-windup gain
- Sample time (-1 for inherited)
- Enable zero cancellation

\section*{Controller proportional gain - Proportional gain}

1 (default) | positive scalar
Proportional gain for the:
- PI controller
- P controller in the single-loop control model
- PI controller in the P-PI controller

\section*{Controller integral gain - Integral gain}

1 (default) | positive scalar
Integral gain for the PI or P-PI controller.

\section*{Dependencies}

This parameter is visible only when the Control type is set to PI control or P-PI control.

P controller proportional gain - P proportional gain
1 (default) | positive scalar
Proportional gain for the P controller in the P-PI controller.

\section*{Dependencies}

This parameter is visible only when the Control type is set to P-PI control.

\section*{Integral anti-windup gain - PI anti-windup gain \\ 1 (default) | positive scalar}

Anti-windup gain for the PI controller.

\section*{Dependencies}

This parameter is visible only when the Control type is set to PI control or P-PI control.

\section*{Sample time (-1 for inherited) - Block sample time}

\section*{- 1 (default) | positive scalar}

Time, in s, between consecutive block executions. During execution, the block produces outputs and, if appropriate, updates its internal state. For more information, see "What Is Sample Time?" (Simulink) and "Specify Sample Time" (Simulink).

If this block is inside a triggered subsystem, inherit the sample time by setting this parameter to -1. If this block is in a continuous variable-step model, specify the sample time explicitly using a positive scalar.

\section*{Dependencies}

This parameter is visible only when the Control type is set to PI control or P-PI control.

\section*{Discretization sample time - Sample time for discretization}

\subsection*{0.001 (default) | positive scalar}

Time, in s, between consecutive discretizations. Discretization is required for zero cancellation.

\section*{Dependencies}

This parameter is only visible when all these conditions are met:
- Control type is set to PI control or P-PI control.
- Sample time is set to - 1 .
- Enable zero cancellation is selected \(\nabla\).

\section*{Enable zero cancellation - Feedforward zero-cancellation} off (default) | on

Option to use zero cancellation one the feedforward path.

\section*{Dependencies}

The Enable zero cancellation parameter is visible only when Control type is set to PI control or P-PI control.

The Discretization sample time parameter is only visible when Enable zero cancellation is selected \(\nabla\).

\section*{References}
[1] Naouar, M. W., A. A. Naassani, E. Monmasson, and I. Slama-Belkhodja. "FPGA-based predictive current controller for synchronous machine speed drive." IEEE Transactions on Power Electronics. Vol. 23, Number 4, 2008, pp. 2115-2126.

\author{
See Also \\ Blocks \\ SM Current Controller | SM Current Reference Generator \\ Introduced in R2017b
}

\section*{Voltage Source}

Three-phase voltage source


\section*{Library}

Simscape / Power Systems / Simscape Components / Sources

\section*{Description}

The Voltage Source block models an ideal three-phase voltage source or a three-phase voltage source with harmonics. You specify the configuration using the Source representation parameter.

When you select None for the Source Impedance parameter, the Voltage Source block models an ideal three-phase voltage source that maintains sinusoidal voltage of the specified magnitude across its terminals, independently of the current flowing through the source.

The source has a wye configuration, and port n provides a connection to the center of the wye. Port \(\sim\) is an expandable three-phase port representing the three phases, \(a, b\), and \(c\). The current is positive if it flows from positive to the center of the wye, and the voltage across each phase is equal to the difference between the voltage at the positive terminal and the center of the wye, \(V(+)-V n\).

\section*{Equations}

The output voltage for the Voltage Source block is defined by these equations:
\[
\begin{aligned}
& V_{0}=\frac{\sqrt{2}}{\sqrt{3}} v_{\text {line_rms }} \\
& v_{a}=V_{0} \sin (2 \pi f t+\varphi) \\
& v_{b}=V_{0} \sin \left(2 \pi f t+\varphi-120^{\circ}\right) \\
& v_{c}=V_{0} \sin \left(2 \pi f t+\varphi+120^{\circ}\right),
\end{aligned}
\]
where:
- \(V_{0}\) is the peak phase voltage.
- \(v_{\text {line_rms }}\) is the root-mean square (RMS) phase-to-phase voltage.
- \(v_{\mathrm{a}}, v_{\mathrm{b}}, v_{\mathrm{c}}\) are the respective phase voltages.
- \(f\) is frequency.
- \(\varphi\) is the phase shift.
- \(t\) is time.

When you specify the three-phase voltage source with harmonics representation, the output voltage for the Voltage Source block is defined by these equations:
\[
\begin{aligned}
& V_{0}=\frac{\sqrt{2}}{\sqrt{3}} v_{\text {line_rms }} H_{\text {ratios }} \\
& v_{a}=V_{0} \sin \left((2 \pi f t+\varphi) H_{\text {orders }}^{\prime}\right) \\
& v_{b}=V_{0} \sin \left((2 \pi f t+\varphi-\theta) H_{\text {orders }}^{\prime}\right) \\
& v_{c}=V_{0} \sin \left((2 \pi f t+\varphi+\theta) H_{\text {orders }}^{\prime}\right),
\end{aligned}
\]
where:
- \(V_{0}\) is a row-vector containing the peak voltage of the fundamental and harmonic sinusoids.
- \(v_{\text {line_rms }}\) is the RMS phase-to-phase voltage.
- \(H_{\text {ratios }}\) is a row-vector of harmonic ratios. The first element is 1 to represent the fundamental.
- \(H_{\text {orders }}\) is a row-vector of harmonic orders. The first element is 1 to represent the fundamental.
- \(v_{\mathrm{a}}, v_{\mathrm{b}}, v_{\mathrm{c}}\) are the respective phase voltages.
- \(f\) is a column-vector of harmonic frequencies. The first element is the fundamental frequency.
- \(\varphi\) is a column-vector of harmonic phase shifts. The first element is the fundamental phase shift.
- \(\theta\) is a column-vector of harmonic phase offsets. The first element is \(120^{\circ}\).
- \(t\) is the time.

When you select \(X / R\) ratio for the Source Impedance parameter, the equations for source impedance are:
\[
\begin{aligned}
& R=\frac{v_{\text {line_rms }}^{2}}{S_{s c} \sqrt{1+\phi^{2}}} \\
& X=R \phi \\
& L=\frac{X}{2 \pi f},
\end{aligned}
\]
where:
- \(S_{s c}\) is the Short-circuit power level that you specify.
- \(\phi\) is the Source \(\mathbf{X} / \mathbf{R}\) ratio that you specify.
- \(R\) is the calculated source resistance.
- \(X\) is the calculated source reactance.
- \(L\) is the calculated source inductance.

\section*{Parameters}

\section*{Main}

\section*{Voltage (phase-to-phase RMS)}

RMS phase-to-phase, or line, voltage. The default value is sqrt(3)*100/sqrt(2), or 122.4745, V.

\section*{Phase shift}

Phase shift in angular units. The default value is 0 deg .

\section*{Frequency}

Voltage frequency, specified in Hz or units directly convertible to Hz (where Hz is defined as \(1 / \mathrm{s}\) ). For example, kHz and MHz are valid units, but rad/s is not. The default value is 60 Hz .

\section*{Source Impedance}

Choose a method for specifying source impedance. The default option is X/R Ratio. Selecting any other options enables other parameters. The options are:
- None
- X/R Ratio
- Series R
- Series L
- Series RL

\section*{Short-circuit power level}

Selecting X/R Ratio for the Source Impedance parameter enables this parameter. The default value is 1 e 6 V *A.

\section*{Source \(X / R\) ratio}

Complex impedance, that is, the reactance-to-resistance ratio. Selecting X/R Ratio for the Source Impedance parameter enables this parameter. The default value is 15.

\section*{Source Resistance}

Selecting Series R or Series RL for the Source Impedance parameter enables this parameter. The default value is 0.010 hm .

\section*{Source Inductance}

Selecting Series L or Series RL for the Source Impedance parameter enables this parameter. The default value is \(3.97 \mathrm{e}-4 \mathrm{H}\).

\section*{Harmonics}

\section*{Source Representation}

Choose between None and Generate harmonics. The default value is None.

\section*{Harmonic orders}

A row-vector of additional integer harmonic orders at which harmonics are to be generated. This parameter is only visible when you set the Source representation parameter to Generate harmonics. The default value is [5, 7, 11, 13].

\section*{Harmonic magnitude to peak magnitude ratios}

A row-vector of ratios of harmonic magnitudes relative to the fundamental magnitude. This parameter is only visible when you set the Source representation parameter to Generate harmonics. The default value is [0.1, 0.1, 0.1, 0.1].

\section*{Parasitics}

\section*{Source impedance parasitic parallel conductance}

Selecting X/R Ratio, Series L, or Series RL for the Source Impedance parameter enables this parameter. The default value is \(01 / 0 \mathrm{hm}\).

\section*{Variables}

Use the Variables tab to set the priority and initial target values for the block variables before simulation. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape).

Unlike block parameters, variables do not have conditional visibility. The Variables tab lists all the existing block variables. If a variable is not used in the set of equations corresponding to the selected block configuration, the values specified for this variable are ignored.

\section*{Ports}

The block has the following ports:

Expandable three-phase port
n
Electrical conserving port associated with the center of the wye

\section*{See Also}

Current Source

Introduced in R2013b

\section*{Washout (Discrete or Continuous)}

Discrete-time or continuous-time washout or high-pass filter
Library: Simscape / Power Systems / Simscape Components /
Control / General Control


\section*{Description}

The Washout (Discrete or Continuous) block implements a washout filter in conformance with IEEE 421.5-2016 \({ }^{[1]}\). The washout is also known as a high-pass filter.

You can switch between continuous and discrete implementations of the integrator using the Sample time parameter.

\section*{Equations}

To configure the washout block for continuous time, set the Sample time property to 0. This representation is equivalent to the continuous transfer function:
\[
G(s)=\frac{T s}{T s+1},
\]
where \(T\) is the time constant. From the preceding transfer function, the washout defining equations are:
\[
\left\{\begin{array}{c}
\dot{x}(t)=\frac{1}{T}(-x(t)+u(t)) \quad x(0)=u_{0}, y(0)=0, ~ \\
y(t)=-x(t)+u(t)
\end{array}\right.
\]
where:
- \(u\) is the washout input.
- \(x\) is the washout state.
- \(y\) is the washout output.
- \(t\) is the simulation time.
- \(u_{0}\) is the initial input to the washout block.

To configure the washout block for discrete time, set the Sample time property to a positive, nonzero value, or to -1 to inherit the sample time from an upstream block. The discrete representation is equivalent to the transfer function:
\[
G(z)=\frac{z-1}{z+T_{S} / T-1}
\]
where \(T_{s}\) is the sample time. From the discrete transfer function, the washout defining equations are defined using the forward Euler method:
\[
\left\{\begin{array}{c}
x(n+1)=\left(1-\frac{T_{s}}{T}\right) x(n)+\left(\frac{T_{s}}{T}\right) u(n) x(0)=u_{0}, y(0)=0 \\
y(n)=u(n)-x(n)
\end{array}\right.
\]
where:
- \(u\) is the washout input.
- \(x\) is the washout state.
- \(y\) is the washout output.
- \(n\) is the simulation time step.
- \(u_{0}\) is the initial input to the washout block.

\section*{Initial Conditions}

The block sets the state initial condition to the initial input, making the initial output zero.

\section*{Bypass Filter Dynamics}

Set the time constant to a value smaller than or equal to the sample time to ignore the dynamics of the filter. When bypassed, the block feeds the input directly to the output:
\[
T \leq T_{s} \rightarrow y=u .
\]

In the continuous case, the sample time and time constant must both be zero.

\section*{Ports}

\section*{Input}

\section*{u - Washout input \\ vector}

Washout input signal. The block uses the input initial value to determine the state initial value.

Data Types: single | double

\section*{Output}

\section*{y - Washout output}
vector
Washout output signal.

\section*{Data Types: single| double}

\section*{Parameters}

\section*{Time constant - Washout time constant \\ 0.1 (default) | positive number}

Washout time constant. Set this value less than the Sample time to bypass the dynamics of the filter.

\section*{Sample time (-1 for inherited) - Sample time - 1 (default) | positive number}

Washout filter sample time. Set this to 0 to implement a continuous washout block. Set this to -1 or a positive number to implement a discrete washout block.

\section*{References}
[1] IEEE Recommended Practice for Excitation System Models for Power System Stability Studies. IEEE Std 421.5-2016. Piscataway, NJ: IEEE-SA, 2016.

\section*{See Also}

\section*{Blocks}

Filtered Derivative (Discrete or Continuous) | Integrator (Discrete or Continuous) | Integrator with Wrapped State (Discrete or Continuous) | Lead-Lag (Discrete or Continuous) | Low-Pass Filter (Discrete or Continuous)

\section*{Introduced in R2017b}

\section*{Winding}

Electromagnetic converter with ohmic and magnetic flux losses
Library: Simscape / Power Systems / Simscape Components /
Passive Devices / Transformers / Fundamental Components


\section*{Description}

The Winding block represents an electromagnetic converter with winding resistance and leakage reluctance. You can use this block as a base component for building custom transformers. For an ideal electromagnetic converter, see the Electromagnetic Converter.

When you apply a positive current across the electrical ports of the block, a positive magnetomotive force (MMF) is induced across the magnetic terminals.
\[
\mathrm{F}=N i
\]

Where:
- \(\mathscr{F}\) is the MMF across the magnetic terminals of the block
- \(N\) is the number of winding turns
- \(i\) is the current through the winding

When you apply a positive time-varying flux across the magnetic terminals of the block, a negative voltage is induced across the electrical terminals of the block.
\[
v=-N \frac{d \phi}{d t}+\frac{N^{2}}{\mathrm{R}_{l}} \frac{d i}{d t}+R_{w} i
\]

Where:
- \(\varphi\) is the flux through the magnetic terminals of the block
- \(i\) is the current through the electrical terminals of the block
- \(\mathscr{R}_{1}\) is the leakage reluctance
- \(R_{w}\) is the winding resistance
- \(\mathscr{F}\) is the magnetomotive force across the magnetic terminals of the block
- \(v\) is the voltage drop across the electrical terminals of the block

This figure shows the equivalent circuit for the block.


In the diagram, \(\varphi_{\mathrm{mp}}\) corresponds to the main-path flux, or the flux through the main winding. You can set the initial condition for this flux in the block's Variables tab.

\section*{Ports}

\section*{Conserving}

\section*{+ - Positive terminal}
electrical
Electrical conserving port associated with the positive terminal of the block.

\section*{- - Negative terminal}
electrical
Electrical conserving port associated with the negative terminal of the block.

\section*{N - North terminal}
magnetic
Magnetic conserving port associated with the north terminal of the block.

\section*{S - South terminal \\ magnetic}

Magnetic conserving port associated with the south terminal of the block.

\section*{Parameters}

\section*{Number of winding turns - Winding turn count}

\section*{10 (default) | positive number}

Number of wire turns on the transformer winding.

\section*{Winding resistance - Series resistance}

1e-3 0hm (default) | positive number
Power loss in the winding.

\section*{Leakage reluctance - Parallel reluctance}

1e5 1/H (default) | positive number
Magnetic flux loss in the winding.

\section*{See Also}

Delta-Delta Transformer | Delta1-Delta1-Wye Transformer | Delta11-Delta11-Wye Transformer | Wye-Delta1 Transformer | Wye-Delta1-Wye Transformer | Wye-Delta11 Transformer | Wye-Delta11-Wye Transformer | Wye-Wye Transformer | Zigzag-Delta1-Wye Transformer | Zigzag-Delta11-Wye Transformer

\section*{Introduced in R2018a}

\section*{Wye-Connected Load}

Three-phase load wired in wye configuration


\section*{Library}

Passive Devices

\section*{Description}

The Wye-Connected Load block models a three-phase load wired in a wye configuration. Each limb of the load can include any combination of a resistor ( R ), capacitor ( C ), and inductor (L), connected in series or in parallel.

You can specify values for the R, L, and C components directly in terms of resistance, inductance, and capacitance, or by rated powers at a rated voltage and frequency.
- If you parameterize the block directly in terms or R, L, and C values, then for initialization, provide a three-element row vector of initial voltages for a capacitor, and a three-element row vector of initial currents for an inductor.
- If you parameterize the block in terms of rated powers, then specify initial conditions in terms of an initial voltage, initial voltage phase, and initial frequency. For example, if the load is connected directly to a three-phase voltage source, then the initial conditions are identical to the source values for RMS line voltage, frequency, and phase shift. To specify zero initial-voltage magnitude, set the initial voltage to 0 .

For certain combinations of \(\mathrm{R}, \mathrm{L}\), and C , for some circuit topologies, specify parasitic resistance or conductance values that help the simulation to converge numerically. These parasitic terms ensure that an inductor has a small parallel resistive path and that a
capacitor has a small series resistance. When you parameterize the block in terms of rated powers, the rated power values do not account for these small parasitic terms. The rated powers represent only the \(\mathrm{R}, \mathrm{L}\), and C values of the load itself.

\section*{Parameters}
- "Main Tab" on page 1-1067
- "Parasitics Tab" on page 1-1068
- "Initial Conditions Tab" on page 1-1069

\section*{Main Tab}

\section*{Parameterization}

Select one of these values:
- Specify by rated power - Specify values for the R, L, and C components by rated powers at a rated voltage and frequency. This is the default.
- Specify component values directly - Specify values for the R, L, and C components directly in terms of resistance, inductance, and capacitance.

Switching the Parameterization value resets the Component structure value. Select the component parameterization option first, and then the component structure. If you later switch the Parameterization value, check the Component structure value and reselect it, if necessary.

\section*{Component structure}

Select the desired combination of a resistor (R), capacitor (C), and inductor (L), connected in series or in parallel. The default is R , resistor.

\section*{Rated voltage}

Voltage for which load powers are specified. This parameter is visible only when you specify values by rated power. The default value is 2.4 e 4 V .

\section*{Real power}

Total real power dissipated by three-phase load when supplied at the rated voltage. This parameter is visible only when you specify values by rated power and select a component structure that includes a resistor. The value must be greater than 0 . The default value is 1000 W .

\section*{Rated electrical frequency}

Frequency for which reactive load powers are specified. This parameter is visible only when you specify values by rated power. The default value is 60 Hz .

\section*{Inductive reactive power}

Total inductive reactive power taken by the three-phase load when supplied at the rated voltage. This parameter is visible only when you specify values by rated power and select a component structure that includes an inductor. The value must be greater than 0 . The default value is \(100 \mathrm{~V} * \mathrm{~A}\).

\section*{Capacitive reactive power}

Total capacitive reactive power taken by the three-phase load when supplied at the rated voltage. This parameter is visible only when you specify values by rated power and select a component structure that includes a capacitor. The value must be less than 0 . The default value is \(-100 \mathrm{~V} * \mathrm{~A}\).

\section*{Resistance}

Resistance of each of the load limbs. This parameter is visible only when you specify component values directly and select a component structure that includes a resistor. The default value is 10 hm .

\section*{Inductance}

Inductance of each of the load limbs. This parameter is visible only when you specify component values directly and select a component structure that includes an inductor. The default value is 0.001 H .

\section*{Capacitance}

Capacitance in each of the load limbs. This parameter is visible only when you specify component values directly and select a component structure that includes a capacitor. The default value is \(1 e-6 \mathrm{~F}\).

\section*{Parasitics Tab}

\section*{Parasitic series resistance}

Represents small parasitic effects. The parameter value corresponds to the series resistance value added to all instances of capacitors in the load. The default value is 1e-60hm.

\section*{Parasitic parallel conductance}

Represents small parasitic effects. The parameter value corresponds to the parallel conductance value added across all instances of inductors in the load. The default value is \(1 \mathrm{e}-61 / 0 \mathrm{hm}\).

\section*{Initial Conditions Tab}

\section*{Terminal voltage magnitude}

Expected initial RMS line voltage at the load. This parameter is visible only when you specify values by rated power. The default value is 2.4 e 4 V .

\section*{Terminal voltage angle}

Expected initial phase of the voltage at the load. This parameter is visible only when you specify values by rated power. The default value is 0 deg.

\section*{Frequency}

Expected initial frequency at the load. This parameter is visible only when you specify values by rated power. The default value is 60 Hz .

\section*{Initial inductor current [ Ia Ib Ic ]}

Initial current in the \(\mathrm{a}, \mathrm{b}\), and c phase inductors, respectively. This parameter is visible only when you specify component values directly and select a component structure that includes an inductor. The default value is [0 0 0 0 A.

\section*{Initial capacitor voltage [ Va Vb Vc ]}

Initial voltage across the \(\mathrm{a}, \mathrm{b}\), and c phase capacitors, respectively. This parameter is visible only when you specify component values directly and select a component structure that includes a capacitor. The default value is [0 0 0] V.

\section*{Block Parameterization}

The following two tables list the block parameters for each Component structure, based on the selected Parameterization option:
- Specify by rated power
- Specify component values directly

Specify by Rated Power
\begin{tabular}{|c|c|c|c|}
\hline Component Structure & Main Tab & Parasitics Tab & Initial Conditions Tab \\
\hline R & Rated voltage Real power & None & None \\
\hline L & \begin{tabular}{l}
Rated voltage \\
Rated electrical frequency \\
Inductive reactive power
\end{tabular} & Parasitic parallel conductance & \begin{tabular}{l}
Terminal voltage magnitude \\
Terminal voltage angle \\
Frequency
\end{tabular} \\
\hline C & \begin{tabular}{l}
Rated voltage \\
Rated electrical frequency \\
Capacitive reactive power
\end{tabular} & Parasitic series resistance & \begin{tabular}{l}
Terminal voltage magnitude \\
Terminal voltage angle \\
Frequency
\end{tabular} \\
\hline Series RL & \begin{tabular}{l}
Rated voltage \\
Rated electrical frequency \\
Real power \\
Inductive reactive power
\end{tabular} & Parasitic parallel conductance & \begin{tabular}{l}
Terminal voltage magnitude \\
Terminal voltage angle \\
Frequency
\end{tabular} \\
\hline Series RC & \begin{tabular}{l}
Rated voltage \\
Rated electrical frequency \\
Real power \\
Capacitive reactive power
\end{tabular} & None & \begin{tabular}{l}
Terminal voltage magnitude \\
Terminal voltage angle \\
Frequency
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Component Structure & Main Tab & Parasitics Tab & Initial Conditions Tab \\
\hline Series LC & \begin{tabular}{l}
Rated voltage \\
Rated electrical frequency \\
Inductive reactive power \\
Capacitive reactive power
\end{tabular} & Parasitic parallel conductance & \begin{tabular}{l}
Terminal voltage magnitude \\
Terminal voltage angle \\
Frequency
\end{tabular} \\
\hline Series RLC & \begin{tabular}{l}
Rated voltage \\
Rated electrical frequency \\
Real power \\
Inductive reactive power \\
Capacitive reactive power
\end{tabular} & Parasitic parallel conductance & \begin{tabular}{l}
Terminal voltage magnitude \\
Terminal voltage angle \\
Frequency
\end{tabular} \\
\hline Parallel RL & \begin{tabular}{l}
Rated voltage \\
Rated electrical frequency \\
Real power \\
Inductive reactive power
\end{tabular} & None & \begin{tabular}{l}
Terminal voltage magnitude \\
Terminal voltage angle \\
Frequency
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Component Structure & Main Tab & Parasitics Tab & Initial Conditions Tab \\
\hline Parallel RC & \begin{tabular}{l}
Rated voltage \\
Rated electrical frequency \\
Real power \\
Capacitive reactive power
\end{tabular} & Parasitic series resistance & \begin{tabular}{l}
Terminal voltage magnitude \\
Terminal voltage angle \\
Frequency
\end{tabular} \\
\hline Parallel LC & \begin{tabular}{l}
Rated voltage \\
Rated electrical frequency \\
Inductive reactive power \\
Capacitive reactive power
\end{tabular} & Parasitic series resistance & \begin{tabular}{l}
Terminal voltage magnitude \\
Terminal voltage angle \\
Frequency
\end{tabular} \\
\hline Parallel RLC & \begin{tabular}{l}
Rated voltage \\
Rated electrical frequency \\
Real power \\
Inductive reactive power \\
Capacitive reactive power
\end{tabular} & Parasitic series resistance & \begin{tabular}{l}
Terminal voltage magnitude \\
Terminal voltage angle \\
Frequency
\end{tabular} \\
\hline
\end{tabular}

Specify Component Values Directly
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Component \\
Structure
\end{tabular} & Main Tab & Parasitics Tab & \begin{tabular}{l} 
Initial Conditions \\
Tab
\end{tabular} \\
\hline R & Resistance & None & None \\
\hline L & Inductance & \begin{tabular}{l} 
Parasitic parallel \\
conductance
\end{tabular} & \begin{tabular}{l} 
Initial inductor \\
current [ Ia Ib Ic ]
\end{tabular} \\
\hline C & Capacitance & \begin{tabular}{l} 
Parasitic series \\
resistance
\end{tabular} & \begin{tabular}{l} 
Initial capacitor \\
voltage [ Va Vb Vc ]
\end{tabular} \\
\hline Series RL & Resistance & \begin{tabular}{l} 
Parasitic parallel \\
conductance
\end{tabular} & \begin{tabular}{l} 
Initial inductor \\
current [ Ia Ib Ic ]
\end{tabular} \\
\hline Series RC & Resistance & None & \begin{tabular}{l} 
Initial capacitor \\
voltage [ Va Vb Vc ]
\end{tabular} \\
\hline Capacitance & Inductance & \begin{tabular}{l} 
Parasitic parallel \\
conductance
\end{tabular} & \begin{tabular}{l} 
Initial inductor \\
current [ Ia Ib Ic ]
\end{tabular} \\
\hline Series RLC & Resistance & \begin{tabular}{l} 
Parasitic parallel \\
conductance
\end{tabular} & \begin{tabular}{l} 
Initial capacitor \\
voltage [ Va Vb Vc ] \\
current [ Ia Ib Ic ]
\end{tabular} \\
\hline Inductance \\
Capacitance
\end{tabular}\(\quad\) Resistance \begin{tabular}{l} 
Inductance
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Component \\
Structure
\end{tabular} & Main Tab & Parasitics Tab & \begin{tabular}{l} 
Initial Conditions \\
Tab
\end{tabular} \\
\hline Parallel RLC & Resistance & \begin{tabular}{l} 
Parasitic series \\
resistance
\end{tabular} & \begin{tabular}{l} 
Initial inductor \\
current [ Ia Ib Ic ] \\
Inductance \\
Capacitance
\end{tabular}
\end{tabular}

\section*{Ports}

The block has the following ports:

Expandable three-phase port
n
Electrical conserving port associated with the neutral phase

\section*{See Also}

Delta-Connected Load | RLC

\section*{Topics}
"Three-Phase Asynchronous Wind Turbine Generator"
"Expand and Collapse Three-Phase Ports on a Block"

\section*{Introduced in R2013b}

\section*{Wye-Connected Variable Load}

Three-phase variable load wired in wye configuration


\section*{Library}

Passive Devices / Time Varying

\section*{Description}

The Wye-Connected Variable Load block models a three-phase variable load wired in a wye configuration. Each limb of the load contains a resistor. The block calculates the resistance required to draw the real power of the physical signal input P at the rated voltage that you specify. Therefore, the block can represent a real load.

To ensure that the resistance is always greater than zero, you specify the minimum real power that the load consumes. The minimum real power must be greater than zero.

\section*{Electrical Defining Equations}

The resistance is defined by
\[
R=\frac{V_{\text {Rated }}^{2}}{P},
\]
where:
- \(R\) is the per-phase series resistance.
- \(V_{\text {Rated }}\) is the RMS, rated line-line voltage.
- \(P\) is the three-phase real power required.

\section*{Parameters}

\section*{Main Tab}

\section*{Rated voltage}

RMS, rated line-line voltage for the resistance equation. The default value is 24 e 3 V .

\section*{Minimum real power}

Minimum real power that the three-phase load dissipates when supplied at the rated voltage. The value must be greater than 0 . The default value is 1 e 3 W .

\section*{Ports}

The block has the following ports:
P
Physical signal input port for real power
~
Expandable three-phase port
n
Electrical conserving port associated with the neutral phase

\section*{See Also}

Wye-Connected Load | Wye-Connected Variable Load (lagging)

\section*{Topics}
"Expand and Collapse Three-Phase Ports on a Block"

\section*{Introduced in R2014b}

\section*{Wye-Connected Variable Load (lagging)}

Three-phase variable, lagging load wired in wye configuration


\section*{Library}

Passive Devices / Time Varying

\section*{Description}

The Wye-Connected Variable Load (lagging) block models a three-phase variable, lagging load wired in a wye configuration. Each limb of the load contains a resistor (R) and an inductor (L) connected in series. The block calculates the resistance and inductance required to draw the real and reactive powers of the physical signal inputs P and Q at the rated voltage and rated frequency that you specify. Therefore, the block can represent a real and lagging reactive load.

To ensure that the resistance and inductance are always greater than zero, you specify the minimum real power and the reactive power that the load consumes. The minimum real power and the reactive power must be greater than zero.

\section*{Electrical Defining Equations}

The per-phase series resistance and inductance are defined by
\[
R=\frac{P V_{\text {Rated }}^{2}}{P^{2}+Q^{2}}
\]
and
\[
L=\frac{Q V_{\text {Rated }}^{2}}{2 \pi F_{\text {Rated }}\left(P^{2}+Q^{2}\right)},
\]
where:
- \(R\) is the per-phase series resistance.
- \(L\) is the per-phase series inductance.
- \(V_{\text {Rated }}\) is the RMS, rated line-line voltage.
- \(F_{\text {Rated }}\) is the nominal AC electrical frequency.
- \(P\) is the three-phase real power required.
- \(Q\) is the three-phase lagging reactive power required.

The inductance is defined as the ratio of the magnetic flux, \(\varphi\), to the steady-state current:
\[
L(i)=\frac{\phi(i)}{i}
\]

Therefore the current-voltage relationship for the inductor is:
\[
v=\frac{d L}{d t} i+L \frac{d i}{d t}
\]

\section*{Parameters}
- "Main Tab" on page 1-1079
- "Parasitics" on page 1-1080
- "Variables Tab" on page 1-1080

\section*{Main Tab}

\section*{Rated voltage}

RMS, rated line-line voltage for the resistance equation. The default value is 24 e 3 V .

\section*{Rated electrical frequency}

Nominal AC electrical frequency for the inductance equation. The default value is 60 Hz .

\section*{Minimum real power}

Minimum real power that the three-phase load dissipates when supplied at the rated voltage. The value must be greater than 0 . The default value is 1 e 3 W .

\section*{Minimum reactive power}

Minimum reactive power that the three-phase load dissipates when supplied at the rated voltage. The value must be greater than 0 . The default value is \(1 e 3 \mathrm{~V} * \mathrm{~A}\).

\section*{Parasitics}

\section*{Parasitic parallel conductance}

Conductance that the block adds, in parallel, to the series RL. The default value is 1e-6 1/0hm.

\section*{Variables Tab}

Use the Variables settings to specify the priority and initial target values for the block variables before simulation. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape) .

Unlike block parameters, variables do not have conditional visibility. The Variables settings include all the existing block variables. If a variable is not used in the set of equations corresponding to the selected block configuration, the values specified for this variable are ignored.

\section*{Ports}

The block has the following ports:
P
Physical signal input port for real power
Q
Physical signal input port for reactive power

Expandable three-phase port
n
Electrical conserving port associated with the neutral phase.

\section*{See Also}

Wye-Connected Load | Wye-Connected Variable Load

\author{
Topics \\ "Expand and Collapse Three-Phase Ports on a Block"
}

\section*{Introduced in R2014b}

\section*{Wye-Delta1 Transformer}

Linear nonideal wye-delta1 transformer with three-limb core


\section*{Library}

Simscape / Power Systems / Simscape Components / Passive Devices / Transformers

\section*{Description}

The Wye-Delta1 Transformer block models a linear, nonideal transformer with a threelimb core, in which the primary windings are configured in a wye connection and the secondary windings are configured in a delta connection. The delta voltages lag the wye voltages by 30 degrees, hence the name 1 o'clock delta. The block includes linear winding leakage and linear core magnetization effects.

The figure shows the equivalent circuit diagram for the wye-delta1 transformer.

- \(\mathrm{R}_{\mathrm{w} 1}\) is the primary winding resistance.
- \(\mathrm{L}_{11}\) is the primary leakage reactance.
- \(\mathrm{R}_{\mathrm{w} 2}\) is the secondary winding resistance.
- \(L_{12}\) is the secondary leakage reactance.
- \(\mathrm{R}_{\mathrm{m}}\) is the shunt magnetizing resistance.
- \(\mathrm{L}_{\mathrm{m}}\) is the shunt magnetizing reactance.

\section*{Display Options}

You can display the transformer per-unit base values in the MATLAB command window using the block context menu. To display the values, right-click the block and select Power Systems > Display Base Values.

\section*{Variables}

Use the Variables settings to specify the priority and initial target values for the block variables before simulation. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape) .

Unlike block parameters, variables do not have conditional visibility. The Variables settings include all the existing block variables. If a variable is not used in the set of equations corresponding to the selected block configuration, the values specified for this variable are ignored.

\section*{Parameters}
- "Main Tab" on page 1-1084
- "Impedances Tab" on page 1-1084

\section*{Main Tab}

\section*{Rated apparent power}

Apparent power flowing through the transformer when operating at rated capacity. The default value is \(100 \mathrm{e} 6 \mathrm{~V} * \mathrm{~A}\).

\section*{Primary rated voltage}

RMS line voltage applied to the primary winding under normal operating conditions. The default value is 4160 V .

\section*{Secondary rated voltage}

RMS line voltage applied to the secondary winding under normal operating conditions. The default value is 24 e 3 V .

\section*{Rated electrical frequency}

Rated or nominal frequency of the AC network to which the transformer is connected. The default value is 60 Hz .

\section*{Impedances Tab}

Parameters in this tab are expressed in per unit (pu). For more information, see "Per-Unit System of Units".

\section*{Primary winding resistance (pu)}

Power loss in the primary winding. The default value is 0.01 .

\section*{Primary leakage reactance (pu)}

Magnetic flux loss in the primary winding. The default value is 0.001 .

\section*{Secondary winding resistance (pu)}

Power loss in the secondary winding. The default value is 0.01 .

\section*{Secondary leakage reactance (pu)}

Magnetic flux loss in the secondary winding. The default value is 0.001 .

\section*{Shunt magnetizing resistance (pu)}

Magnetic losses in transformer core. The default value is 500.

\section*{Shunt magnetizing reactance (pu)}

Magnetic effects of the transformer core when operating in its linear region. The default value is 500 .

\section*{Ports}

The block has the following ports:
~1
Expandable three-phase port for primary winding
\(\sim 2\)
Expandable three-phase port for secondary winding n1

Electrical conserving port associated with the primary winding neutral point

\section*{See Also}

Delta-Delta Transformer | Delta1-Delta1-Wye Transformer | Delta11-Delta11-Wye Transformer | Wye-Delta1-Wye Transformer | Wye-Delta11 Transformer | Wye-Delta11Wye Transformer | Wye-Wye Transformer | Zigzag-Delta1-Wye Transformer | Zigzag-Delta11-Wye Transformer

\author{
Topics \\ "Custom Zigzag Transformer" \\ "Push-Pull Buck Converter in Continuous Conduction Mode" \\ "Push-Pull Buck Converter in Discontinuous Conduction Mode" \\ \section*{Introduced in R2013b}
}

\section*{Wye-Delta11 Transformer}

Linear nonideal wye-delta11 transformer with three-limb core


\section*{Library}

Simscape / Power Systems / Simscape Components / Passive Devices / Transformers

\section*{Description}

The Wye-Delta11 Transformer block models a linear, nonideal transformer with a threelimb core, in which the primary windings are configured in a wye connection and the secondary windings are configured in a delta connection. The delta voltages lead the wye voltages by 30 degrees, hence the name 11 o'clock delta. The block includes linear winding leakage and linear core magnetization effects.

The figure shows the equivalent circuit diagram for the wye-delta11 transformer.

- \(\mathrm{R}_{\mathrm{w} 1}\) is the primary winding resistance.
- \(\mathrm{L}_{11}\) is the primary leakage reactance.
- \(\mathrm{R}_{\mathrm{w} 2}\) is the secondary winding resistance.
- \(L_{l 2}\) is the secondary leakage reactance.
- \(\mathrm{R}_{\mathrm{m}}\) is the shunt magnetizing resistance.
- \(\mathrm{L}_{m}\) is the shunt magnetizing reactance.

\section*{Display Options}

You can display the transformer per-unit base values in the MATLAB command window using the block context menu. To display the values, right-click the block and select Power Systems > Display Base Values.

\section*{Variables}

Use the Variables settings to specify the priority and initial target values for the block variables before simulation. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape) .

Unlike block parameters, variables do not have conditional visibility. The Variables settings include all the existing block variables. If a variable is not used in the set of equations corresponding to the selected block configuration, the values specified for this variable are ignored.

\section*{Parameters}
- "Main Tab" on page 1-1089
- "Impedances Tab" on page 1-1089

\section*{Main Tab}

\section*{Rated apparent power}

Apparent power flowing through the transformer when operating at rated capacity. The default value is 100 e 6 V *A.

\section*{Primary rated voltage}

RMS line voltage applied to the primary winding under normal operating conditions. The default value is 4160 V .

\section*{Secondary rated voltage}

RMS line voltage applied to the secondary winding under normal operating conditions. The default value is 24 e 3 V .

\section*{Rated electrical frequency}

Rated or nominal frequency of the AC network to which the transformer is connected. The default value is 60 Hz .

\section*{Impedances Tab}

Parameters in this tab are expressed in per-unit (pu). For more information, see "Per-Unit System of Units".

\section*{Primary winding resistance (pu)}

Power loss in the primary winding. The default value is 0.01 .

\section*{Primary leakage reactance (pu)}

Magnetic flux loss in the primary winding. The default value is 0.001 .

\section*{Secondary winding resistance (pu)}

Power loss in the secondary winding. The default value is 0.01 .

\section*{Secondary leakage reactance (pu)}

Magnetic flux loss in the secondary winding. The default value is 0.001 .

\section*{Shunt magnetizing resistance (pu)}

Magnetic losses in transformer core. The default value is 500.

\section*{Shunt magnetizing reactance (pu)}

Magnetic effects of the transformer core when operating in its linear region. The default value is 500 .

\section*{Ports}

The block has the following ports:
\(\sim 1\)
Expandable three-phase port for primary winding
\(\sim 2\)
Expandable three-phase port for secondary winding n1

Electrical conserving port associated with the primary winding neutral point

\section*{See Also}

Delta-Delta Transformer | Delta1-Delta1-Wye Transformer | Delta11-Delta11-Wye Transformer | Wye-Delta1 Transformer | Wye-Delta1-Wye Transformer | Wye-Delta11-Wye Transformer | Wye-Wye Transformer | Zigzag-Delta1-Wye Transformer | Zigzag-Delta11Wye Transformer

\footnotetext{
Topics
"Custom Zigzag Transformer"
"Push-Pull Buck Converter in Continuous Conduction Mode"
"Push-Pull Buck Converter in Discontinuous Conduction Mode"

\section*{Introduced in R2013b}
}

\section*{Wye-Delta1-Wye Transformer}

Linear nonideal wye-delta1-wye transformer with three-limb core


\section*{Library}

Simscape / Power Systems / Simscape Components / Passive Devices / Transformers

\section*{Description}

The Wye-Delta1-Wye Transformer block models a linear, nonideal transformer with a three-limb core, in which the primary windings are configured in a wye connection and there are delta secondary windings and wye secondary windings. The delta voltages lag the wye voltages by 30 degrees, hence the name 1 o'clock delta. The block includes linear winding leakage and linear core magnetization effects.

The figure shows the equivalent circuit diagram for the wye-delta1-wye transformer.

- \(R_{w 1}\) is the primary winding resistance.
- \(\mathrm{L}_{11}\) is the primary leakage reactance.
- \(\mathrm{R}_{\mathrm{w} 2}\) is the delta secondary winding resistance.
- \(\mathrm{L}_{12}\) is the delta secondary leakage reactance.
- \(R_{w 3}\) is the wye secondary winding resistance.
- \(L_{13}\) is the wye secondary leakage reactance.
- \(R_{m}\) is the shunt magnetizing resistance.
- \(\mathrm{L}_{\mathrm{m}}\) is the shunt magnetizing reactance.

\section*{Display Options}

You can display the transformer per-unit base values in the MATLAB command window using the block context menu. To display the values, right-click the block and select

\section*{Power Systems > Display Base Values.}

\section*{Variables}

Use the Variables settings to specify the priority and initial target values for the block variables before simulation. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape) .

Unlike block parameters, variables do not have conditional visibility. The Variables settings include all the existing block variables. If a variable is not used in the set of equations corresponding to the selected block configuration, the values specified for this variable are ignored.

\section*{Parameters}
- "Main Tab" on page 1-1094
- "Impedances Tab" on page 1-1095

\section*{Main Tab}

\section*{Rated apparent power}

Apparent power flowing through the transformer when operating at rated capacity. The default value is \(100 \mathrm{e} 6 \mathrm{~V} * \mathrm{~A}\).

\section*{Primary rated voltage}

RMS line voltage applied to the primary winding under normal operating conditions. The default value is 4160 V .

\section*{Delta secondary rated voltage}

RMS line voltage applied to the delta secondary winding under normal operating conditions. The default value is 24 e 3 V .

\section*{Wye secondary rated voltage}

RMS line voltage applied to the wye secondary winding under normal operating conditions. The default value is 24 e 3 V .

\section*{Rated electrical frequency}

Rated or nominal frequency of the AC network to which the transformer is connected. The default value is 60 Hz .

\section*{Impedances Tab}

Parameters in this tab are expressed in per-unit (pu). For more information, see "Per-Unit System of Units".

\section*{Primary winding resistance (pu)}

Power loss in the primary winding. The default value is 0.01 .

\section*{Primary leakage reactance (pu)}

Magnetic flux loss in the primary winding. The default value is 0.001 .

\section*{Delta secondary winding resistance (pu)}

Power loss in the delta secondary winding. The default value is 0.01 .

\section*{Delta secondary leakage reactance (pu)}

Magnetic flux loss in the delta secondary winding. The default value is 0.001 .

\section*{Wye secondary winding resistance (pu)}

Power loss in the wye secondary winding. The default value is 0.01 .

\section*{Wye secondary leakage reactance (pu)}

Magnetic flux loss in the wye secondary winding. The default value is 0.001 .

\section*{Shunt magnetizing resistance (pu)}

Magnetic losses in transformer core. The default value is 500.

\section*{Shunt magnetizing reactance (pu)}

Magnetic effects of the transformer core when operating in its linear region. The default value is 500 .

\section*{Ports}

The block has the following ports:
\(\sim 1\)
Expandable three-phase port for primary winding
\(\sim 2\)
Expandable three-phase port for delta secondary winding ~3

Expandable three-phase port for wye secondary winding n1

Electrical conserving port associated with the primary winding neutral point n3

Electrical conserving port associated with the wye secondary winding neutral point

\section*{See Also}

Delta-Delta Transformer | Delta1-Delta1-Wye Transformer | Delta11-Delta11-Wye Transformer | Wye-Delta1 Transformer | Wye-Delta11 Transformer | Wye-Delta11-Wye Transformer | Wye-Wye Transformer | Zigzag-Delta1-Wye Transformer | Zigzag-Delta11Wye Transformer

\section*{Topics}
"Custom Zigzag Transformer"
"Push-Pull Buck Converter in Continuous Conduction Mode"
"Push-Pull Buck Converter in Discontinuous Conduction Mode"

Introduced in R2013b

\section*{Wye-Delta11-Wye Transformer}

Linear nonideal wye-delta11-wye transformer with three-limb core


\section*{Library}

Simscape / Power Systems / Simscape Components / Passive Devices / Transformers

\section*{Description}

The Wye-Delta11-Wye Transformer block models a linear, nonideal transformer with a three-limb core, in which the primary windings are configured in a wye connection and there are delta secondary windings and wye secondary windings. The delta voltages lead the wye voltages by 30 degrees, hence the name 11 o'clock delta. The block includes linear winding leakage and linear core magnetization effects.

The figure shows the equivalent circuit diagram for the wye-delta11-wye transformer.

- \(R_{w 1}\) is the primary winding resistance.
- \(L_{11}\) is the primary leakage reactance.
- \(\mathrm{R}_{\mathrm{w} 2}\) is the delta secondary winding resistance.
- \(\mathrm{L}_{12}\) is the delta secondary leakage reactance.
- \(\mathrm{R}_{\mathrm{w} 3}\) is the wye secondary winding resistance.
- \(\mathrm{L}_{13}\) is the wye secondary leakage reactance.
- \(R_{m}\) is the shunt magnetizing resistance.
- \(\mathrm{L}_{\mathrm{m}}\) is the shunt magnetizing reactance.

\section*{Display Options}

You can display the transformer per-unit base values in the MATLAB command window using the block context menu. To display the values, right-click the block and select

\section*{Power Systems > Display Base Values.}

\section*{Variables}

Use the Variables settings to specify the priority and initial target values for the block variables before simulation. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape) .

Unlike block parameters, variables do not have conditional visibility. The Variables settings include all the existing block variables. If a variable is not used in the set of equations corresponding to the selected block configuration, the values specified for this variable are ignored.

\section*{Parameters}
- "Main Tab" on page 1-1099
- "Impedances Tab" on page 1-1100

\section*{Main Tab}

\section*{Rated apparent power}

Apparent power flowing through the transformer when operating at rated capacity. The default value is 100 e 6 V *A.

\section*{Primary rated voltage}

RMS line voltage applied to the primary winding under normal operating conditions. The default value is 4160 V .

\section*{Delta secondary rated voltage}

RMS line voltage applied to the delta secondary winding under normal operating conditions. The default value is 24 e 3 V .

\section*{Wye secondary rated voltage}

RMS line voltage applied to the wye secondary winding under normal operating conditions. The default value is 24 e 3 V .

\section*{Rated electrical frequency}

Rated or nominal frequency of the AC network to which the transformer is connected. The default value is 60 Hz .

\section*{Impedances Tab}

Parameters in this tab are expressed in per-unit (pu). For more information, see "Per-Unit System of Units".

\section*{Primary winding resistance (pu)}

Power loss in the primary winding. The default value is 0.01 .

\section*{Primary leakage reactance (pu)}

Magnetic flux loss in the primary winding. The default value is 0.001 .

\section*{Delta secondary winding resistance (pu)}

Power loss in the delta secondary winding. The default value is 0.01 .

\section*{Delta secondary leakage reactance (pu)}

Magnetic flux loss in the delta secondary winding. The default value is 0.001 .

\section*{Wye secondary winding resistance (pu)}

Power loss in the wye secondary winding. The default value is 0.01 .

\section*{Wye secondary leakage reactance (pu)}

Magnetic flux loss in the wye secondary winding. The default value is 0.001 .

\section*{Shunt magnetizing resistance (pu)}

Magnetic losses in transformer core. The default value is 500.

\section*{Shunt magnetizing reactance (pu)}

Magnetic effects of the transformer core when operating in its linear region. The default value is 500 .

\section*{Ports}

The block has the following ports:
\(\sim 1\)
Expandable three-phase port for primary winding
\(\sim 2\)
Expandable three-phase port for delta secondary winding ~3

Expandable three-phase port for wye secondary winding n1

Electrical conserving port associated with the primary winding neutral point n3

Electrical conserving port associated with the wye secondary winding neutral point

\section*{See Also}

Delta-Delta Transformer | Delta1-Delta1-Wye Transformer | Delta11-Delta11-Wye Transformer | Wye-Delta1 Transformer | Wye-Delta1-Wye Transformer | Wye-Delta11
Transformer | Wye-Wye Transformer | Zigzag-Delta1-Wye Transformer | Zigzag-Delta11Wye Transformer

\section*{Topics}
"Custom Zigzag Transformer"
"Push-Pull Buck Converter in Continuous Conduction Mode"
"Push-Pull Buck Converter in Discontinuous Conduction Mode"

\section*{Introduced in R2013b}

\section*{Wye-Wye Transformer}

Linear nonideal wye-wye transformer with three-limb core


\section*{Library}

Simscape / Power Systems / Simscape Components / Passive Devices / Transformers

\section*{Description}

The Wye-Wye Transformer block models a linear, nonideal transformer with a three-limb core, in which both the primary and the secondary windings are configured in a wye connection. The block includes linear winding leakage and linear core magnetization effects.

The figure shows the equivalent circuit diagram for the wye-wye transformer.

- \(\mathrm{R}_{\mathrm{w} 1}\) is the primary winding resistance.
- \(\mathrm{L}_{11}\) is the primary leakage reactance.
- \(R_{w 2}\) is the secondary winding resistance.
- \(L_{l 2}\) is the secondary leakage reactance.
- \(\mathrm{R}_{\mathrm{m}}\) is the shunt magnetizing resistance.
- \(L_{m}\) is the shunt magnetizing reactance.

\section*{Display Options}

You can display the transformer per-unit base values in the MATLAB command window using the block context menu. To display the values, right-click the block and select Power Systems > Display Base Values.

\section*{Variables}

Use the Variables settings to specify the priority and initial target values for the block variables before simulation. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape) .

Unlike block parameters, variables do not have conditional visibility. The Variables settings include all the existing block variables. If a variable is not used in the set of equations corresponding to the selected block configuration, the values specified for this variable are ignored.

\section*{Parameters}
- "Main Tab" on page 1-1104
- "Impedances Tab" on page 1-1104

\section*{Main Tab}

\section*{Rated apparent power}

Apparent power flowing through the transformer when operating at rated capacity. The default value is \(100 \mathrm{e} 6 \mathrm{~V} * \mathrm{~A}\).

\section*{Primary rated voltage}

RMS line voltage applied to the primary winding under normal operating conditions. The default value is 4160 V .

\section*{Secondary rated voltage}

RMS line voltage applied to the secondary winding under normal operating conditions. The default value is 24 e 3 V .

\section*{Rated electrical frequency}

Rated or nominal frequency of the AC network to which the transformer is connected. The default value is 60 Hz .

\section*{Impedances Tab}

Parameters in this tab are expressed in per-unit (pu). For more information, see "Per-Unit System of Units"

\section*{Primary winding resistance (pu)}

Power loss in the primary winding. The default value is 0.01 .

\section*{Primary leakage reactance (pu)}

Magnetic flux loss in the primary winding. The default value is 0.001 .

\section*{Secondary winding resistance (pu)}

Power loss in the secondary winding. The default value is 0.01 .

\section*{Secondary leakage reactance (pu)}

Magnetic flux loss in the secondary winding. The default value is 0.001 .

\section*{Shunt magnetizing resistance (pu)}

Magnetic losses in transformer core. The default value is 500.

\section*{Shunt magnetizing reactance (pu)}

Magnetic effects of the transformer core when operating in its linear region. The default value is 500 .

\section*{Ports}

The block has the following ports:
\(\sim 1\)
Expandable three-phase port for primary winding
~2
Expandable three-phase port for secondary winding n1

Electrical conserving port associated with the primary winding neutral point
n2
Electrical conserving port associated with the secondary winding neutral point

\section*{See Also}

Delta-Delta Transformer | Delta1-Delta1-Wye Transformer | Delta11-Delta11-Wye Transformer | Wye-Delta1 Transformer | Wye-Delta1-Wye Transformer | Wye-Delta11 Transformer | Wye-Delta11-Wye Transformer | Zigzag-Delta1-Wye Transformer | Zigzag-Delta11-Wye Transformer

\footnotetext{
Topics
"Custom Zigzag Transformer"
"Push-Pull Buck Converter in Continuous Conduction Mode"
"Push-Pull Buck Converter in Discontinuous Conduction Mode"

\section*{Introduced in R2013b}
}

\section*{Zigzag-Delta1-Wye Transformer}

Linear nonideal zigzag-delta1-wye transformer with three-limb core


\section*{Library}

Simscape / Power Systems / Simscape Components / Passive Devices / Transformers

\section*{Description}

The Zigzag-Delta1-Wye Transformer block models a linear, nonideal transformer with a three-limb core, in which the primary windings are configured in a zigzag connection and there are delta secondary windings and wye secondary windings. You can specify the phase offset between the zigzag and wye windings via a block parameter. The delta voltages lag the wye voltages by 30 degrees, hence the name one o'clock delta. The block includes linear winding leakage and linear core magnetization effects.

The figure shows the equivalent circuit diagram for the zigzag-delta1-wye transformer.

- \(\mathrm{R}_{\mathrm{w} 1}\) is the primary winding resistance.
- \(\mathrm{L}_{11}\) is the primary leakage reactance.
- \(R_{w 2}\) is the delta secondary winding resistance.
- \(\mathrm{L}_{12}\) is the delta secondary leakage reactance.
- \(\mathrm{R}_{\mathrm{w} 3}\) is the wye secondary winding resistance.
- \(\mathrm{L}_{13}\) is the wye secondary leakage reactance.
- \(\mathrm{R}_{\mathrm{m}}\) is the shunt magnetizing resistance.
- \(\mathrm{L}_{\mathrm{m}}\) is the shunt magnetizing reactance.

\section*{Display Options}

You can display the transformer per-unit base values in the MATLAB command window using the block context menu. To display the values, right-click the block and select

\section*{Power Systems > Display Base Values.}

\section*{Variables}

Use the Variables settings to specify the priority and initial target values for the block variables before simulation. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape) .

Unlike block parameters, variables do not have conditional visibility. The Variables settings include all the existing block variables. If a variable is not used in the set of equations corresponding to the selected block configuration, the values specified for this variable are ignored.

\section*{Parameters}
- "Main" on page 1-1109
- "Impedances" on page 1-1110

\section*{Main}

\section*{Rated apparent power}

Apparent power flowing through the transformer when operating at rated capacity. The default value is 100 e 6 V * A .

\section*{Primary rated voltage}

RMS line voltage applied to the primary winding under normal operating conditions. The default value is 24 e 3 V .

\section*{Delta secondary rated voltage}

RMS line voltage applied to the delta secondary winding under normal operating conditions. The default value is 4160 V .

\section*{Wye secondary rated voltage}

RMS line voltage applied to the wye secondary winding under normal operating conditions. The default value is 4160 V .

\section*{Rated electrical frequency}

Rated or nominal frequency of the AC network to which the transformer is connected. The default value is 60 Hz .

\section*{Wye secondary phase shift}

The phase offset between the zigzag and wye secondary windings. The default value is -7.5 deg .

\section*{Impedances}

Parameters in this tab are expressed in per unit (pu). For more information, see "Per-Unit System of Units".

\section*{Primary winding resistance (pu)}

Power loss in the primary winding. The default value is 0.01 .

\section*{Primary leakage reactance (pu)}

Magnetic flux loss in the primary winding. The default value is 0.001 .

\section*{Delta secondary winding resistance (pu)}

Power loss in the delta secondary winding. The default value is 0.01 .

\section*{Delta secondary leakage reactance (pu)}

Magnetic flux loss in the delta secondary winding. The default value is 0.001 .

\section*{Wye secondary winding resistance (pu)}

Power loss in the wye secondary winding. The default value is 0.01 .

\section*{Wye secondary leakage reactance (pu)}

Magnetic flux loss in the wye secondary winding. The default value is 0.001 .

\section*{Shunt magnetizing resistance (pu)}

Magnetic losses in transformer core. The default value is 500 .

\section*{Shunt magnetizing reactance (pu)}

Magnetic effects of the transformer core when operating in its linear region. The default value is 500 .

\section*{Ports}

The block has the following ports:
\(\sim 1\)
Expandable three-phase port for primary winding
\(\sim 2\)
Expandable three-phase port for delta secondary winding ~3

Expandable three-phase port for wye secondary winding n3

Electrical conserving port associated with the wye secondary winding neutral point

\section*{See Also}

Delta-Delta Transformer | Delta1-Delta1-Wye Transformer | Delta11-Delta11-Wye Transformer | Wye-Delta1 Transformer | Wye-Delta1-Wye Transformer | Wye-Delta11 Transformer | Wye-Delta11-Wye Transformer | Wye-Wye Transformer | Zigzag-Delta11Wye Transformer

\section*{Topics}
"Custom Zigzag Transformer"
"Push-Pull Buck Converter in Continuous Conduction Mode"
"Push-Pull Buck Converter in Discontinuous Conduction Mode"

\section*{Introduced in R2015a}

\section*{Zigzag-Delta11-Wye Transformer}

Linear nonideal zigzag-delta11-wye transformer with three-limb core


\section*{Library}

Simscape / Power Systems / Simscape Components / Passive Devices / Transformers

\section*{Description}

The Zigzag-Delta11-Wye Transformer block models a linear, nonideal transformer with a three-limb core, in which the primary windings are configured in a zigzag connection and there are delta secondary windings and wye secondary windings. You can specify the phase offset between the zigzag and wye windings via a block parameter. The delta voltages lead the wye voltages by 30 degrees, hence the name 11 o'clock delta. The block includes linear winding leakage and linear core magnetization effects.

The figure shows the equivalent circuit diagram for the zigzag-delta11-wye transformer.

- \(\mathrm{R}_{\mathrm{w} 1}\) is the primary winding resistance.
- \(\mathrm{L}_{11}\) is the primary leakage reactance.
- \(R_{w 2}\) is the delta secondary winding resistance.
- \(\mathrm{L}_{12}\) is the delta secondary leakage reactance.
- \(R_{w 3}\) is the wye secondary winding resistance.
- \(L_{13}\) is the wye secondary leakage reactance.
- \(R_{m}\) is the shunt magnetizing resistance.
- \(\mathrm{L}_{\mathrm{m}}\) is the shunt magnetizing reactance.

\section*{Display Options}

You can display the transformer per-unit base values in the MATLAB command window using the block context menu. To display the values, right-click the block and select

\section*{Power Systems > Display Base Values.}

\section*{Variables}

Use the Variables settings to specify the priority and initial target values for the block variables before simulation. For more information, see "Set Priority and Initial Target for Block Variables" (Simscape) .

Unlike block parameters, variables do not have conditional visibility. The Variables settings include all the existing block variables. If a variable is not used in the set of equations corresponding to the selected block configuration, the values specified for this variable are ignored.

\section*{Parameters}
- "Main" on page 1-1114
- "Impedances" on page 1-1115

\section*{Main}

\section*{Rated apparent power}

Apparent power flowing through the transformer when operating at rated capacity. The default value is \(100 \mathrm{e} 6 \mathrm{~V} * \mathrm{~A}\).

\section*{Primary rated voltage}

RMS line voltage applied to the primary winding under normal operating conditions. The default value is 24 e 3 V .

\section*{Delta secondary rated voltage}

RMS line voltage applied to the delta secondary winding under normal operating conditions. The default value is 4160 V .

\section*{Wye secondary rated voltage}

RMS line voltage applied to the wye secondary winding under normal operating conditions. The default value is 4160 V .

\section*{Rated electrical frequency}

Rated or nominal frequency of the AC network to which the transformer is connected. The default value is 60 Hz .

\section*{Wye secondary phase shift}

The phase offset between the zigzag and wye secondary windings. The default value is -7.5 deg .

\section*{Impedances}

Parameters in this tab are expressed in per-unit (pu). For more information, see "Per-Unit System of Units".

\section*{Primary winding resistance (pu)}

Power loss in the primary winding. The default value is 0.01 .

\section*{Primary leakage reactance (pu)}

Magnetic flux loss in the primary winding. The default value is 0.001 .

\section*{Delta secondary winding resistance (pu)}

Power loss in the delta secondary winding. The default value is 0.01 .

\section*{Delta secondary leakage reactance (pu)}

Magnetic flux loss in the delta secondary winding. The default value is 0.001 .

\section*{Wye secondary winding resistance (pu)}

Power loss in the wye secondary winding. The default value is 0.01 .

\section*{Wye secondary leakage reactance (pu)}

Magnetic flux loss in the wye secondary winding. The default value is 0.001 .

\section*{Shunt magnetizing resistance (pu)}

Magnetic losses in transformer core. The default value is 500.

\section*{Shunt magnetizing reactance (pu)}

Magnetic effects of the transformer core when operating in its linear region. The default value is 500 .

\section*{Ports}

The block has the following ports:
\(\sim 1\)
Expandable three-phase port for primary winding
\(\sim 2\)
Expandable three-phase port for delta secondary winding ~3

Expandable three-phase port for wye secondary winding n3

Electrical conserving port associated with the wye secondary winding neutral point

\section*{See Also}

Delta-Delta Transformer | Delta1-Delta1-Wye Transformer | Delta11-Delta11-Wye Transformer | Wye-Delta1 Transformer | Wye-Delta1-Wye Transformer | Wye-Delta11 Transformer | Wye-Delta11-Wye Transformer | Wye-Wye Transformer | Zigzag-Delta1-Wye Transformer

\section*{Topics}
"Custom Zigzag Transformer"
"Push-Pull Buck Converter in Continuous Conduction Mode"
"Push-Pull Buck Converter in Discontinuous Conduction Mode"

\section*{Introduced in R2015a}

Functions - Alphabetical List

\section*{pe_calculateThdPercent}

Compute the total harmonic distortion (THD) percentage

\section*{Syntax}
[thdPercent] = pe_calculateThdPercent(harmonicOrder, harmonicMagnitude)

\section*{Description}
[thdPercent] = pe_calculateThdPercent(harmonicOrder, harmonicMagnitude) calculates the total harmonic distortion (THD) percentage using these equations:
\(M=\frac{\text { harmonic magnitude }}{\sqrt{2}}\),
and
\(\% T H D=100 \frac{\sqrt{\sum_{i=2}^{n} M_{i}{ }^{2}}}{M_{1}}\),
where:
- \(M_{i}\) is the root mean square (RMS) value of the harmonic magnitude corresponding to the \(\mathrm{i}^{\text {th }}\) harmonic order.
- \(M\) is \(V_{R M S}\) or \(I_{R M S}\) as required.

You can use the pe_getHarmonics function to obtain the vectors of harmonic order and harmonic magnitude for a simscape.logging. Node.

\section*{Examples}

\section*{Calculate THD percent}

Calculate the THD from harmonic orders \([1 ; 5 ; 7 ; 11 ; 13]\) and harmonic magnitudes [1.1756e+03;0.0437e+03;0.0221e+03;0.0173e+03;0.0127e+03].
harmonic0rder \(=[1 ; 5 ; 7 ; 11 ; 13]\);
harmonicMagnitude \(=[1.1756 e+03 ; 0.0437 e+03 ; 0.0221 e+03 ; 0.0173 e+03 ; .\). 0.0127e+03];
thdPercent = pe_calculateThdPercent( harmonicOrder, harmonicMagnitude )
thdPercent \(=4.5480\)
- "Perform an Online Harmonic Analysis Using the Simscape Spectrum Analyzer Block"
- "Choose a Simscape Power Systems Function for an Offline Harmonic Analysis"
- "Data Logging" (Simscape)
- "Harmonic Analysis of a Three-Phase Rectifier"

\section*{Input Arguments}

\section*{harmonicOrder - Harmonic orders}
vector
Harmonic orders from 0 up to and including number of harmonics, specified as a vector.

\section*{Example: [1;5;7;11;13]}

Data Types: single|double|int8|int16|int32|int64|uint8|uint16| uint32 | uint64

\section*{harmonicMagnitude - Harmonic magnitudes}
vector
Harmonic magnitudes from the \(0^{\text {th }}\) harmonic up to and including the number of harmonics included in the analysis, specified as a vector.

Example: [1.1756e+03;0.0437e+03;0.0221e+03;0.0173e+03;0.0127e+03]

\section*{Data Types: single|double|int8|int16|int32|int64|uint8|uint16| uint32|uint64}

\section*{See Also}

\section*{Blocks}

Spectrum Analyzer

\section*{Functions}
pe_getHarmonics | pe_plotHarmonics

\section*{Objects}
simscape.logging.Node

\section*{Topics}
"Perform an Online Harmonic Analysis Using the Simscape Spectrum Analyzer Block" "Choose a Simscape Power Systems Function for an Offline Harmonic Analysis"
"Data Logging" (Simscape)
"Harmonic Analysis of a Three-Phase Rectifier"

\section*{Introduced in R2014a}

\section*{pe_getEfficiency}

Calculate efficiency as a function of dissipated power losses

\section*{Syntax}
efficiency = pe_getEfficiency('loadIdentifier', node)
efficiency \(=\) pe_getEfficiency('loadIdentifier', node, startTime, endTime)
[efficiency,lossesTable] = pe_getEfficiency('loadIdentifier', node)

\section*{Description}
efficiency = pe_getEfficiency('loadIdentifier', node) returns the efficiency of a circuit based on the data extracted from a Simscape logging node.

Before you call this function, generate or load the simulation log variable to your workspace. To generate the variable, simulate the model with simulation data logging enabled. For more information, see "About Simulation Data Logging" (Simscape). To load a previously saved variable from a file, right-click on the file and select Load.

Checking efficiency allows you to determine if circuit components are operating within their requirements. Blocks in the Semiconductor > Fundamental Components library and the Delta-Connected Load, Wye-Connected Load, and RLC blocks have an internal block variable called power_dissipated. This variable represents the instantaneous dissipated power, which includes \({ }^{-}\)only the real power (not the reactive or apparent power) that the block dissipates. When you log simulation data, the time-value series for this variable represents the power dissipated by the block over time. You can view and plot this data using the Simscape Results Explorer. The pe_getPowerLossTimeSeries function also allows you to access this data.

The pe_getEfficiency function calculates the efficiency of the circuit based on the losses for blocks that have a power_dissipated variable and that you identify as a load block. The equation for efficiency is
\[
E f f=100 * \frac{P_{\text {load }}}{P_{\text {loss }}+P_{\text {load }}},
\]
where:
- Eff is the efficiency of the circuit.
- \(P_{\text {load }}\) is the output power, that is, the power dissipated by load blocks.
- \(P_{\text {loss }}\) is the power dissipated by nonload blocks.

This equation assumes that all loss mechanisms are captured by blocks containing at least one power_dissipated variable. If the model contains any lossy blocks that do not have this variable, the efficiency calculation gives incorrect results.

Some blocks have more than one power_dissipated variable, depending on their configuration. For example, for the MOSFET block, both the diode node and the ideal_switch node have a power_dissipated logging node. The function sums the power losses for both nodes to provide the total power loss for the block, averaged over simulation time. The function uses the loss data to calculate the efficiency of the circuit.

The nonideal semiconductor blocks also have thermal variants. Thermal variants have thermal ports that allow you to model the heat that is generated due to switching events and conduction losses. If you use a thermal variant, the function calculates power losses and efficiencies based on the thermal parameters that you specify. Essentially, the power dissipated is equal to the heat generated.

If you use a variant without a thermal port, the function calculates power losses and efficiencies based on the electrical parameters that you specify, such as on-state resistance and off-state conductance.
efficiency = pe_getEfficiency('loadIdentifier', node,startTime, endTime) returns the efficiency of a circuit based on the power_dissipated data extracted from a Simscape logging node within a time interval. startTime and endTime represent the start and end of the time interval for calculating the efficiency. If you omit these two input arguments, the function calculates the efficiency over the whole simulation time.
[efficiency,lossesTable] = pe_getEfficiency('loadIdentifier', node) returns the efficiency of a circuit and the power loss contributions of the nonload blocks in a circuit based on the data extracted from a Simscape logging node.

\section*{Examples}

\section*{Calculate Efficiency for a Circuit}

This example shows how to calculate efficiency based on the power dissipated by blocks in a circuit using the pe_getEfficiency function. Data logging is enabled locally, and the option to limit data points is off.

Open the model. At the MATLAB® command prompt, enter:
```

model = 'pe_pwm_two_level';
open_system(modēl)

```
 model is executed, a Spectrum Analyzer opens and displays frequency data for the A-Phase Load Current.

Ensure that all blocks that have power dissipated variables are considered in the efficiency calculation. Enable data logging for the whole model.
```

set_param(model,'SimscapeLogType','all')

```

Designate the load. Rename the Wye-Connected Load block from RL to RL_Load.
```

set_param([model,'/RL'],'Name','RL_Load')

```

Run the simulation and create the simulation log variable.
```

sim(model)

```

The simulation log variable simlog_pe_pwm_two_level is saved in the workspace.
Calculate the efficiency percentage.
```

efficiency = pe_getEfficiency('Load',simlog_pe_pwm_two_level)
efficiency =

```
    99.1940

\section*{Calculate Efficiency of a Circuit for a Specific Time Period}

This example shows how to calculate efficiency based on the power dissipated for a specific time period using the pe getEfficiency function. Data logging is enabled locally, and the option to limit data points is off.

Open the model. At the MATLAB® command prompt, enter:
```

model = 'pe_pwm_two_level';
open_system(model)

```
 model is executed, a Spectrum Analyzer opens and displays frequency data for the A-Phase Load Current.

Ensure that all blocks that have power_dissipated variables are considered in the efficiency calculation. Enable data logging for the whole model.
```

set_param(model,'SimscapeLogType','all')

```

Designate the load. Rename the Wye-Connected Load block from RL to RL_Load.
```

set_param([model,'/RL'],'Name','RL_Load')

```

Run the simulation and create the simulation log variable.
```

sim(model)

```

The simulation log variable simlog_pe_pwm_two_level is saved in the workspace.

The model simulation stop time is 0.2 seconds. Calculate efficiency for the interval when the simulation time, \(t\), is between 0.00 and 0.005 seconds.
```

efficiency = pe_getEfficiency('Load',simlog_pe_pwm_two_level,0.000,0.005)

```
efficiency =
99.1093

\section*{Calculate Efficiency and Power-Loss Contributions}

This example shows how using the pe_getEfficiency function allows you to calculate both the efficiency of the circuit and the power-loss contributions of the nonload blocks based on the power that they dissipate. Data logging is enabled locally, and the option to limit data points is off.

Open the model. At the MATLAB® command prompt, enter:
```

model = 'pe_pwm_two_level';
open_system(model)

```
 model is executed, a Spectrum Analyzer opens and displays frequency data for the A-Phase Load Current.

Ensure that all blocks that have power dissipated variables are considered in the efficiency calculation. Enable data logging for the whole model.
```

set_param(model,'SimscapeLogType','all')

```

Designate the load. Rename the Wye-Connected Load block from RL to RL_Load.
```

set param([model,'/RL'],'Name','RL Load')

```

Run the simulation and create the simulation log variable.
sim(model)
The simulation log variable simlog_pe_pwm_two_level is saved in the workspace.
Calculate the efficiency and power-loss contributions due to dissipated power.
```

[efficiency,lossesTable] = pe_getEfficiency('Load',simlog_pe_pwm_two_level)
efficiency =
99.1940
lossesTable =
1\times2 table

```

LoggingNode
'pe_pwm_two_level.Converter'

Power
268.73
- "Perform a Power-Loss Analysis"
- "Data Logging" (Simscape)
- "About the Simscape Results Explorer" (Simscape)

\section*{Input Arguments}

\section*{' loadIdentifier' - Identify load blocks in the circuit case-sensitive string}

String that is a complete or partial match for the names of load blocks in the circuit. For example, consider a circuit that contains the blocks shown in the table.
\begin{tabular}{|l|l|l|c|c|}
\hline Block Name in the Model & DC Impedance & AC Impedance & Y-Ld \\
\hline Block Type & RLC & RLC & \begin{tabular}{c} 
Wye-Connected \\
Load
\end{tabular} \\
\hline \multicolumn{6}{|l|}{ Block Role in the Model } & \begin{tabular}{l} 
Source \\
Impedance
\end{tabular} & \begin{tabular}{c} 
Load \\
Impedance
\end{tabular} & Load \\
\hline \multirow{3}{*}{ ' loadIdentifier' } & 'd' & Yes & Yes & Yes \\
\cline { 2 - 6 } & 'Load' & No & No & No \\
\cline { 2 - 6 } & 'D' & Yes & No & No \\
\hline
\end{tabular}

The pe_getEfficiency function does not return the correct data for any of these 'loadIdentifier' values.

A load-block naming schema that gives you better control over the output of the pe_getEfficiency function is shown in this table.
\begin{tabular}{|l|l|c|c|c|}
\hline Block Name in the Model & DC Impedance & \begin{tabular}{c} 
AC \\
Impedance_Lo \\
ad_1
\end{tabular} & Y-Load_2 \\
\hline Block Type & RLC & RLC & \begin{tabular}{c} 
Wye-Connected \\
Load
\end{tabular} \\
\hline Block Role in the Model & \begin{tabular}{c} 
Source \\
Impedance
\end{tabular} & \begin{tabular}{c} 
Load \\
Impedance
\end{tabular} & Load \\
\hline \multirow{3}{*}{ ' loadIdentifier' } & '1' & No & Yes & No \\
\cline { 2 - 5 } & '2' & No & No & Yes \\
\cline { 2 - 5 } & 'Load ' & No & Yes & Yes \\
\hline
\end{tabular}

Example: 'Load'
Data Types: string

\section*{node - Simulation log variable, or a specific node within the simulation log variable}

Node object
Simulation log workspace variable, or a node within this variable, that contains the logged model simulation data, specified as a Node object. You specify the name of the simulation log variable by using the Workspace variable name parameter on the Simscape pane of the Configuration Parameters dialog box. To specify a node within the simulation log variable, provide the complete path to that node through the simulation data tree, starting with the top-level variable name.

If node is the name of the simulation log variable, then the table contains the data for all blocks in the model that contain power_dissipated variables. If node is the name of a node in the simulation data tree, then the table contains the data only for:
- Blocks or variables within that node
- Blocks or variables within subnodes at all levels of the hierarchy beneath that node

Example: simlog_pe_pwm_two_level

\author{
startTime - Start of the time interval for calculating the efficiency \\ 0 (default) | real number
}

Start of the time interval for calculating the efficiency, specified as a real number, in seconds. startTime must be greater than or equal to the simulation Start time and less than endTime.

Data Types: double

\section*{endTime - End of the time interval for calculating the efficiency simulation stop time (default) | real number}

End of the time interval for calculating the efficiency, specified as a real number, in seconds. endTime must be greater than startTime and less than or equal to the simulation Stop time.
Data Types: double

\section*{Output Arguments}
efficiency - Efficiency of the circuit
percentage
Efficiency of the circuit based on data extracted from a Simscape logging node.

\section*{lossesTable - Dissipated power for each nonload blocks \\ table}

Dissipated power losses for each nonload block, returned as a table. The first column lists logging nodes for all blocks that have at least one power_dissipated variable. The second column lists the corresponding losses in watts.

\section*{Assumptions}
- The output power equals the total power dissipated by blocks that you identify as load blocks.
- The input power equals the output power plus the total power dissipated by blocks that you do not identify as load blocks.
- The power_dissipated variables capture all loss contributions.

\section*{See Also}
pe_getPowerLossSummary|pe_getPowerLossTimeSeries|sscexplore

\section*{Topics}
"Perform a Power-Loss Analysis"
"Data Logging" (Simscape)
"About the Simscape Results Explorer" (Simscape)

\section*{Introduced in R2017a}

\section*{pe_getHarmonics}

Return harmonic orders, magnitudes, and fundamental frequency

\section*{Syntax}
```

[harmonicOrder,harmonicMagnitude,fundamentalFrequency] =...
pe_getHarmonics(loggingNode)
[harmonicOrder,harmonicMagnitude,fundamentalFrequency] =...
pe_getHarmonics(loggingNode,valueIdx)
[harmonicOrder,harmonicMagnitude,fundamentalFrequency] =...
pe_getHarmonics(loggingNode,valueIdx,tOfInterest)
[harmonicOrder,harmonicMagnitude,fundamentalFrequency] =...
pe_getHarmonics(loggingNode,valueIdx,tOfInterest,nPeriodOfInterest)
[harmonicOrder,harmonicMagnitude,fundamentalFrequency] =...
pe_getHarmonics(loggingNode,valueIdx,t0fInterest,
nPeriodOfInterest,...
offsetOfInterest)
[harmonicOrder,harmonicMagnitude,fundamentalFrequency] =...
pe_getHarmonics(loggingNode,valueIdx,t0fInterest,
nPeriodOfInterest,...
offsetOfInterest,nHarmonic)

```

\section*{Description}
[harmonic0rder,harmonicMagnitude,fundamentalFrequency] =... pe_getHarmonics(loggingNode) calculates the harmonic orders, magnitudes, and fundamental frequency of a simscape.logging. Node of an AC or periodic variable.

The function finds the points in the \(\mathrm{i}^{\text {th }}\) signal (valueIdx) where the Simscape log crosses a threshold (offsetOfInterest). It uses the crossing points to find the required number of periods (nPeriodOfInterest) preceding the specified time (tOfInterest). Then it inputs the down-selected data to the Goertzel algorithm, which calculates the harmonic magnitudes up to and including the required number of harmonics (nHarmonic).

You enter the input arguments in a specific order. The Simscape logging node input argument is required. All other input arguments are optional and have default values. If
you are specifying a value for a subsequent optional input argument, enter [] to use the default value for an optional input argument.

You can use the pe_plotHarmonics function to obtain a bar chart from the same input arguments. You can use the outputs of this function as inputs to the pe_calculateThdPercent function to calculate the total harmonic distortion (THD) percentage.
[harmonicOrder,harmonicMagnitude,fundamentalFrequency] =... pe_getHarmonics(loggingNode, valueIdx) uses the index into value data.
[harmonicOrder,harmonicMagnitude,fundamentalFrequency] =... pe_getHarmonics(loggingNode, valueIdx,t0fInterest) uses the simulation time.
[harmonic0rder,harmonicMagnitude,fundamentalFrequency] =... pe_getHarmonics(loggingNode, valueIdx, tOfInterest, nPeriodOfInterest) uses the number of periods of fundamental frequency.
[harmonicOrder,harmonicMagnitude,fundamentalFrequency] =... pe_getHarmonics(loggingNode, valueIdx,t0fInterest, nPeriodOfInterest,...
offsetOfInterest) uses the DC offset.
[harmonicOrder,harmonicMagnitude,fundamentalFrequency] =... pe_getHarmonics(loggingNode, valueIdx,tOfInterest, nPeriodOfInterest,...
offsetOfInterest, nHarmonic) uses the number of harmonics.

\section*{Examples}

\section*{Analyze Using Default Values}

This set of function arguments uses the Simscape logging node simlog. Load.V, which contains data from a three-phase voltage. The function analyzes the default signal, which is the first, or a-phase, signal at the final simulation time. The function uses the default values of 12 for the number of periods of the signal, 0 V for the signal bias, and 30 for the number of harmonics.

\footnotetext{
pe getHarmonics(simlog.Load.V)
}

\section*{Analyze Using Specified Values}

This set of function arguments uses the Simscape logging node simlog. Load.V, which contains data from a three-phase voltage. The function analyzes the second, or b-phase, signal at a simulation time of 2.3 s . The function uses 10 periods of the signal, which has a bias of 1 V . The function analyzes 15 harmonics.
```

pe_getHarmonics(simlog.Load.V,2,2.3,10,1,15)

```

\section*{Analyze Using Default and Specified Values}

This set of function arguments uses the Simscape logging node simlog. Load.V, which contains data from a three-phase voltage. The function analyzes the first, or a-phase, signal at a simulation time of 2.3 s . The function uses 12 periods of the signal, which has a bias of 1 V . The function analyzes the default number, 30, of harmonics.
```

pe_getHarmonics(simlog.Load.V,[],2.3,[],1)

```

\section*{Input Arguments}

\section*{loggingNode - Simscape logging node}

1-by-1 simscape.logging.Node
Simscape logging node, specified as a 1-by-1 simscape. logging. Node. You create a simscape. logging. Node by running a simulation with Simscape logging enabled. For information, see "Enable Data Logging for the Whole Model" (Simscape).

\section*{Example: simlog.Load.V}

The Simscape logging node simlog.Load.V contains data from a three-phase voltage.

\section*{valueIdx - Index into value data}

1 (default) | scalar
Index into value data, specified as a scalar. Specifies the \(i^{\text {th }}\) variable of interest in the Simscape log.

Example: 2
Specify the b-phase, which is the second signal from a three-phase voltage.
Example: []

Use [] to specify the default value of 1 . The a-phase, which is the first signal from a threephase voltage, is the default signal of interest.
```

Data Types: single|double| int8| int16| int32|int64|uint8|uint16|
uint32 | uint64

```

\section*{tOfInterest - Simulation time}
```

final time in Simscape log (default) | scalar

```

Simulation time of interest for harmonic analysis, specified as a scalar.

\section*{Example: 2.3}

Specify a 2.3 s simulation time.
Data Types: single|double|int8|int16|int32|int64|uint8|uint16| uint32 | uint64

\section*{nPeriodOfInterest - Number of periods}

12 (default) | scalar
Number of periods of fundamental frequency to be included in harmonic analysis, specified as a scalar.

\section*{Example: 10}

Specify 10 periods of the signal.
Data Types: single|double|int8|int16|int32|int64|uint8|uint16| uint32 | uint64

\section*{offset0fInterest - DC offset}

0 (default) | scalar
DC offset in the input signal, specified as a scalar. The function uses this value to find the periods of interest.

Example: 1
Specify a bias of 1 V for the signal.
```

Data Types: single|double| int8| int16| int32 | int64 | uint8|uint16 |
uint32| uint64

```

\section*{nHarmonic - Number of harmonics}

\author{
30 (default) | scalar
}

Number of harmonics to include in analysis, specified as a scalar.

\section*{Example: 15}

Specify that the number of harmonics to be analyzed is 15 .
```

Data Types: single|double| int8| int16| int32| int64|uint8|uint16|
uint32| uint64

```

\section*{Output Arguments}

\section*{harmonicOrder - Harmonic order}
vector
Harmonic orders from 0 up to and including the number of harmonics used in the analysis, returned as a vector.

\section*{harmonicMagnitude - Harmonic magnitude}
vector
Harmonic magnitudes from the \(0^{\text {th }}\) harmonic up to and including the number of harmonics used in the analysis, returned as a vector.

\section*{fundamentalFrequency - Fundamental frequency \\ scalar}

Fundamental frequency over the range of the down-selected input data, returned as a scalar.

\section*{Limitations}
- This function requires that you use a fixed-step solver for the Simscape Power Systems network that you are analyzing. To specify a fixed-step solver for the physical network, use one of the configuration combinations in the table.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Configurati \\
on \\
Combinatio \\
n
\end{tabular} & \begin{tabular}{l} 
Global Solver \\
Configuration
\end{tabular} & Local Solver Configuration \\
\hline \begin{tabular}{c} 
Global \\
variable-step \\
with local \\
fixed-step
\end{tabular} & \begin{tabular}{l} 
Set Type to Variable- \\
step
\end{tabular} & \begin{tabular}{l} 
Enable the options to Use local solver \\
and Use fixed-cost runtime \\
consistency iterations
\end{tabular} \\
\hline \begin{tabular}{c} 
Global and \\
local fixed- \\
step
\end{tabular} & Set Type to Fixed-step & \begin{tabular}{l} 
Enable the options to Use local solver \\
and Use fixed-cost runtime \\
consistency iterations
\end{tabular} \\
\hline \begin{tabular}{c} 
Global fixed- \\
step
\end{tabular} & Set Type to Fixed-step & Clear the option to Use local solver \\
\hline
\end{tabular}
- This function uses threshold crossing points to determine the fundamental frequency of the data. If your input data is noisy or crosses the threshold more frequently than half of the fundamental period, filter it before you use this function to analyze it.
- This function requires a minimal number of periods. If the minimal number is not met, the function generates a warning message. To increase the number of periods, use one or both of these methods:
- Increase the simulation time.
- Increase the switching frequency.

\section*{See Also}

\section*{Blocks}

Spectrum Analyzer

\section*{Functions}
pe_calculateThdPercent|pe_plotHarmonics

\section*{Objects}
simscape.logging.Node

\section*{Topics}
"Perform an Online Harmonic Analysis Using the Simscape Spectrum Analyzer Block"

\footnotetext{
"Choose a Simscape Power Systems Function for an Offline Harmonic Analysis" "Data Logging" (Simscape)
"Harmonic Analysis of a Three-Phase Rectifier"

\section*{Introduced in R2014a}
}

\section*{pe_getPowerLossSummary}

Calculate dissipated power losses

\section*{Syntax}
lossesTable = pe_getPowerLossSummary (node)
lossesTable = pe_getPowerLossSummary(node,startTime,endTime)

\section*{Description}
lossesTable = pe_getPowerLossSummary(node) calculates dissipated power losses for semiconductor blocks in a model, based on logged simulation data, and returns the data for each block in a table.

Before you call this function, generate or load the simulation log variable into your workspace. To generate the variable, simulate the model with simulation data logging enabled. For more information, see "About Simulation Data Logging" (Simscape). To load a previously saved variable from a file, right-click on the file and select Load.

Checking dissipated power allows you to determine if circuit components are operating within their efficiency requirements. Blocks in the Semiconductor > Fundamental Components library have an internal variable called power_dissipated. This variable represents the instantaneous dissipated power, which includes only the real power (not the reactive or apparent power) that the block dissipates. When you log simulation data, the time-value series for this variable represents the power dissipated by the block over time. You can view and plot this data using the Simscape Results Explorer. The pe_getPowerLossTimeSeries function also allows you to access this data from a cell array.

The pe_getPowerLossSummary function calculates average losses for each block that has a power_dissipated variable. Some blocks have more than one power_dissipated variable, depending on their configuration. For example, for the MOSFET block, both the diode node and the ideal_switch node have a power_dissipated logging node. The function sums the power losses for both nodes to provide the total power loss for the block, averaged over simulation time.

The nonideal semiconductor blocks also have thermal variants. Thermal variants have thermal ports that allow you to model the heat that is generated due to switching events and conduction losses. If you use a thermal variant, the function calculates power losses based on the thermal parameters that you specify. Essentially, the power dissipated is equal to the heat generated.

If you use a variant without a thermal port, the function calculates power losses based on the electrical parameters that you specify, such as on-state resistance and off-state conductance.
lossesTable = pe_getPowerLossSummary(node,startTime,endTime) calculates dissipated power losses within a time interval. startTime and endTime represent the start and end of the time interval for averaging the power losses. If you omit these two input arguments, the function averages the power losses over the total simulation time.

\section*{Examples}

\section*{Calculate Average Power Losses by Block for the Whole Model}

This example uses the Push-Pull Buck Converter in Continuous Conduction Mode model. Data logging is enabled for the whole model and the option to limit data points is off.
1. Open the example model. At the MATLAB® command prompt, enter
```

model = 'pe_push_pull_converter_ccm';
open_system(model)

```

2. Run the simulation and create the simulation \(\log\) variable.
```

sim(model);

```

The simulation log variable simlog_pe_push_pull_converter_ccm is saved in your workspace.
3. Calculate average power losses for each semiconductor in the model and display the results in a table.
tabulatedLosses = pe_getPowerLossSummary(simlog_pe_push_pull_converter_ccm)
tabulatedLosses =
\(5 \times 2\) table
```

'pe_push_pull_converter_ccm.Diodel'
'pe_push_pull_converter_ccm.Diode'
'pe_push_pull_converter_ccm.N_Channel_MOSFET_1.mosfet_equation'
'pe_push_pull_converter_ccm.N_Channel_MOSFET_2.mosfet_equation'
'pe_push_pull_converter_ccm.Step_Down_Center_Tapped_Transformer.Eddy_Current'

```

The table shows dissipated power losses for each of the N-Channel MOSFET and Diode blocks, averaged over the entire simulation time.

\section*{Calculate Average Power Losses for a Single Block}
1. Open the Push-Pull Buck Converter in Continuous Conduction Mode example model. At the MATLAB \({ }^{\circledR}\) command prompt, enter
```

model='pe_push_pull_converter_ccm';
open_system(model)

```


The model has data logging enabled.
2. Run the simulation and create the simulation \(\log\) variable.
```

sim(model)

```

The simulation log variable simlog_pe_push_pull_converter_ccm is saved in your workspace.
3. Calculate power losses for the N-Channel MOSFET 1 block and display the results in a table.
tabulatedLosses = pe_getPowerLossSummary(simlog_pe_push_pull_converter_ccm.N_Channel_MC
tabulatedLosses =
\(1 \times 2\) table

\section*{LoggingNode}

\section*{Power}
0.24497

The table shows dissipated power losses for just the N-Channel MOSFET 1 block, averaged over the total simulation time.
4. Use the sscexplore function to explore the power loss data for the N-Channel MOSFET 1 block further.
a. Open the Results Explorer.
sscexplore(simlog_pe_push_pull_converter_ccm)

b. Expand these nodes:
- N_Channel_MOSFET_1
- mosfet_equation
c. Click the power_dissipated node.


The N-Channel MOSFET 1 block has one power_dissipated variable for the mosfet_equation node. The power_dissipated figure shows the instantaneous power loss for the N-Channel MOSFET 1 block during the simulation.

\section*{Calculate Average Power Losses for Components of a Block}

You can calculate average power losses for the individual components of a block in your model.
1. Open the Push-Pull Buck Converter in Continuous Conduction Mode example model. At the MATLAB \({ }^{\circledR}\) command prompt, enter
```

model = 'pe_push_pull_converter_ccm';
open_system(model)

```


The model has data logging enabled.
2. Add a diode component in the N-Channel MOSFET 1 block using the MATLAB® command prompt:
set_param('pe_push_pull_converter_ccm/ N-Channel MOSFET 1','diode_param','2')
Alternatively, you can add the component in the Simulink \({ }^{\circledR}\) Editor:
a. Open the Property Inspector pane. In the model window, in the menu bar, click View > Property Inspector
b. Click the N-Channel MOSFET1 block to access the block parameters.
c. In the Property Inspector pane, expand the Integral Diode setting and change the value for the Integral protection from None to Protection diode with no dynamics.
3. Run the simulation, create a simulation log variable, and open the simlog in the Simscape Results Explorer using the sscexplore function.
sim(model)
sscexplore(simlog_pe_push_pull_converter_ccm)

4. View the power loss data for the two N-Channel MOSFET blocks, expand these nodes and CTRL + click the power_dissipated nodes:
- N_Channel_MOSFET_1 > diode > power_dissipated
- N_Channel_MOSFET_1 > mosfet_equation > power_dissipated
- N_Channel_MOSFET_2 > mosfet_equation > power_dissipated


The N-Channel MOSFET 2 block has only one power_dissipated variable. The NChannel MOSFET 1 block has one power_dissipated variable for each of the two components (MOSFET and diode) that the block contains.
5. Calculate power losses for both components of the N-Channel MOSFET 1 block and display the results in a table
```

tabulatedLosses = pe_getPowerLossSummary(simlog_pe_push_pull_converter_ccm.N_Channel_M
tabulatedLosses =
1x2 table

```
    LoggingNode Power
    'N_Channel_MOSFET_1' 2.6075

The table shows the combined dissipated power losses for both the diode and the MOSFET components of the N-Channel MOSFET 1 block, averaged over the total simulation time.
6. Calculate power losses for only the diode component of the NChannel MOSFET 1 block and display the results in a table.
```

tabulatedLosses = pe_getPowerLossSummary(simlog_pe_push_pull_converter_ccm.N_Channel_M
tabulatedLosses =
1x2 table
LoggingNode Power
'diode' 2.3669

```

The table shows dissipated power losses only for the diode component of the block, averaged over the total simulation time.

\section*{Calculate Average Power Losses for a Specific Time Period}
1. Open the Push-Pull Buck Converter in Continuous Conduction Mode example model. At the MATLAB® command prompt, enter
pe_push_pull_converter_ccm


The model has data logging enabled.
2. Run the simulation and create the simulation \(\log\) variable.
sim('pe_push_pull_converter_ccm');
The simulation log variable simlog_pe_push_pull_converter_ccm is saved in your workspace.
3. The model simulation time \((t)\) is 0.04 seconds. Calculate average power losses for the interval when \(t\) is \(0.010-0.025\) seconds
```

tabulatedLosses = pe_getPowerLossSummary(simlog_pe_push_pull_converter_ccm,0.010,0.025
tabulatedLosses =
5×2 table

```

\section*{LoggingNode}
```

'pe push pull converter ccm.Diode'
'pe_push_pull_converter_ccm.Diode1'
'pe push pull converter ccm.N Channel MOSFET 2.mosfet equation'
'pe_push_pull_converter_ccm.N_Channel_MOSFET_1.mosfet_equation'
'pe_push_pull_converter_ccm.Step_Down_Center_Tapped_Transformer.Eddy_Current'

```

The table shows dissipated power losses for each of the Diode and MOSFET blocks, averaged over the specified portion of simulation time.
- "Perform a Power-Loss Analysis"
- "Data Logging" (Simscape)
- "About the Simscape Results Explorer" (Simscape)

\section*{Input Arguments}

\section*{node - Simulation log variable, or a specific node within the simulation log variable}

Node object
Simulation log workspace variable, or a node within this variable, that contains the logged model simulation data, specified as a Node object. You specify the name of the simulation log variable by using the Workspace variable name parameter on the Simscape pane of the Configuration Parameters dialog box. To specify a node within the simulation log variable, provide the complete path to that node through the simulation data tree, starting with the top-level variable name.

If node is the name of the simulation log variable, then the table contains the data for all blocks in the model that contain power_dissipated variables. If node is the name of a node in the simulation data tree, then the table contains the data only for:
- Blocks or variables within that node
- Blocks or variables within subnodes at all levels of the hierarchy beneath that node

\section*{Example: simlog.Cell1.MOS1}

\section*{startTime - Start of the time interval for averaging dissipated power losses real number}

Start of the time interval for averaging dissipated power losses, specified as a real number, in seconds. startTime must be greater than or equal to the simulation Start time and less than endTime.

Data Types: double

\section*{endTime - End of the time interval for averaging dissipated power losses} real number

End of the time interval for averaging dissipated power losses, specified as a real number, in seconds. endTime must be greater than startTime and less than or equal to the simulation Stop time.
Data Types: double

\section*{Output Arguments}

\section*{lossesTable - Dissipated power losses for each block \\ table}

Dissipated power losses for each block, returned as a table. The first column lists logging nodes for all blocks that have at least one power_dissipated variable. The second column lists the corresponding losses in watts.

\section*{See Also}
pe_getEfficiency|pe_getPowerLossTimeSeries|sscexplore

\section*{Topics}
"Perform a Power-Loss Analysis"
"Data Logging" (Simscape)
"About the Simscape Results Explorer" (Simscape)

\section*{Introduced in R2017a}

\section*{pe_getPowerLossTimeSeries}

Calculate dissipated power losses and return the time series data

\section*{Syntax}
lossesCell = pe_getPowerLossTimeSeries(node)
lossesCell = pe_getPowerLossTimeSeries(node,startTime,endTime)
lossesCell = pe_getPowerLossTimeSeries(node,startTime,endTime,
intervalWidth)

\section*{Description}
lossesCell = pe_getPowerLossTimeSeries(node) calculates dissipated power losses for blocks, based on logged Simscape simulation data, and returns the time series data for each block.

Before you call this function, generate or load the simulation log variable into your workspace. To generate the variable, simulate the model with simulation data logging enabled. For more information, see "About Simulation Data Logging" (Simscape). To load a previously saved variable from a file, right-click on the file and select Load.

Checking dissipated power allows you to determine if circuit components are operating within their efficiency requirements. Blocks in the Semiconductor > Fundamental Components library have an internal variable called power_dissipated. This variable represents the instantaneous dissipated power, which includes only the real power (not the reactive or apparent power) that the block dissipates. When you log simulation data, the time-value series for this variable represents the power dissipated by the block over time. You can view and plot this data using the Simscape Results Explorer. The pe_getPowerLossTimeSeries function also allows you to access this data from a cell array.

The pe_getPowerLossTimeSeries function calculates losses for each block that has a power_dissipated variable. Some blocks have more than one power_dissipated variable, depending on their configuration. For example, for the MOSFET block, both the diode node and the ideal_switch node have a power_dissipated logging node. The
function sums the power losses for both nodes to provide the total power loss for the block.

The nonideal semiconductor blocks also have thermal variants. Thermal variants have thermal ports that allow you to model the heat that is generated due to switching events and conduction losses. If you use a thermal variant, the function calculates power losses based on the thermal parameters that you specify. Essentially, the power dissipated is equal to the heat generated.

If you use a variant without a thermal port, the function calculates power losses based on the electrical parameters that you specify, such as on-state resistance and off-state conductance.
lossesCell = pe_getPowerLossTimeSeries(node,startTime,endTime) calculates dissipate \(\bar{d}\) power losses for blocks in a model, based on logged Simscape simulation data, and returns the time series data for each block for time steps from startTime to endTime. If startTime is equal to endTime, the interval is effectively zero and the function returns the instantaneous power for the time step that occurs at that moment.
lossesCell = pe_getPowerLossTimeSeries(node,startTime,endTime, intervalWidth) calculates dissipated power losses for blocks in a model, based on logged Simscape simulation data, and returns the time series data for each block for time steps from startTime to endTime, with averaging applied over intervals equal to intervalWidth. If intervalWidth is 0 , the function returns the instantaneous power dissipation.

\section*{Examples}

\section*{Calculate Dissipated Power Losses for the Entire Simulation Time}

This example shows how to calculate instantaneous losses based on the power dissipated and return the time series data for all time steps in the entire simulation time using the pe_getPowerLossTimeSeries function. Data logging is enabled for the whole example model, and the option to limit data points is off.

Open the model. At the MATLAB® command prompt, enter:
```

model = 'pe_push_pull_converter_ccm';
open_system(model)

```


Run the simulation and create the simulation log variable.
```

sim(model)

```

The simulation log variable simlog_pe_push_pull_converter_ccm is saved in your workspace.

Calculate dissipated power losses and return the time series data in a cell array.
```

lossesCell = pe_getPowerLossTimeSeries(simlog_pe_push_pull_converter_ccm)

```
lossesCell =
    \(4 \times 2\) cell array
\(\begin{array}{ll}\text { 'pe_push_pull_converter_ccm.N_Chann....' } & {[400001 \times 3 \text { double] }} \\ \text { 'pe_push_pull_converter_ccm.N_Chann...' } & {[400001 \times 3 \text { double] }} \\ \text { 'pe_push_pull_converter_ccm.Diode' } & {[400001 \times 3 \text { double] }} \\ \text { 'pe_push_pull_converter_ccm.Diode1' } & {[400001 \times 3 \text { double] }}\end{array}\)

View the time series data. From the workspace, open the lossesCell cell array, then open the \(400001 \times 3\) double numeric array for the pe_push_pull_converter_ccm.N_Channel_MOSFET_1.mosfet_equation.

The first two columns contain the interval start and end time. The third column contains the power loss data.

Plot the data.
```

plot(lossesCell{1, 2}(:,end))
title('Dissipated Power')
xlabel('Time Interval')
ylabel('Power (W)')

```


\section*{Calculate Dissipated Power Losses for a Specific Time Period}

This example shows how to calculate instantaneous losses based on the power dissipated and return the time series data for all time steps in a specific time period using the pe_getPowerLossTimeSeries function. Data logging is enabled for the whole example model, and the option to limit data points is off.

Open the model. At the MATLAB® command prompt, enter:
```

model = 'pe_push pull_converter_ccm';
open_system(model)

```


Run the simulation and create the simulation log variable.
```

sim(model)

```

The simulation log variable simlog_pe_push_pull_converter_ccm is saved in your workspace.

The model simulation time \((t)\) is 0.04 seconds. Calculate dissipated power losses and return the time series data in a cell array for the interval when \(t\) is \(0.010-0.025\) seconds.
lossesCell = pe_getPowerLossTimeSeries(simlog_pe_push_pull_converter_ccm, 0.010, 0.025)
lossesCell =
```

4*2 cell array

```
```

'pe_push_pull_converter_ccm.N_Chann...' [150002\times3 double]
'pe push pull' converter ccm.N-Chann...' [150002\times3 double]
'pe_push_pull_converter_ccm.Dīode' [150002\times3 double]
'pe_push_pull_converter_ccm.Diode1' [150002\times3 double]

```

View the time series data. From the workspace, open the lossesCell cell array, then open the \(150002 \times 3\) double numeric array for the pe_push_pull_converter_ccm.N_Channel_MOSFET_1.mosfet_equation.

The first two columns contain the interval start and end time. The third column contains the power loss data.

Plot the data.
```

plot(lossesCell{1, 2}(:,end))
title('Dissipated Power')
xlabel('Time Interval')
ylabel('Power (W)')

```


\section*{Calculate Dissipated Power Losses Using Specific Interval Widths}

This example shows how to calculate losses based on the power dissipated and return the time series data for a specific time period with averaging applied over intervals of a specified width. Data logging is enabled for the whole example model, and the option to limit data points is off.

Open the model. At the MATLAB® command prompt, enter:
```

model = 'pe_push_pull_converter_ccm';
open_system(model)

```


Run the simulation and create the simulation log variable.
```

sim(model)

```

The simulation log variable simlog_pe_push_pull_converter_ccm is saved in your workspace.

The model simulation time, \(t\), is 0.04 seconds. Calculate the average dissipated power losses for \(1.1 \mathrm{e}-4 \mathrm{~s}\) intervals and return the time series data in a cell array for the period when simulation time, \(t\), is \(0.010-0.025\) seconds.
```

lossesCell = pe_getPowerLossTimeSeries(simlog_pe_push_pull_converter_ccm,0.010,0.025,1.1e-4)
lossesCell =
4\times2 cell array
'pe_push_pull_converter_ccm.N_...' [136\times3 double]

```
```

'pe_push_pull_converter_ccm.Di...' [136\times3 double]
'pe_push_pull_converter_ccm.Di...' [136\times3 double]

```

View the time series data. From the workspace, open the lossesCell cell array, then open the \(136 \times 3\) double numeric array for the pe_push_pull_converter_ccm.N_Channel_MOSFET_1.mosfet_equation.

The first two columns contain the interval start and end time. The third column contains the power loss data. In this case, to use averaging intervals that are equal in width to \(1.1 \mathrm{e}-4\) seconds, the function adjusts the start time for the first interval from the specified value of 0.010 seconds to a value of 0.01004 seconds. There are 136 intervals of \(1.1 \mathrm{e}-4\) seconds.

Plot the data.
```

plot(lossesCell{1, 2}(:,end))
title('Dissipated Power')
xlabel('Time Interval')
ylabel('Power (W)')

```

- "Perform a Power-Loss Analysis"
- "Data Logging" (Simscape)
- "About the Simscape Results Explorer" (Simscape)

\section*{Input Arguments}

\section*{node - Simulation log variable, or a specific node within the simulation log variable}

Node object

Simulation log workspace variable, or a node within this variable, that contains the logged model simulation data, specified as a Node object. You specify the name of the simulation log variable by using the Workspace variable name parameter on the Simscape pane of the Configuration Parameters dialog box. To specify a node within the simulation log variable, provide the complete path to that node through the simulation data tree, starting with the top-level variable name.

If node is the name of the simulation log variable, then the table contains the data for all blocks in the model that contain power dissipated variables. If node is the name of a node in the simulation data tree, then the table contains the data only for:
- Blocks or variables within that node
- Blocks or variables within subnodes at all levels of the hierarchy beneath that node

Example: simlog_pe_push_pull_converter_ccm

\section*{startTime - Start of the time interval for calculating the data \\ 0 (default) | real number}

Start of the time interval for calculating the power loss time series, specified as a real number, in seconds. startTime must be greater than or equal to the simulation Start time and less than endTime.

Data Types: double
endTime - End of the time interval for calculating the data
simulation stop time (default) | real number
End of the time interval for calculating the power loss time series, specified as a real number, in seconds. endTime must be greater than startTime and less than or equal to the simulation Stop time.
Data Types: double

\section*{intervalWidth - size of the interval in time for calculating the average power dissipation}

0 (default)
If the time between the specified startTime and endTime is not an integer multiple of intervalWidth, the function adjusts the start time. The figure shows how the function adjusts the start time to ensure that width of each time interval that the dissipated power is averaged over is equal to the specified intervalWidth.


The black line is an example of the instantaneous power_dissipated variables summed over all elements in an individual block. The simulation runs for 6 seconds. The startTime and endTime are indicated by the solid blue lines. The intervalWidth is set to 1 second. There are five intervals as indicated by the red dashed lines. The rightmost edge of the last interval coincides with endTime. The left-most edge of the first interval is always greater than or equal to startTime. The edge is equal to startTime only if (endTime-startTime)/intervalWidth is an integer. The output in this case consists of five values for the averaged power dissipation, one point for each time period. The function outputs the actual start and stop times in the tabulated output data.
Example: 1.1e-3
Data Types: double

\section*{Output Arguments}

\section*{lossesCell - Time series of the dissipated power losses for each block cell array}

Cell array that contains the names of the blocks in the nodes that contain power_dissipated variables and, for each block, a three-column array:
- Column one contains the interval start time.
- Column two contains the interval end time.
- Column three contains the dissipated power for the time interval.

If the interval width is 0 seconds, that is, the start time is equal to the end time, then the dissipated power is the instantaneous power loss. If the interval is greater than 0 seconds, the dissipated power is the average power loss for the time of the interval.

\author{
See Also \\ pe_getEfficiency | pe_getPowerLossSummary | sscexplore
}

\section*{Topics}
"Perform a Power-Loss Analysis"
"Data Logging" (Simscape)
"About the Simscape Results Explorer" (Simscape)

\section*{Introduced in R2017a}

\section*{pe_plotHarmonics}

Plot percentage of fundamental magnitude versus harmonic order

\section*{Syntax}
```

pe_plotHarmonics(loggingNode)
pe_plotHarmonics(loggingNode,valueIdx)
pe_plotHarmonics(loggingNode,valueIdx,tOfInterest)
pe_plotHarmonics(loggingNode,valueIdx,tOfInterest,nPeriodOfInterest)
pe_plotHarmonics(loggingNode,valueIdx,tOfInterest,
nPeriodOfInterest,...
offsetOfInterest)
pe_plotHarmonics(loggingNode,valueIdx,tOfInterest,
nPeriodOfInterest,...
offsetOfInterest,nHarmonic)

```

\section*{Description}
pe_plotHarmonics(loggingNode) plots a bar chart of percentage of fundamental magnitude versus harmonic order of the simscape.logging. Node of an AC or periodic variable. The title of the bar chart includes the fundamental frequency, fundamental peak value, and total harmonic distortion (THD) percentage.

You enter the input arguments in a specific order. The Simscape logging node input argument is required. All other input arguments are optional and have default values. If you are specifying a value for a subsequent optional input argument, enter [] to use the default value for an optional input argument.

The pe_plotHarmonics function uses the pe_getHarmonics function to:
- Find the points in the \(i^{\text {th }}\) signal (valueIdx) where the Simscape log crosses a threshold (offsetOfInterest).
- Use the crossing points to find the required number of periods (nPeriodOfInterest) preceding the specified time (tOfInterest).
- Calculate the harmonic magnitudes, up to and including the required number of harmonics (nHarmonic).
- Input the down-selected data to the Goertzel algorithm, which calculates the harmonic magnitudes up to and including the required number of harmonics (nHarmonic).

Note The pe_getHarmonics function uses threshold crossing points to determine the fundamental frequency of the data. If your input data is noisy or crosses the threshold more frequently than half of the fundamental period, filter it before you use the pe_plotHarmonics function to plot it.

The pe_plotHarmonics function then inputs the harmonic orders and harmonic magnitudes to the pe_calculateThdPercent function to calculate the THD.
pe_plotHarmonics(loggingNode, valueIdx) uses the index into value data.
pe_plotHarmonics(loggingNode, valueIdx, tOfInterest) uses the simulation time.
pe_plotHarmonics(loggingNode, valueIdx,t0fInterest,nPeriodOfInterest) uses the number of periods of fundamental frequency.
pe_plotHarmonics(loggingNode, valueIdx,tOfInterest, nPeriodOfInterest,...
offset0fInterest) uses the DC offset.
pe_plotHarmonics(loggingNode, valueIdx,tOfInterest, nPeriodOfInterest,...
offset0fInterest, nHarmonic) uses the number of harmonics.

\section*{Examples}

\section*{Plot Using Default Values}

This set of function arguments uses the Simscape logging node simlog.Load.V, which contains data from a three-phase voltage. The function analyzes the default signal, which is the first, or a-phase, signal at the final simulation time. The function uses the default values of 12 for the number of periods of the signal, 0 V for the signal bias, and 30 for the number of harmonics.

\section*{Plot Using Specified Values}

This set of function arguments uses the Simscape logging node simlog.Load.V, which contains data from a three-phase voltage. The function analyzes the second, or b-phase, signal at a simulation time of 2.3 s . The function uses 10 periods of the signal, which has a bias of 1 V . The function analyzes 15 harmonics.
pe_plotHarmonics(simlog.Load.v,2,2.3,10,1,15)

\section*{Plot Using Default and Specified Values}

This set of function arguments uses the Simscape logging node simlog.Load.V, which contains data from a three-phase voltage. The function analyzes the first, or a-phase, signal at a simulation time of 2.3 s . The function uses the default number (12) of periods of the signal, which has a bias of 1 V . The function analyzes the default number (30) of harmonics.
```

pe_plotHarmonics(simlog.Load.V,[],2.3,[],1)

```

\section*{Input Arguments}

\section*{loggingNode - Simscape logging node}

1-by-1 simscape.logging.Node
Simscape logging node, specified as a 1-by-1 simscape. logging. Node. You create a simscape. logging. Node by running a simulation with Simscape logging enabled. To learn how to enable data logging, see "Enable Data Logging for the Whole Model" (Simscape).
Example: simlog.Load.V
The Simscape logging node simlog.Load.V contains data from a three-phase voltage.

\section*{valueIdx - Index into value data}

1 (default) | scalar
Index into value data, specified as a scalar. Specifies the \(\mathrm{i}^{\text {th }}\) variable of interest in the Simscape log.

Example: 2

Specify the b-phase, which is the second signal from a three-phase voltage.

\section*{Example: []}

Use [] to specify the default value of 1. The a-phase, which is the first signal from a threephase voltage, is the default signal of interest.
```

Data Types: single|double| int8| int16| int32| int64 | uint8|uint16|

``` uint32 | uint64

\section*{tOfInterest - Simulation time}
final time in Simscape log (default) | scalar
Simulation time of interest for harmonic analysis, specified as a scalar.
Example: 2.3
Specify a 2.3 s simulation time.
Data Types: single|double|int8|int16|int32|int64|uint8|uint16| uint32|uint64

\section*{nPeriodOfInterest - Number of periods}

12 (default) | scalar
Number of periods of fundamental frequency to be included in harmonic analysis, specified as a scalar.

\section*{Example: 10}

Specify 10 periods of the signal.
```

Data Types: single|double| int8| int16| int32| int64|uint8|uint16 |
uint32| uint64
offset0fInterest - DC offset
0 (default)| scalar

```

DC offset in the input signal, specified as a scalar. The function uses this value to find the periods of interest.

\section*{Example: 1}

Specify a bias of 1V for the signal.

\section*{Data Types: single|double|int8|int16|int32|int64|uint8|uint16| uint32 | uint64}

\section*{nHarmonic - Number of harmonics}

30 (default) | scalar
Number of harmonics to include in analysis, specified as a scalar.

\section*{Example: 15}

Specify that the number of harmonics to be analyzed is 15 .
```

Data Types: single|double| int8| int16| int32| int64|uint8|uint16|
uint32|uint64

```

\section*{See Also}

\section*{Blocks}

Spectrum Analyzer

\section*{Functions}
pe_calculateThdPercent|pe_getHarmonics

\section*{Objects}
simscape.logging.Node

\section*{Topics}
"Perform an Online Harmonic Analysis Using the Simscape Spectrum Analyzer Block" "Choose a Simscape Power Systems Function for an Offline Harmonic Analysis"
"Data Logging" (Simscape)
"Harmonic Analysis of a Three-Phase Rectifier"

\section*{Introduced in R2014a}

\section*{Abbreviations and Naming Conventions in Simscape Components Libraries}

\section*{B \\ C \\ composite three-phase port}
delta connection

\section*{expanded three-phase port}

\section*{\(F_{\text {Rated }}\)}

G


I

\section*{L}
line voltage

Susceptance.
Capacitance.
Three-phase electrical conserving port, i.e., a port that represents three electrical conserving ports with a single connection. You can use composite three-phase ports to build models corresponding to single-line diagrams of three-phase electrical systems. Instead of explicitly connecting each phase of the three-phase system between blocks, you connect all three phases using a single port.

Three-phase winding configuration. Each of the three windings is connected between phases. Physically, the connection resembles the Greek capital letter \(\Delta\). For a delta connection, phase shifts can be specified in terms of the hours of a clock. An 11 o'clock delta connection represents a 30 degree phase advance. A 1 o'clock delta connection represents a 30 degree phase delay.

Three separate electrical conserving ports that represent the individual phases of a three-phase system. You individually connect each phase of the three-phase system between blocks.

Rated electrical frequency of three-phase machine.
Conductance.
Instantaneous current.
RMS current.
Inductance.
RMS value of the voltage measured between phases. In a balanced three-phase system with no harmonics, peak line
voltage equals peak phase voltage multiplied by \(\sqrt{3}\). The RMS value equals peak line voltage divided by \(\sqrt{2}\).
\begin{tabular}{|c|c|}
\hline nPolePairs & Number of pole pairs for three-phase machine. \\
\hline phase voltage & RMS value of the voltage measured between a phase and reference point. The reference point is usually a neutral or ground point. In a balanced three-phase system with no harmonics, peak phase voltage is equal to peak line voltage divided by \(\sqrt{3}\). The RMS value equals peak phase voltage divided by \(\sqrt{2}\). Standard abbreviations are Va, Vb, and Vc. \\
\hline \(\mathbf{P}_{\text {PerPhase }}\) & Real power per phase. \\
\hline psi & Instantaneous peak magnetic flux linkage. \\
\hline Psi & RMS magnetic flux linkage. \\
\hline \(\mathbf{Q}_{\text {PerPhase }}\) & Reactive power per phase. \\
\hline R & Resistance. \\
\hline \(\mathbf{S}_{\text {Rated }}\) & Rated apparent power. \\
\hline \(\mathbf{S}_{\text {PerPhase }}\) & Apparent power per phase. \\
\hline torque & Torque of three-phase machine. \\
\hline v & Instantaneous voltage. \\
\hline V & RMS voltage. \\
\hline Va, Vb, Vc & Phase voltages. \\
\hline Vab, Vac, Vbc,... & Line voltages. \\
\hline \(\mathbf{V}_{\text {Rated }}\) & Rated voltage of three-phase machine. \\
\hline \(\boldsymbol{\omega}_{\text {Electrical }}\) & Electrical angular speed of three-phase machine. \\
\hline
\end{tabular}

Glossary-2
\(\boldsymbol{\omega}_{\text {Mechanical }}\)
winding voltage
wye connection
X
Y
Z

Mechanical angular speed of three-phase machine.
Voltage measured between both ends of a winding. For a wye connection, winding voltage equals phase voltage. For a delta connection, winding voltage equals line voltage.

Three-phase winding configuration. Each of the three windings is connected between a phase and neutral point. Physically, the connection resembles the letter Y. A wye connection is also referred to as a star connection, or Y connection.

Reactance.
Admittance.
Impedance.

\section*{Parameter Dependencies}

\section*{Parameter Dependencies}

A Simscape block parameter is considered visible when it appears in the Simulink Property Inspector, in a block dialog box, or as a block choice on the Simscape context menu. A block parameter is considered configurable or enabled when you can configure it by selecting an option, entering a value, or selecting or clearing a check box. Parameters that are visible but are not enabled are typically dimmed.

The visibility and configurability of some parameters depend on the options that you select for other parameters. Parameter dependencies are typically listed in the parameter description in the documentation for the block. For some blocks, the documentation also includes a parameter dependency table.

\section*{Parameter Dependency Tables}

Parameter dependency tables show how the visibility and configurability of some parameters depend on the options that you select for other parameters.

Parameter dependency tables indicate which parameter options affect the visibility of other parameters. For example, the next table shows the dependencies for the Effects and Initial Conditions parameters for the Pipe (2P) block from the Simscape > Foundation Library > Two-Phase Fluid > Elements library.

The row numbers in this table are for reference only. The first column of a parameter dependency table typically includes all parameters that are visible by default.

Parameters that affect the visibility or configurability of other parameters are shown in bold text. The options for the parameters that affect other parameters are shown in italic text in the following row of the table. Parameters that do not affect other parameters are shown in plain text.

Effects and Initial Conditions Parameter Dependencies
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Row & \multicolumn{6}{|l|}{Parameters and Options} \\
\hline 1 & \multicolumn{6}{|l|}{Fluid Inertia} \\
\hline 2 & \multicolumn{3}{|l|}{Off} & \multicolumn{3}{|l|}{On} \\
\hline 3 & \multicolumn{3}{|l|}{Initial fluid regime} & \multicolumn{3}{|l|}{Initial fluid regime} \\
\hline 4 & Subcooled liquid & Two-phase mixture & Superheate d vapor & Subcooled liquid & Two-phase mixture & Superheate d vapor \\
\hline 5 & Initial fluid pressure \\
\hline 6 & Initial fluid temperature & Initial fluid vapor quality & Initial fluid temperature & Initial fluid temperature & Initial fluid vapor quality & Initial fluid temperature \\
\hline 7 & & & & Initial mass flow rate from port A to port B & Initial mass flow rate from port A to port B & Initial mass flow rate from port A to port B \\
\hline 8 & Phase change time constant \\
\hline
\end{tabular}

The figure shows the Effects and Initial Conditions parameters that are visible by default on the block dialog box for the Pipe (2P) block.


If you change the Fluid Inertia parameter from \(0 f f\) to \(0 n\), the Initial mass flow rate from port A to port \(\mathbf{B}\) parameter becomes visible. The table shows this dependency in rows 1,2 , and 7 .


If you then change the Initial fluid regime parameter from Subcooled liquid to Two-phase mixture, the Initial fluid temperature parameter is hidden and Initial fluid vapor quality becomes visible. The table shows these dependencies in rows 3, 4, and 6.


Parameter dependency tables also indicate which parameter options enable other parameters. For example, the next table shows the dependencies for the parameters for the Solver Configuration block from the Simscape > Foundation Library > Utilities library. The first column in the table contains row numbers, which are for reference only. The second column includes all parameters that are visible by default.

Parameters that affect the visibility and configurability of other parameters are shown in bold text. The options for the parameters that affect other parameters are shown as selected and cleared check boxes in the following row of the table. Parameters that are shown in plain text are enabled but do not affect other parameters. Parameters that are not enabled are not shown.

Solver Configuration Block Parameter Dependencies
\begin{tabular}{|c|c|c|c|}
\hline Row & \multicolumn{3}{|l|}{Parameters and Options} \\
\hline 1 & \multicolumn{3}{|l|}{Start simulation from steady state} \\
\hline 2 & \multicolumn{3}{|l|}{Consistency tolerance} \\
\hline 3 & \multicolumn{3}{|l|}{Use local Solver} \\
\hline 4 & \multirow[t]{3}{*}{\(\square\)} & \multicolumn{2}{|l|}{\(\square\)} \\
\hline 5 & & \multicolumn{2}{|l|}{Solver type} \\
\hline 6 & & \multicolumn{2}{|l|}{Sample time} \\
\hline 7 & Use fixed-cost runtime consistency iterations & \multicolumn{2}{|l|}{Use fixed-cost runtime consistency iterations} \\
\hline 8 & \multirow[t]{3}{*}{\(\square\)} & \(\square\) & \(\square\) \\
\hline 9 & & Nonlinear iterations & \\
\hline 10 & & & \\
\hline 11 & \multicolumn{3}{|l|}{Linear Algebra} \\
\hline 12 & \multicolumn{3}{|l|}{Equation formulation} \\
\hline 13 & \multicolumn{3}{|l|}{Delay memory budget [kB]} \\
\hline 14 & \multicolumn{3}{|l|}{Apply filtering at 1-D/3-D connections when needed} \\
\hline 15 & \(\square\) & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\square\)}} \\
\hline 16 & Filtering time constant & & \\
\hline
\end{tabular}

The figure shows the parameters that are visible by default on the block dialog box for the Solver Configuration block. The dimmed parameters, for example, Solver type, are not enabled.

\section*{Block Parameters: Solver Configuration}

\section*{Solver Configuration}

Defines solver settings to use for simulation.
Parameters
Start simulation from steady state
Consistency tolerance:
```

1e-09

```
\(\square\) Use local solver
Solver type: \(\quad\) Backward Euler
Sample time:
0.001
\(\square\) Use fixed-cost runtime consistency iterations
Nonlinear iterations:

3

Mode iterations: 2
\begin{tabular}{ll|} 
Linear Algebra: & Sparse \\
\begin{tabular}{ll} 
Delay memory \\
budget \([\mathrm{kB}]:\)
\end{tabular} & 1024 \\
\hline
\end{tabular}

Apply filtering at 1-D/3-D connections when needed
Filtering time constant:
0.001

OK
Cancel
Help
Apply

If you select the Use local solver check box, the Use fixed-cost runtime consistency check box becomes selected and these parameters become enabled.
- Solver type
- Nonlinear iterations
- Sample time

Selecting Use local solver does not enable the Mode iterations parameter. The Mode iterations parameter is only enabled when the Use local solver check box is cleared while Use fixed-cost runtime consistency check box is selected.

The table shows these dependencies in rows 3-10.

\section*{Solver Configuration}

Defines solver settings to use for simulation.
Parameters
Start simulation from steady state
\begin{tabular}{ll} 
Consistency & \(1 \mathrm{e}-09\) \\
tolerance: &
\end{tabular}
\(\square\) Use local solver
\begin{tabular}{ll|} 
Solver type: & Backward Euler \\
Sample time: & 0.001 \\
\hline
\end{tabular}
\(\square\) Use fixed-cost runtime consistency iterations
Nonlinear iterations:

3

Mode iterations: 2


Equation formulation:

Time

Delay memory budget [kB]:

1024

Apply filtering at 1-D/3-D connections when needed
Filtering time constant:
\[
0.001
\]

OK


Apply```

